Photosynthetica, 1995 (vol. 33), issue 1

Photosynthetica 1995, 33(1):139-149 | DOI: 10.1023/A:1022139608609

Canopy structure, vertical radiation profile and photosynthetic function in a Quercus ilex evergreen forest

L. Gratani1
1 Dipartimento di Biologia Vegetale, Università ", Roma, Italy

The studied evergreen forest dominated by Quercus ilex showed a leaf area index (LAI) of 4.5, of which 61 % was accumulated within the tree layer, 30 % within the shrub layer, and 9 % within the herb layer. The leaves of all the species were ± horizontally oriented (41°), absorbing a relevant percentage of incident irradiance. The high LAI drastically modified the quality and quantity of solar radiation on the forest underground. The spectral distribution of the radiation under the forest was markedly deficient in blue and red wavelengths. The maximum absorption in these spectral bands was found in spring, when net photosynthetic rate (P N ) was at its maximum, and in summer, when new leaves reached 90 % of their definitive structure. The vertical radiation profile showed an evident reduction of the red-far red ratio (R/FR). Radiation quality and quantity influenced leaf physiology and morphology. Clear differences in leaf size, leaf water content per area (LWC) and specific leaf area (SLA) on the vertical profile of the forest were observed. All the shrub species showed similar SLA (12.02 m2 kg-1, mean value). The ability to increase SLA whilst simultaneously reducing leaf thickness maximized the carbon economy. The high chlorophyll (Chl) content of shrub layer leaves (1.41 g kg-1, mean value) was an expression of shade adaptation. Both leaf morphology and leaf physiology expressed the phenotypic plasticity. Q. ilex, Phillyrea latifolia and Pistacia lentiscus of the forest shrub layer showed wide differences in leaf structure and function with respect to the same species developing under strong irradiance (low maquis): a 57 % mean increase of SLA and a 86 % mean decrease of PN. They showed high leaf plasticity. Leaf plasticity implies that the considered sclerophyllous species has an optimum developmental pattern achieving adaptation to environments.

Keywords: chlorophyll content; leaf area index; net photosynthetic rate; Phillyrea latifolia; Pistacia lentiscus; specific leaf area; stomatal conductance; transpiration rate; vertical light profile

Prepublished online: March 1, 1997; Published: March 1, 1998Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Gratani, L. (1995). Canopy structure, vertical radiation profile and photosynthetic function in a Quercus ilex evergreen forest. Photosynthetica33(1), 139-149. doi: 10.1023/A:1022139608609.
Download citation

References

  1. Anderson, J.M.: Photoregulation of the composition, function and structure of thylakoid membranes.-Annu. Rev. Plant Physiol. 37: 93-136, 1986. Go to original source...
  2. Barreiro, R., Guiamét, J.J., Beltrano, J., Montaldi, E.R.: Regulation of the photosynthetic capacity of primary bean leaves by red:far-red ratio and photosynthetic photon flux density of incident light.-Physiol. Plant. 85: 97-101, 1992. Go to original source...
  3. Beadle, C.L., Long, S.P., Imbamba, S.K., Hall, D.O., Olembo, R.J.: Photosynthesis in Relation to Plant Production in Terrestrial Environments.-Pp. 117-124. Tycooly Publishing, Oxford 1985.
  4. Björkman, O.: Responses to different quantum flux densities.-In: Lange, O.L., Nobel, P., Osmond, C.B., Ziegler, H. (ed.): Physiological Plant Ecology I. Pp. 57-107. Springer-Verlag, Berlin-Heidelberg-New York 1981. Go to original source...
  5. Cappelletti, C.: [Water content of plants indicated by an equation.]-Ann. Bot. (Roma) 24: 408-430, 1954. [In Ital.]
  6. Carpenter, S.B., Smith, N.D.: A comparative study of leaf thickness among Southern Appalachian hardwoods.-Can. J. Bot. 59: 1393-1396, 1980.
  7. Cody, M.L., Mooney, H.A.: Convergence versus nonconvergence in mediterranean-climate ecosystems.-Annu. Rev. Ecol. Syst. 9: 265-321, 1978. Go to original source...
  8. Corré, W.J.: Growth and morphogenesis of sun and shade plants. I. The influence of light intensity.-Acta bot. neerl. 32: 49-62, 1983. Go to original source...
  9. Dengler, N.G.: Comparative histological basis of sun and shade leaf dimorphism in Helianthus annuus.-Can. J. Bot. 58: 717-730, 1980.
  10. Dole, M.P., Causton D.R.: The ecophysiology of Veronica chamaedrys, V. montana and V. officinalis. I. Light quality and light quantity.-J. Ecol. 80: 483-492, 1992. Go to original source...
  11. Eckardt, F.E., Heim, G., Methy, M., Sauvezon, R.: Interception de l'énergie rayonnante, échanges gazeux et croissance dans une foret méditerranéenne à feuillage persistant (Quercetum ilicis).-Photosynthetica 9: 145-156, 1975.
  12. Evans, G.L., Hughes, A.P.: Plant growth and the aerial environment. I. Effect of artificial shading on Impatiens parviflora.-New Phytol. 60: 150-180, 1961. Go to original source...
  13. Fitter, A.H., Hay, R.K.M.: Environmental Physiology of Plants.-Acad. Press, London 1993.
  14. Gates, D.M.: Biophysical Ecology.-Springer-Verlag, Berlin-Heidelberg-New York 1980.
  15. Givnish, T.J.: Optimal stomatal conductance, allocation of energy between leaves and roots, and the marginal cost of transpiration.-In: Givnish, T.J. (ed.): On the Economy of Plant Form and Function. Pp. 171-213. Cambridge University Press, Cambridge 1990.
  16. Gracia, C.A.: Response of the evergreen oak to the incident radiation at the Montseny (Barcelona, Spain).-Bull. Soc. Bot. Fr. 131(Actual. bot. 2-3-4): 595-597, 1984.
  17. Gratani, L.: Response to microclimate of morphological leaf attributes, photosynthetic and water relations of evergreen sclerophyllous species.-Photosynthetica 29: 573-582, 1993.
  18. Gratani, L.: [Photosynthetic reaction and leaf morphological adaptation of some sempervirent tree species to microclimatic variation.]-Ecol. Medit. 20(3/4): 61-71, 1994. [In Ital.]
  19. Gratani, L.: Structural and ecophysiological plasticity of some evergreen species of the mediterranean maquis in response to climate.-Photosynthetica 31: 335-343, 1995.
  20. Gratani, L., Crescente, M.F.: Phenological and phenometric studies in a Quercus ilex L. evergreen forest (Latium).-Ann. Bot. (Roma) 51: 193-201, 1993.
  21. Květ, J., Marshall, J.K.: Assessment of leaf area and other assimilating plant surfaces.-In: Šesták, Z., Čatský, J., Jarvis, P.G. (ed.): Plant Photosynthetic Production. Manual of Methods. Pp. 517-555. Dr W. Junk Publ., The Hague 1971.
  22. Květ, J., Svoboda, J., Fiala, K.: Canopy development in stands of Typha latifolia L. and Phragmites communis Trin. in South Moravia.-Hidrobiologia (Bucureşti) 10: 63-75, 1969.
  23. Lewis, M.C.: The physiological significance of variation in leaf structure.-Sci. Prog. (London) 60: 25-51, 1972.
  24. MacLachlan, S., Zalik, S.: Plastid structure, chlorophyll concentration, and free aminoacid composition of a chlorophyll mutant of barley.-Can. J. Bot. 41: 1053-1062, 1963.
  25. Miller, P.C., Hajek, E., Poole, D.K., Roberts, S.W.: Microclimate and energy exchange.-In: Miller, P.C. (ed.): Resource Use by Chaparral and Matorral. A Comparison of Vegetation Function in Two Mediterranean Type Ecosystems. Pp. 97-122. Springer-Verlag, New York-Heidelberg-Berlin 1981. Go to original source...
  26. Nobel, P.S.: Photosynthetic rates of sun versus shade leaves of Hyptis emoryi Torr.-Plant Physiol. 58: 218-223, 1976. Go to original source...
  27. Nobel, P.S.: Internal leaf area and cellular CO2 resistance: photosynthetic implications of variations with growth conditions and plant species.-Physiol. Plant. 40: 137-144, 1977. Go to original source...
  28. Pereira, J.S.: Gas exchange and growth.-In: Schulze, E.D., Caldwell, M.M. (ed.): Ecophysiology of Photosynthesis. Pp. 147-181. Springer-Verlag, Berlin-Heidelberg-New York 1994.
  29. Sala, A., Sabaté, S., Gracia C., Tenhunen, J.D.: Canopy structure within a Quercus ilex forested watershed: variations due to location, phenological development, and water availability.-Trees 8: 254-261, 1994. Go to original source...
  30. Šesták, Z., Jarvis, P.G., Čatský, J. (ed.): Criteria for the selection of suitable methods.-In: Šesták, Z., Čatský, J., Jarvis, P.G. (ed.): Plant Photosynthetic Production. Manual of Methods. Pp. 1-38. Dr W. Junk Publ., The Hague 1971.
  31. Smith, H., Samson, G., Fork, D.G.: Photosynthetic acclimation to shade: probing the role of phytochromes using photomorphogenic mutant of tomato.-Plant Cell Environ. 16: 929-937, 1993. Go to original source...
  32. Tobias, D.J., Ikemoto, A., Nishimura, T.: Leaf senescence patterns and photosynthesis in four leaf flushes of two deciduous oak (Quercus) species.-Photosynthetica 32: 231-239, 1995.
  33. Verhagen, A.M.W., Wilson, J.H., Britten, E.J.: Plant production in relation to foliage illumination.-Ann. Bot. 27: 627-640, 1963. Go to original source...
  34. Walter, H.: Vegetation of the Earth in Relation to Climate and Eco-physiological Conditions.-Springer-Verlag, New York 1973.
  35. Welles, J.M., Norman, J.M.: Instrument for indirect measurement of canopy architecture.-Agron. J. 83: 818-825, 1991. Go to original source...
  36. Williams, C.N., Soong, N.K.: A simple foliage model for studying light penetration.-Ann. Bot. 31: 783-790, 1961.