Photosynthetica, 2020 (vol. 58), SPECIAL ISSUE

Photosynthetica 2020, 58(2):452-459 | DOI: 10.32615/ps.2019.183

Special issue in honour of Prof. Reto J. Strasser – Targets of nitric oxide (NO) during modulation of photosystems in pea mesophyll protoplasts: studies using chlorophyll a fluorescence

B. SUNIL1, R.J. STRASSER2, A.S. RAGHAVENDRA1
1 Department of Plant Sciences, School of Life Sciences, University of Hyderabad, 500046 Hyderabad, India
2 Bioenergetics Laboratory, University of Geneva, CH-1254 Jussy/Geneva, Switzerland

Plants adapt to the environmental stresses by using the signalling molecules, such as H2O2 and nitric oxide (NO). We have assessed the NO-induced changes by using sodium nitroprusside (SNP, a NO donor) in photosynthetic components in protoplasts of pea (Pisum sativum) by measuring chlorophyll (Chl) a fluorescence induction kinetics. On exposure to SNP during preillumination, their photochemical activities were severely affected. There was a decrease of 40% in O2 evolution by 5 min and complete inhibition by 20 min. The patterns of photosynthesis in absence of NO did not vary much over 20 min. Chl a fluorescence transient analysis and the energy pipeline models demonstrated that NO decreased the rates and efficiency of photochemical reactions. Presence of NO lowered the photosynthetic performance index and increased the dissipation per reaction centre with the time. Our results suggest that NO inactivates the PSII by targeting both the donor and acceptor sides of PSII.

Keywords: energy pipeline model; OJIP transients; PSII efficiency.

Received: September 18, 2019; Revised: December 12, 2019; Accepted: December 30, 2019; Prepublished online: February 13, 2020; Published: April 7, 2020Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
SUNIL, B., STRASSER, R.J., & RAGHAVENDRA, A.S. (2020). Special issue in honour of Prof. Reto J. Strasser – Targets of nitric oxide (NO) during modulation of photosystems in pea mesophyll protoplasts: studies using chlorophyll a fluorescence. Photosynthetica58(SPECIAL ISSUE), 452-459. doi: 10.32615/ps.2019.183.
Download citation

Supplementary files

Download fileSunil 2406 supplement.docx

File size: 16.02 kB

References

  1. Agurla S., Gayatri G., Raghavendra A.S.: Polyamines increase nitric oxide and reactive oxygen species in guard cells of Arabidopsis thaliana during stomatal closure. - Protoplasma 255: 153-162, 2018. Go to original source...
  2. Arnold W.P., Longnecker D.E., Epstein R.M.: Photodegradation of sodium nitroprusside: Biologic activity and cyanide release. - Anesthesiology 61: 254-260, 1984. Go to original source...
  3. Arnon D.I.: Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. - Plant Physiol. 24: 1-15, 1949. Go to original source...
  4. Asada K.: Production and scavenging of reactive oxygen species in chloroplasts and their functions. - Plant Physiol. 141: 391-396, 2006. Go to original source...
  5. Astier J., Lindermayr C.: Nitric oxide-dependent posttranslational modification in plants: an update. - Int. J. Mol. Sci. 13: 15193-15208, 2012. Go to original source...
  6. Baker N.R.: Chlorophyll fluorescence: a probe of photosynthesis in vivo. - Annu. Rev. Plant Biol. 59: 89-113, 2008. Go to original source...
  7. Besson-Bard A., Pugin A., Wendehenne D.: New insights into nitric oxide signaling in plants. - Annu. Rev. Plant Biol. 59: 21-39, 2008. Go to original source...
  8. Chen K., Chen L., Fan J., Fu J.: Alleviation of heat damage to photosystem II by nitric oxide in tall fescue. - Photosynth. Res. 116: 21-31, 2013. Go to original source...
  9. Devi M.T., Vani T., Reddy M.M., Raghavendra A.S.: Rapid isolation of mesophyll and guard cell protoplasts from pea and maize leaves. - Indian J. Exp. Biol. 30: 424-428, 1992.
  10. Diner B.A., Petrouleas V.: Formation by NO of nitrosyl adducts of redox components of the photosystem II reaction center. II. Evidence that HCO3-/CO2 binds to the acceptor-side non-heme iron. - BBA-Bioenergetics 1015: 141-149, 1990. Go to original source...
  11. Eberhard S., Finazzi G., Wollman F.A.: The dynamics of photo-synthesis. - Annu. Rev. Genet. 42: 463-515, 2008. Go to original source...
  12. Feelisch M.: The use of nitric oxide donors in pharmacological studies. - N.-S. Arch. Pharmacol. 358: 113-122, 1998. Go to original source...
  13. Foyer C.H., Noctor G.: Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. -Antioxid. Redox Sign. 11: 861-905, 2009. Go to original source...
  14. Gas E., Flores-Pérez U., Sauret-Güeto S., Rodríguez-Concepción M.: Hunting for plant nitric oxide synthase provides new evidence of a central role for plastids in nitric oxide metabolism. - Plant Cell 21: 18-23, 2009. Go to original source...
  15. Gayatri G., Agurla S., Kuchitsu K. et al.: Stomatal closure and rise in ROS/NO of Arabidopsis guard cells by tobacco microbial elicitors: cryptogein and harpin. - Front. Plant Sci. 8: 1096, 2017. Go to original source...
  16. Hayat S., Hasan S.A., Mori M. et al.: Nitric oxide: chemistry, biosynthesis, and physiological role. - In: Hayat S., Mori M., Pichtel J., Ahmad A. (ed.): Nitric Oxide in Plant Physiology. Pp. 1-16. Wiley-VCH Verlag, Weinheim 2010. Go to original source...
  17. Huang M., Ai H., Xu X. et al.: Nitric oxide alleviates toxicity of hexavalent chromium on tall fescue and improves performance of photosystem II. - Ecotox. Environ. Safe. 164: 32-40, 2018. Go to original source...
  18. Jahan B., AlAjmi M.F., Rehman M.T., Khan N.A.: Nitric oxide regulates photosynthetic performance and stomatal behaviour supplemented with nitrogen and sulfur in mustard under salt stress. - Physiol. Plantarum: doi: 10.1111/ppl.13056, 2019. (Accepted article) Go to original source...
  19. Jasid S., Simontacchi M., Bartoli C.G., Puntarulo S.: Chloroplasts as a nitric oxide cellular source: effect of reactive nitrogen species on chloroplastic lipids and proteins. - Plant Physiol. 142: 1246-1255, 2006. Go to original source...
  20. Kalaji H.M., Jajoo A., Oukarroum A. et al.: Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. - Acta Physiol. Plant. 38: 102, 2016. Go to original source...
  21. Kautsky H., Appel W., Amann H.: [Chlorophyll fluorescence and carbon assimilation. Part XIII. The fluorescence and the photochemistry of plants.] - Biochem. Z. 332: 277-292, 1960. [In German]
  22. Lazár D.: The polyphasic chlorophyll a fluorescence rise mea-sured under high intensity of exciting light. - Funct. Plant Biol. 33: 9-30, 2006. Go to original source...
  23. Leavesley H.B., Li L., Prabhakaran K. et al.: Interaction of cyanide and nitric oxide with cytochrome C oxidase: Implications for acute cyanide toxicity. - Toxicol. Sci. 101: 101-111, 2008. Go to original source...
  24. Lum H.K., Lee C.H., Butt Y.K., Lo S.C.L.: Sodium nitroprusside affects the level of photosynthetic enzymes and glucose metabolism in Phaseolus aureus (mung bean). - Nitric Oxide 12: 220-230, 2005. Go to original source...
  25. Møller I.M., Jensen P.E., Hansson A.: Oxidative modifications to cellular components in plants. - Annu. Rev. Plant Biol. 58: 459-481, 2007. Go to original source...
  26. Oukarroum A., Schansker G., Strasser R.J.: Drought stress effects on photosystem I content and photosystem II thermotolerance analyzed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance. - Physiol. Plantarum 137: 188-199, 2009. Go to original source...
  27. Papageorgiou G.C., Govindjee (ed.): Advances in Photosynthesis and Respiration. Chlorophyll a Fluorescence: A Signature of Photosynthesis. Pp. 818. Springer, Dordrecht 2004. Go to original source...
  28. Pfannschmidt T., Bräutigam K., Wagner R. et al.: Potential regulation of gene expression in photosynthetic cells by redox and energy state: approaches towards better understanding. - Ann. Bot.-London 103: 599-607, 2009. Go to original source...
  29. Rapacz M., Wójcik-Jagła M., Fiust A. et al.: Genome-wide associations of chlorophyll fluorescence OJIP transient para-meters connected with soil drought response in barley. - Front. Plant Sci. 10: 78, 2019. Go to original source...
  30. Sanakis Y., Goussias C., Mason R.P., Petrouleas V.: NO interacts with the tyrosine radical YD* of photosystem II to form an iminoxyl radical. - Biochemistry 36: 1411-1417, 1997. Go to original source...
  31. Saradadevi K., Raghavendra A.S.: Dark respiration protects photosynthesis against photoinhibition in mesophyll proto-plasts of pea (Pisum sativum). - Plant Physiol. 99: 1232-1237, 1992. Go to original source...
  32. Schansker G., Goussias C., Petrouleas V., Rutherford A.W.: Reduction of the Mn cluster of the water-oxidizing enzyme by nitric oxide: formation of an S-2 state. - Biochemistry 41: 3057-3064, 2002. Go to original source...
  33. Schansker G., Tóth S.Z., Strasser R.J.: Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. - BBA-Bioenergetics 1706: 250-261, 2005. Go to original source...
  34. Shao R., Zheng H., Yang J. et al.: Proteomics analysis reveals that nitric oxide regulates photosynthesis of maize seedlings under water deficiency. - Nitric Oxide 81: 46-56, 2018. Go to original source...
  35. Stirbet A., Govindjee: On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: Basics and applications of the OJIP fluorescence transient. - J. Photoch. Photobio. B 104: 236-257, 2011. Go to original source...
  36. Strasser B.J., Strasser R.J.: Measuring fast fluorescence transients to address environmental questions: The JIP test. - In: Mathis P. (ed.): Photosynthesis: From Light to Biosphere. Vol. 5. Pp. 977-980. Kluwer Academic Publishers, Dordrecht 1995. Go to original source...
  37. Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. - In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 321-362. Springer, Dordrecht 2004. Go to original source...
  38. Sunil B., Riazunnisa K., Sai Krishna T. et al.: Application of fast chlorophyll a fluorescence transient (OJIP) analysis to monitor functional integrity of pea (Pisum sativum) mesophyll protoplasts during isolation. - Indian J. Biochem. Bio. 45: 37-43, 2008.
  39. Takahashi S., Murata N.: How do environmental stresses accele-rate photoinhibition? - Trends Plant Sci. 13: 178-182, 2008. Go to original source...
  40. Takahashi S., Yamasaki H.: Reversible inhibition of photo-phosphorylation in chloroplasts by nitric oxide. - FEBS Lett. 512: 145-148, 2002. Go to original source...
  41. Tsimilli-Michael M., Strasser R.J.: In vivo assessment of stress impact on plants' vitality: applications in detecting and evalu-ating the beneficial role of mycorrhization on host plants. -In: Varma A. (ed.): Mycorrhiza. State of the Art, Genetics and Molecular Biology, Eco-Function, Biotechnology, Eco-Physiology, Structure and Systematics. 3rd edition. Pp. 679-703. Springer, Berlin-Heidelberg 2008. Go to original source...
  42. Vladkova R., Dobrikova A.G., Singh R. et al.: Photoelectron transport ability of chloroplast thylakoid membranes treated with NO donor SNP: changes in flash oxygen evolution and chlorophyll fluorescence. - Nitric Oxide 24: 84-90, 2011. Go to original source...
  43. Wodala B., Deák Z., Vass I. et al.: In vivo target sites of nitric oxide in photosynthetic electron transport as studied by chlorophyll fluorescence in pea leaves. - Plant Physiol. 146: 1920-1927, 2008.
  44. Wodala B., Ördög A., Horváth F.: The cost and risk of using sodium nitroprusside as a NO donor in chlorophyll fluores-cence experiments. - J. Plant Physiol. 167: 1109-1111, 2010. Go to original source...
  45. Yang J.D., Zhao H.L., Zhang T.H., Yun J.F.: Effects of exogenous nitric oxide on photochemical activity of photosystem II in potato leaf tissue under non-stress condition. - Acta Bot. Sin. 46: 1009-1014, 2004.
  46. Yusuf M.A., Kumar D., Rajwanshi R. et al.: Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: Physiological and chlorophyll a fluorescence measurements. - BBA-Bioenergetics 1797: 1428-1438, 2010. Go to original source...