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Abstract

In this paper we analyze the nearly optimal block diagonal scalings of the rows of one
factor and the columns of the other factor in the triangular form of the SR decomposition.
The result is a block generalization of the result of the van der Sluis about the almost
optimal diagonal scalings of the general rectangular matrices.
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1. Introduction

The QR factorization and the closely related QR algorithm are one of the workhorses
in solving general eigenvalue problems. It is well-known that the QR algorithm preserves
the symmetric structure of the matrix whose eigenvalues are to be computed such that
the computed eigenvalues will all be real (even so rounding errors are unavoidable). Un-
fortunately, there are a number of structured problems whose structure is not preserved
by the QR algorithm. Thus, general QR-like methods, in which the QR factorizations
are replaced by other factorizations have been studied by several authors, see, e.g., [14].
Here we consider the SR decomposition which can be used in the SR algorithm which
preserves the symplectic as well as the Hamiltonian structure.

For a matrix G € R?™2™ an SR decomposition is given by

G=3§k=5§ (8 I (1.1)
Ry1  Roo

where S is symplectic, i.e., ST JS = J for the skew-symmetric matrix J defined as

_ 0 I 2m,2m
J = <I 0) eR .
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As usual, I € R™™ denotes the identity matrix. The matrix Ris J-triangular, that is,
R;; are upper triangular, and Rs; has zero diagonal. The SR decomposition (1.1) exists
if all leading submatrices of even dimension of PGT JGPT are nonsingular (see, e.g., [6,
Theorem 11] or [3, Theorem 3.8]), and P is the (perfect shuffle) permutation matrix

P = (61;637'",e2m71762764a"'762m)7

where e, k = 1,...,m are vectors of the canonical basis. The set of 2m x 2m SR
decomposable matrices is thus dense in R?™2™, L
The SR decomposition is not unique as with G = SR also G = SR is an SR decom-

position of G where § = SD~! and R= DR for a matrix

D = <€ g_1>, (1.2)

with diagonal matrices C, F' € R™™. If uniqueness is required, there are various pos-
sibilities how to make it unique by adding requirements on S or R (see, e.g., [7] for a
summary of the typical suggestions).

Symplectic matrices may be arbitrarily ill-conditioned. Thus, one is interested in
making use of the non-uniqueness of the SR decomposition by choosing S (or R) factor
so that its condition is as good as possible. Some first-order componentwise and normwise
perturbation bounds for a certain unique SR decomposition (diag(Ri1) = | diag(Ra22)],
diag(Ra1) = 0) can be found in [4] (see also [5], while in [7] it is discussed how to choose
the entries of the 2 x 2 submatrices

(Ri1)j;  (Ba2)jj
0 (Ra2)jj
of the J-triangular matrix R in order to minimize the condition number of R or the
condition number of S.

Assume that G = SR is a SR decomposition of G. We will consider the question on
how to choose the matrix D as in (1.2) such that the SR decomposition

G=SR, $=SD', R=DR

of G has either an nearly optimally conditioned S or an nearly optlmally conditioned R.
In particular, we try to answer the questions on how to choose D and D such that

ko(DyR) < ap min(DR) (1.3)
DeD
and L .
k2(S(De) ™) < ag min(SD™), (1.4)
DeD

where D denotes the set of all nonsingular 2m x 2m matrices of the form (1.2), and
apr,ac € R.
It is well-known that equilibration tends to reduce the condition number of a matrix.
Equilibration means the scaling of the rows (and/or columns) of a matrix such that the
2



norms of all rows (and/or columns) obtain equal norms. This has already been studied
by van der Sluis in [13] (see also [9]). If G € R™" is a full rank matrix, than

k2 (X,G) < v/m min (XG)
YeS.

for
%, = diag(|Ge, |37, ., [Ge, |3
and
k2(GX,) < v/n min (GY)
eS8,
for

S, = diag(le] Glz " .-, e, G2 ),

where S; denotes the set of all nonsingular k x k& diagonal matrices and ey, the kth column
of the identity matrix. In this paper we will generalize these results.

To be precise, we will consider not just the scaling of the SR decomposition of square
matrices G € R?™2m but we will allow for rectangular G € R*™?" where m > n. Its
standard SR decomposition is given by

where S € R2m:2m ig symplectic, Ell, 1~%12, RQQ e R™™ are upper triangular, ]N%m e R™™
is upper triangular with zero diagonal and 0,,,_,, € R™~™" denotes a zero matrix.

The rest of the paper is organized as follows. In Section 2 some preliminary obser-
vations are given which will be helpful for the later discussion. In Section 3 we find the
almost optimal block-diagonal scaling from the left-hand side of the triangular factor R
in the SR decomposition. Section 4 contains similar results for the right-hand block-
diagonal scalings of the symplectic factor S. In Section 5 some connections to other
types of factorizations are given. In particular, the symplectic QR factorization [12] and
the Cholesky-like factorization of skew-symmetric matrices presented in [2] (see also [1])
are considered. The results obtained in Sections 3 and 4 apply immediately. In the final
section the theoretical results are illustrated on four examples — two for column scalings
of the triangular factor R and two for the scalings of the factor permuted symplectic
factor S, respectively.

2. Preliminary lemmata

Before we tackle these two problems in the next sections, we will derive two helpful
lemmata. The first lemma is a straightforward consequence of the Leibniz formula for
the determinant of a 2 x 2 matrix.

Lemma 2.1. For all matrices B := (B, Ba), B1, Ba € R™ it holds
det(B"B) = | B, 3] B3 — (B B,)*.



Next we will proof a formulae for the condition number of a 2 x 2 matrix. For this, we
make use of the following well-known facts (see, e.g., [8]) for A, B € R™™ and the singular
value decomposition B = USVT with UTU = VTV = I, ¥ = diag(o1(B),...,0.(B)):

det(AB) = det(A)det(B),  det(BT) = det(B),

det(B) = [ [ox(B),  |Blr =Y, 0%(B),  |Bl2= max(B).
k=1 k=1

Lemma 2.2. For any matriz B € R?? its spectral condition number in terms of its
determinant and and Frobenius norm can be written as

omax(B) _ |1BlE + \/HBH‘; — 4det?(B)
Tmin(B) 2| det(B)]

KQ(B) =

where omax(B) and omin(B) are the mazimal and minimal singular values of B.

Proof. For B € R*? we have

|B% = 0max(B) + 03in (B) (2.1)

max

and
det(BTB) = det*(B) = ¢2,.(B) - 62,,.(B). (2.2)

max min

Note that (2.1) and (2.2) are Vieta’s formulas for the sum and the product of the roots
02..(B) and o2 (B) of the quadratic equation

(7 — omax(B)) (T = omin(B)) = 72 — | B| %7 + det®(B) = 0.

Therefore, squares of the singular values can be written by using the coefficients of the
polynomial,

y Bl 1B — 4de®(B)

Omax 2 ’
2 4 _ 2
o gy - Bl V1Bl - 4dei(B)

2

Hence, the spectral condition number of B can be expressed as

Omas(B) _ ohn(B) _ 1BI3 +4/IBIE — 4det®(B)

max

r2(B) = omin(B) | det(B)] 2det(B)]

3. Nearly optimal block-row scaling of R

Now we are ready to consider the problem (1.3). It is easy to see that for a J-
triangular matrix R € R2™27 the permuted matrix PRPT is an upper triangular matrix.
Similarly, a matrix D € R?™2" of the form (1.2) is permuted to the block diagonal matrix

D = PDPT = diag <(661 f111> (an fﬁ?)) e R22n, (3.1)

€11 Cnn



As
DR = (PDPT)(PRPT) = PDRPT
and as the spectral norm is unitary invariant, we have ro(DR) = k2(DR). Thus, instead

of (1.3) we will actually consider the following equivalent problem. Given an upper
triangular matrix R € R?™2" find a matrix D, such that

ko(DrR) < ap glei%(DR) (3.2)

where D denotes the set of all nonsingular 2n x 2n matrices of the form (3.1) and ag € R.
As any D € D is a block diagonal matrix with 2 x 2 blocks on the diagonal, we will
block R accordingly

Ry Ry,
0 0 Run

with R;; e R*? fori=1,...,j, j = 1,...,n and diagonal blocks

@ .0)
r r N (G
R - ( i @%) o
722
for j =1,...,n. Thus, we will consider

X = D,R = diag(Dy, ..., Dy,)R,

where jth block-row of the matrix X is

Xj = Dj . (02 v 02 Rjj s Rjn) € R2,2n, (34)

and ;

C..
(i )
! 0 33
forj=1,...,n.
Let L be

L=R"=(L,...,Ly,), L; e R?™? (3.5)

such that LjT denotes the jth block row of the matrix R. Denote the two columns of L;
by L;1 and Ljo, respectively,

Lj = (Lj1, Lja),  Lji, Ljz € R

We will tackle our problem in three steps. First we will see that it is possible to
choose D; such that D; minimizes the Frobenius norm of X; and the two rows of X;
have the same Frobenius norm ;. Next we will discuss how to choose D,. such that all
row of X have the same Frobenius norm § > §;. Finally, we will give an answer for (3.2).

Thus, we start our discussion by first seeing what can be achieved locally by looking
at the jth block row of X. We are looking for D; that minimizes the Frobenius norm of
X;.



The Frobenius norm of X; can now be expressed as

_ 2
1X;1% = ID;L5 1% = |1L;DF | % = |(ej5 L1 + FiLja €55 Lyo) |
= |c;; L1 + fijszg + ”Cj_lej2H§ (3.6)
IL ;53
= ?jHLﬂH% +20jjfijjTle2+ ijHszﬂg + 632” . (3.7)
33

With this we are ready to state an optimal scaling D; for the jth block row of R.

Theorem 3.1. Let R € R*™2" gs in (3.3) be given. Let L = RT as in (3.5) and

X; = DjLJT as in (3.4). The Frobenius norm of X;, | X;[r = HXJTHF = HLJ-DJ-THF is

minimized for

~ e, fo
b= (% ). (33
0 Cjj
where
) 1L 22
Cj] = . J T 9 (39)
det(L; L;)
R LT L.
fiy= e (3.10)

HLj2H2 \ det(L;ij)
Thus, for the Frobenius norm of the jth block row of R for the optimal ﬁj it holds

1%, 7 =1L, D | r = V28

with
B; 1= {/det(L] L;). (3.11)

Proof. The partial derivatives of | X|r with respect to ¢;; and f;; need to be equal to
zero. Differentiating (3.7) gives

IZ;513
0= ijHLﬂ”g + fijjTlez - ng_ )
33

T
0=cjLjiLj + fjj||Lj2H§~

Rewriting the second equation as

T
fo— o ¢jiLjr Lo
! IL ;53

and substituting this expression into the first equation yields

(LfiLj)?
0= C?j (”L_]lg - HJL ;H% - HL]2H§7
J



that is,

L. 4
. |0l

(L3I o3 = L Lya)?

With Lemma 2.1 we obtain (3.9), and therefore (3.10). As the Hessian matrix

(|Lj1§+74det(LJTLj) LjTlLﬂ)
Lji Ly, 1Z513

is symmetric positive definite (its trace and its determinants are positive), ¢;; and fj j as
in (3.9) and (3.10) give the global minimum of min., r, |L; D] ||p.
By substituting the optimal &;; and f;; into (3.7) we obtain with Lemma 2.1

L,|2IL.|3 LT L.,)? LT L.,)?
HDJL_?HQFZ H ]2”2” _/1H2_2 ( 71 12) + ( 71 ]2) + det(LfL])
\/det(LJTLj) \/det(LJTLj) \/det(LjTLj) v

LolIRIL |2 = (LY L.,)32
_ H ]2”2” ]IHQ ( 71 ]2) + det(Lg’Lj)

det(LTL;)

det(LTL.
_ M + \/det(Lij) = 2\/det(Lij) = 25% O
det(LTL,)

It also holds that the two rows of X; have the same norm.

Corollary 3.2. It holds that

HeiFXjH2 = HeépXsz = Bj'

Proof. Recall that
T _ ~1
Xj = (el + fiiLja ¢35 Lya)
holds. By inserting value of é;; from (3.9) into Hé;leJTQH%, it is easy to compute the
squared norm of the second row of Xj,

— |13
&5 Liall3 = —5— = 4/det(LTL;) = 5. (3.12)

JJ

Therefore, from (3.6), it follows that for the squared norm of the first row of X; that
le;; L + fijszg = 127 (3.13)
holds, i.e., both rows of X; = ﬁijT have the same norm f3;. O

The spectral condition number of the matrix ﬁj from (3.8), as well as the Frobenius
condition number can be obtained easily.



Theorem 3.3. Let ﬁj be as in Theorem 3.1. Then

L I — 4 deu(LT L))

ko (D)) :
’ 2,/det(LTL))
- IZ;1% IL; %
kp(D;) = L = 5

’ det(Lij) HLj HQUmin(Lj).

Proof. The spectral condition number is a direct consequence of Lemma 2.2

5y 1Pall+ VIDl1% —4det* (D)
K - ) = =
2 2| det(D))|

J

and the following observation obtained with the help of Lemma 2.1

4 T 2 T
Hﬁ; 12 = C?j T ILjoll2 + (Lj1Lj2)° + det(L; L)

. L5 ]34/det(LT L)

_ HLJQH% + (L;“F1Lj2)2 + HLj1H%||Lj2H% - (L;“FL]‘)2
| Lj2]34/det(L] L)

N R L

B \/det(L;fFLj) 7\/det(L§'FLj).

The expression for ~ R R
kp(D;) = Dyl | D7 |

follows immediately from (2.2) as Hf);lHF = HIA)JHF O
The following connection between columns L; and the matrix ﬁj_l will be useful later on.

Proposition 3.4. Let L; be the jth block column of the matriz RT as in (3.5), and ﬁj
as in Theorem 3.1. Let the QL factorization ([8]) of L; be given by

0
L=(z,)

with the orthogonal matriz V; € R*2", V]TVJ = I,, and the lower triangular factor

Ejj € R2’2,
N 9 s
ij = <A:(l;) (5 ) lgjl)vléé) > 0.
I37 3
Then it holds for all j = 1,...,n that
7 T
L;;=p8;D;". (3.14)



Proof. We immediately have

L.

T 7T T
LjL; = (0,Lj)V;V; ( y

0 A
> =ITr .
Then, from

LTL:(%% L%ng)ziri.: ()2 + () 15715
7 LiLis L3 ’

it follows that

i v LT L.
19—, 0 jW) _ Zil JQ,
22 H ]2” 21 HLj2H2
i _ VIEaBILsB — (ChLP  \Jdeul]L))
o 1Lz 1Ll
With (3.8)—(3.11) we obtain
0 =86 B =Bk B =8l
so that L;; = 3;D;" holds. O

The following lemma is an easy consequence of Proposition 3.4. It will be helpful in
proving the main theorem of this section.

Lemma 3.5. Let L; be the jth block column of the matriz RT defined by (3.5) with

the QL factorization as in Proposition 3.4 and ﬁj as in Theorem 3.1. For any matriz
B e R?2? it holds

~ |IBLT|,
BD !, = —1—=.
IBD3 3,
Proof. From (3.14) it follows
~ 1 -
-1 _ T
BD; " = EBij,

and by using the unitary invariance of the spectral norm we obtain

~ T A~
IBLY > _ HB(o,ij>\2 _ 1BO. LGVl IBLT

—
1BD; e = B; B; Bj B;

O

Our findings so far allow to construct a scaling matrix D, = diag(lA)l, ceey ﬁn) such
that the Frobenius norm of each block row is minimized and the two rows in the jth
block row of D, R have the same Frobenius norm 3;. Our next goal is to determine a

scaling D, = diag(Dy,...,D,) € D such that (similarly to the result obtained by van
der Sluis) all rows of the matrix D, R have the same Frobenius norm equal to §.
9



Theorem 3.6. Let R € R*™?" as in (3.3) be given. Let L = RT be as in (3.5) and D;,
j =1,...,n given as in (3.4). Let B; be as in Theorem 3.1, and let § = B;. All rows of

D,R have the same norm 3 for D, = dlag(Dl, ...,D n) € D where

- ¢ fo
D, = (793 “Zij 1
forj=1,...,n with
1212
;= JTQ, (3.16)
o= —L} Ly £ 4/8% = B} (3.17)
” BILjol 2 ' '

Proof. The requirement that all rows of DR = DL should have the same norm B gives
relations analogous to (3.12)—(3.13) for all j =1,...,n

IZ;2113
HCQQL HZ 632“ (3.18)
3
= ||&;; L + fijszg = E?jHLﬂH% + 2L]‘T1Lj25jjfjj + f]’2jHLj2H§' (3.19)
Relation (3.18) immediately implies the choice of &;;.
Substituting (3.16) into (3.19) yields the quadratic equation for f;;
g Phln s Ml
B, ER 150013
If 8 > B;, the equation has two real solutions (3.17),
 _ LI Ly, + (LT Lj5)? = L1 3L o5 + B
T BlLysl, B2|IL 13
_ LiLy N —det(LfiLjy) + B LjLy N —B} + p*
BlILjol2 — B2|L 53 BlLjally —\ B2IL3
with BJQ = det(L?lez) as in (3.11). O

It is not possible to achieve the a row scaling with a diagonal block scaling.

Remark 3.7. If instead of the upper triangular ﬁj as in the previous theorem a diagonal
block scaling matriz of the form

D- = diag(¢ Cij» ”1)

is used, then it is not always possible to find ¢;; such that the rows of the matriz DLT

have equal norms.
10



Proof. The requirement that all rows of DR = DL should have the same norm B gives,
in analogy to (3.12)—(3.13) and (3.18)—(3.19) for all j =1,...,n

ILj2]l2

27

¢ijllLjl2 = B, = B.

These two equations imply that the products |Ljal2|Lj1]|2 have to be identical for all
indices j, which is only valid for very special cases. O

Now we are ready for the main theorem in the section. Taking any

B> max (5}

J=1,.

Theorem 3.6 gives a block scaling D, such that all rows of the matrix D, R have the same
norm equal to 8. Indeed, its condition number could be close to the optimal scaling as
it is in the standard case due to the result of van der Sluis.

Theorem 3.8. Let R € R*™?" as in (3.3) be given. Let L = RT be as in (3.5) and D;,
Jj=1,...,n given as (3.4). Let D;, j = 1,...,n be as in (3.8) and Theorem 3.1. Let j3;,
j=1,...,n be as in Theorem 3.1. Finally, let B and v be defined as

B:= max {B;}, y:= min {5;}. (3.20)
j=1,....n j=1,....n

)

Let D, and ﬁj, j =1,....n be as in (3.15) and Theorem 3.6. Then D,R is nearly
optimally scaled. More precisely, it holds

BB + /BT =

72

min k2(DR) < ko(DrR) < V2n Inin k2(DR).

Proof. According to Theorem 3.6 all rows of the matrix X = D, R have the same norm
3. Therefore, N N
X[z = [DrRl2 < [DrR|r = vV2n83. (3:21)

In order to be able to give a bound on 4 (X) = | X|,| X 1|, we need to find a bound

on |X~!|,. Since the spectral norm is submultiplicative, for any nonsingular matrix D
we have N N

| X7y = IR D7 < |RT'D7Hy - |DD 5. (3.22)

In particular, this holds for a block-diagonal matrix D = diag(D,...,D,) € D. With
this, we have N N N
DD; ' = diag(D,DyY,..., D, DY)

and

IDD My = wax 1D,D; M < max (1ID,5;'1D,0;M)  (3.23)
for ﬁj, j=1,...,nasin (3.8). From Lemma 3.5 with B = D; we obtain
|D,LT

B (3.24)

HDij_1H2 =
11



Estimation of ||13]5J_1H2 is more tedious. A straightforward calculation shows that

8 GNP

ﬁ/l’\jfl — ﬂj BBJ
J7 &
B
In order to determine Hﬁjﬁflﬂg we compute
g
B, DD =
VA J _"_\/WB? 62 )

J J

its characteristic polynomial

2 2 4 _ p4 2
0_<§2—/\> _F 4ﬁ3:/\2—2—2)\+1,
J

and the roots

2 4 _ 4
A2 =5 & ’ 46j
8 52
Thus,
o B2+ /B4 - B
|1D; D3 = —— (3.25)
5%
J

By inserting (3.24)—(3.25) into (3.23) we obtain

DD, < max (10,05 15,57 1,) = max ;1]
B2 4+ /B — A2
< o max [D,L7],, (3.26)
vy Jj=1,..., n
with 7 as in (3.20).
As DijT represent the jth block row of DR we can write
T _
D,LT = M,DR,
with
M; = (ezj-1,e2)"
Since the spectral norm is submultiplicative and | M, |2 = 1, we have
HDjLJTHQ = HMjDR||2 < HMjHQHDR”2 = HDRHQ
for all j =1,...,n. By inserting this result in (3.26) it holds
- B2 4 \/BE A
|DD ), < |DR|,. (3.27)

2
12



From (3.21)—(3.22) and (3.27) we obtain

2 /R4 _ A4
m(ﬁrR)sJ%ﬁ”ﬂ M ka(DR).

72

Since the previous formula is valid for all block diagonal matrices D € D the statement
of the theorem follows. O

4. Nearly optimal block-column scaling of S

In this section we consider the problem (1.4).

As in the previous section, we will consider an equivalent problem stated using per-
muted version of the matrices under consideration. In particular, we will make use of
the permuted version of the matrix D as in (3.1), and of the permuted version S of the
symplectic matrix S , where

S = (51,59, 591, 50,) € R
S =8pT = (815 8n41s52, Snt2y -+ Sy S2n)-
For
J:=PJPT = diag(Jy,...,J;) e R¥™>™ = (_(1) (1)) e R>2,
it holds . . o R
STJS = (SPTYTJSPT = PJPT = J(1:2n,1: 2n),
where

T _ 0 I 2n,2n
J_<I O)eR .

~ A~ A~

As SD = (S§PT)(PDPT) = SDPT and as the spectral norm is unitary invariant, we
have k2(SD) = k3 (SD).

Thus, instead of (1.4) we will consider the following problem. Given a permuted
symplectic matrix S € R?"™?" with STJS = j(l :2n,1: 2n) find a matrix D, such that

Ko (SD) < ac gg%(SD_l) (4.1)

where D denotes the set of all nonsingular 2n x 2n matrices of the form (3.1) and ac € R.

Remark 4.1. The optimal choice ET from Theorem 3.6 is in general not optimal for
(4.1), that is ky(SD;71) is not always less or equal to ac minpep(SD~Y). See Example
6.3 for an illustration.

We will proceed in three steps as in the previous section to find an answer to (4.1).
In the first step we look for upper triangular blocks

D;t= (CJ;J'I _fjﬂ) (4.2)

Cjj

13



such that they minimize the Frobenius norm of the product Sij_l, where the columns
of S; are

Sj = (855 8n+5)-

We obtain a theorem similar to Theorem 3.1.

Theorem 4.2. Let S = (81,8n41,52, 8042, 5n,S2n) € RZ™2" with ST JS = f(l :
2n,1 : 2n) be gwven. For j = 1,...,n let S; = (sj,8p4;) and D; as in (4.2). The

Frobenius norm HSJ-Dj_IH%, Jj=1,...,n is minimized for
o1 v
v I —f..
b= (G ).
Jj
where T’
w. — _ lsilz ¢ $j Sn+j

o i = :
{/det(S]'S;) Isjll2{/det (S} S;)

Thus, for the Frobenius norm of the jth block column S; of S for the optimal 5]- it holds
HSjD;lnF = \/§5j

with

§; 1= /det(S]S).

The proof is analogous to the one of Theorem 3.1 and it is therefore omitted here. In
addition, it is easy to prove that the two columns of Sij have the same norm.

Corollary 4.3. It holds that

\J7 U7
||Sij 1e1”2 = HSij 162”2 = 53‘-

Proof. The assertion follows immediately,
“SjD;161‘|2 = C;lesj Il = 4/ det(SjTSj) =0,

207 = HS]-D}lH% = HSij_lelH% + HSij_l%H% O

and

Next we state a theorem similar to Theorem 3.6. That is, we determine a scaling

~

D. = diag(Ds,...,D,) €D

such that all columns of the matrix Sbgl have the same Frobenius norm 4.
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Theorem 4.4. Let S = (51,5n41,52, 5042, +5n,52n) € R2™2" with STJS = f(
2n,1: 2n) be given. Let §; be as in Theorem 4.2. Let 6 = §;. All columns of SD L have
the same norm & for D, = diag(Ds, ..., Dy) € D where

D; = (é{f fi”) (4.3)

37

Q

forj=1,...,n with

Clsile s S 8w T4/0" — det(STS))

Giv = =
5= o 53120

The proof is analogous to the one of Theorem 3.6 and it is therefore omitted here.
Finally, we state the main theorem on the block scaling of S similar to Theorem 3.8.

Theorem 4.5. Let S = (81,8n41,52,5n42,--+5n, S2n) € RZ™2% with ST JS = j(l
2n,1:2n) be giwen. Let 0; be as in Theorem 4.2. Let 6 and p be defined as
§:= max {5 } pi= min {J;}.
Jj=1 j=1,...n
Let D, and bj,j =1,...,n be as in (4.3) and Theorem 4.4. Then Sbgl is nearly
optimally scaled. More precisely, it holds

. 04/02 + /04 —
-1
gel%@(SD Y < ko (SDY) <21 2 %%KQ(SD b.

The proof is analogous to the one of Theorem 3.8 and it is therefore omitted here.

Remark 4.6. The optimal choice EC from Theorem 4.5 is in general not optimal for
(3.2), that is ko(DyR) is not always less or equal to agr minpep(DR). See Example 6.3
for an illustration.

5. Connections to related factorizations

In the next two subsections we show that the stated results are valid for the both fac-
tors obtained from the symplectic QR factorization of matrix, and the factor R obtained
by the skew-symmetric (Cholesky-like) factorization of a (skew symmetric) matrix A.

5.1. Symplectic QR factorization

The symplectic QR factorization of a matrix G € R?™2" into the product QR with an
upper triangular matrix R € R?™2" and an matrix Q € R?™2" which satisfies Q7 JQ =
J(1: 2n,1 : 2n) has been proposed in [12]. If GTJG is nonsingular, then G can be
factorized as GP = QR where P is a suitable permutation matrix.

15



The result of Section 3 is valid as stated since the symplectic QR factorization com-
putes the upper triangular factor R. The results of Section 4 can be applied to matrix
Q@ since PQ = S. Therefore, we have

STJS = (QP)TJPQ = QTJQ = J(1:2n,1:2n)
and, due to unitary equivalence of the spectral norm
Ko (QD; 1) = Ka(SDZ)
for D, € D.

5.2. Skew-symmetric Cholesky-like factorization
For any G € R?™2" m > n the matrix GT.JG is skew-symmetric as J7 = —J.
Assume that we are given a permuted SR decomposition of G, G = SR with the permuted
symplectic matrix S (that is, STJS = J(1:2n,1 : 2n)) and an upper triangular matrix
R. Then R
A:=G"JG =R"STJSR=R"J(1:2n,1:2n)R. (5.1)

This factorization of A (almost) corresponds to the Cholesky-like factorization of skew-
symmetric matrices given in [2] (see also [1]). In these papers it is proven that any skew-
symmetric matrix B € R?™2™ whose leading principal submatrices of even dimension
are nonsingular has a unique factorization

A=ITJL

where L is upper triangular with £2;_12; = 0, foj_1,2j—1 > 0 and faj2; = Floj_1,2j-1
for j =1,...,m. Thus L has 2 x 2 blocks of the form

¢ 0
0 +¢
running down the main diagonal.
Thus, if R in (5.1) is such that its 2 x 2 diagonal blocks are matrices of the form

(o &)

the decomposition (5.1) (and hence the SR decomposition of G) is unique (the fact
concerning the unique SR decomposition has already been noted in [10]). Moreover,
Theorem 3.8 can be applied to R and we obtain not only an optimal scaled R in the SR
decomposition of G, but also the unique Cholesky-like factorization with optimal block
scaling.

But usually, R will have diagonal blocks R;;, j = 1,...,n which are upper triangular,
G ()
r r N (G
Rjj = ( 1 %?)) y ’I"%Jl)’/‘éjg) #0
0 7y
for j = 1,...,n. Again, Theorem 3.8 can be applied to R and we obtain not only an

optimal scaled R in the SR decomposition of G, but also a non-unique Cholesky-like
factorization with optimal block scaling.
16



From the factorization A = LT JL it can be seen that any scaling matrix Dy, applied
to L needs to satisfy R R
DIJID, =J
so that R R
A=L"JL = (D,L)'J(DLL)
holds.

6. Numerical examples

In this section we show behavior of the nearly optimal scalings of the factors R and
S. The first example shows that the condition number of the scaled matrix D, R can be
significantly smaller than the condition number of R, while the second example shows

that the bound
2 4 1 _ 4
Jom Br/B* + /B =

aR = V2n
2

can be significantly larger that 1, and the condition number of the scaled matrix can rise.

Example 6.1. Let

a 0 a2 a2 a 2% a2
a a % a? a? a?
R— a? 0 a2 a2
- (1,2 a72 a72 )
a~ ! 0
a-!

be obtained by the SR decomposition, where a is a small parameter, 0 < a < 1.
If, for example, a = 0.1 then the optimal block-diagonal scaling from Theorem 3.8
applied from the left to the rows of R is

20.0000 —19.9520
0.0500
~ 14.1421 -14.0714
0.0707
1.0000 0.0000
1.0000

while the final scaled matriz 5TR 18

2.0000 —1.9952 0.4976  0.4976 0.4976  0.4976
0.0050 5.0000  5.0000  5.0000  5.0000

0.1414 —0.1407 7.0697  7.0697

0.0007  7.0711  7.0711

10.0000  0.0000

10.0000

pz
=
2

with all row norms equal to B = 10. Note that f; ~ 5.3183, v = P2 ~ 1.4142, while
B = B3 = 10. Therefore, the parameter ag in the statement of Theorem 3.8 is ap ~
244.9367.

17



For different parameters a we have different values for the condition numbers of the

matrices R and 5TR.

a 5.0e—01 1.0e—01 5.0e—02 1.0e—02
ko(R) 5.1810e+03  1.6803e+09 4.1985e+11 1.6080e+17
mQ(ZNDTR) 1.5089e+03  1.5829¢+4-08 1.9053e+10 1.3925e+15
B8 2.3796e+00 1.0000e+01  2.0000e+01 1.0000e+02
vy 1.4146e+00 1.4142e+00 1.4142e+00 1.4142e+00
aR 1.3638e¢+01 2.4494e+402 9.7978e+02  2.4495e+-04

Since the factor R has quite wildly scaled rows, with the nontrivial elements in each 2 x 2
diagonal block significantly smaller than the elements in the rest of the corresponding
rows, the scaled triangular factor D, R has a significantly lower condition number than R.

Example 6.2. Let

be obtained by the SR decomposition, where a is a small parameter, 0 < a < 1.
If, for example, a = 1-1071 then the optimal block-scaling from Theorem 3.8 is

1.2910 —1.0328
0.7746
B~ 0.0100  99.9933
e 100.0000 ’
0.5774 1.6330
1.7321
while the optimally scaled matriz 5,,R s equal to
12.9099 —10.3280 2.5820 2.5820  2.5820  2.5820
7.7460 7.7460 7.7460 7.7460  7.7460
DR~ 0.0010  9.9993 10.0003 10.0003
! 10.0000 10.0000 10.0000 |’
5.7735 16.3299
17.3205

with all rows-norms equal to 8 ~ 17.3205.

For different parameters a we have different values for the condition numbers of the
matrices R and D, R.

18



a 5.0e—01 1.0e—01 5.0e—02 1.0e—02
ko(R) 5.5000e+01  1.0150e+03 4.0150e+03 1.0002e+05
K2 (ZNDTR) 1.3521e+02 7.7471e4+04 1.2394e+06 7.7460e+08
I} 3.4641e+00 1.7321e+01 3.4641e+01 1.7321e+402
0 7.4767e—01 1.4953e—01 7.4768e—02 1.4953e—02
aR 1.0513e+02 6.5727e4+04 1.0516e+06 6.5727e+08

This example shows that the optimal scaling, such that all rows have the same norm, can
worsen the condition number of R.

The third example shows that the condition number of Slv),.’ ! can be significantly
smaller than the condition number of S, while the fourth example shows that the bound

57 /6% + /0% — i
112

can be larger than 1, and the condition number of the scaled matrix can rise.

Matrices S in the next two examples are computed in the 80-bit extended precision
arithmetic. The easiest way to produce the examples is to compute the matrix @ by the
symplectic QR factorization (see [12]) and then permute the rows, S = PQ, to obtain
S. Note that the matrices R are not needed for conclusion about the optimal scaling of
the factor S in the SR decomposition. If GG is needed, any triangular matrix R will do.
Then G is computed in multiple precision arithemtic as G = SR.

ac = V22n

Example 6.3. Now suppose that S is computed by the SR decomposition of the matrix

—8.0000e—08  5.9999e—10 —9.9993e—06 —2.0816e—07 —1.0025¢—05 —1.0002e—01
2.0002¢+03 —9.8412e+03  2.108le—01  8.6657e—03  1.6001e+02  1.0001le+03
G~ | 1:9999e400  —9.8397e+00 —1.1008¢+01 —2.2904e—01  1.4898¢—01 —1.0097¢—01
~ 1 -1.0000e—03  2.0000e—05  9.9001e—06  1.0208e—05  1.0008¢+00 —1.0108¢—03 |’
9.9990e—02  7.9902e—03 —9.9999e—01 —2.0898¢—02  6.9991e—03 —1.0001e—01
—1.9785e—02  9.7344e—02  1.0003e+03  2.0903e+01  9.9879¢—01  1.0003e+02
as
—8.0000e—10  7.0000e—10  9.9993e—06  8.0000e—10  9.9999¢—06  1.0000e+00
2.0002¢+01 —1.0001e+03 —2.0900e—02 —2.0901e—09  8.8412¢—07  9.8014e—03
g~ | 1:9999¢-02  —9.9997¢—01  1.1008¢+01  1.0010e—03  9.8545¢—10 —1.0029¢—04
~ | -1.0000e—05  1.0000e—05 —1.0000e—05  1.0000e—05 —1.0000e—00  1.0000e—05 |-
9.9990e—04 —9.0000e—07  1.0000e+00  1.0000e—07 —8.9980e—10 —1.0010e—05
—1.9785¢—04  9.8927e—03 —1.0003e+03 —1.0992¢—04  8.9912¢—07  1.0002e—02
The corresponding R is well-conditioned
1.0000e+02  8.0000e+00  1.0000e—02 —7.8600e—05  8.0000e+00  1.0201e—05
1.0000e+01  1.0110e—05 —9.8000e—06  1.0000e—05 —1.0000e+00
R~ —1.0000e+00 —2.0898¢—02 —1.0001e—03 —1.0001e—01
~ 9.9988¢—01  9.0000e—06  9.9999e—05 |-
—1.0009¢+00  1.0008¢—03
—1.0002¢—01

The optimal scaling by Theorem 4.5 is obtained by a matriz EC, where

2.000le+01 —1.0001e+03
4.9997e—02
1.0003e+03 1.3067e—04
9.9973e—04

9.9995e—01

¢
0
2

1.7558e—08
1.0000e+00
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After the optimal scaling we get

—3.9997e—11 —7.8606e—07  9.9966e—09  7.9891e—07  1.0000e—05  9.9995e—01
1.0000e+00 —1.0003¢e—02 —2.0895¢—05  6.4034e—07  8.8417e—07  9.8009¢—03
Sp-1~ | 9:9990e—04  1.0805¢—05 1.1005e—02  9.9978e—01 9.8550e—10 —1.0029e—04
e ¥ -4.9997¢—07 —9.8007e—03 —9.9973e—09 1.0003e—02  —1.0000e+00 1.0017e—05 |

4.9992¢—05  9.9995¢—01  9.9973e—04 —3.0639¢—05 —8.9984e—10 —1.0009e—05
—9.8920e—06 —1.0779¢—07 —9.9999¢—01  2.0753e—02  8.9917e—07  1.0002e—02

In this case

k2(S) = 1.0327e+06, /12(SD(?1) = 1.0623, 0 = 1.000049, p = 1.000024,

and the row-norms are equal to 1.000049 while o = 3.4815. Note that in this case we
have a very precise estimation of the mazximal condition number over all block diagonal
scalings of the form (3.1).

If the matriz S is scaled by the factor 13;1 from Example 6.1, instead of E;l, then
/@(Sﬁ;l) ~ 3.8465e+10. In the case of ﬁ;l from Example 6.2 the condition number is
even higher, rky(SD;1) ~ 2.0251e+14.

On the other hand, if bc is used to scale R from Example 6.1 we get ng(bcR) ~
5.4894e+20. For R from Ezample 6.2 the result is very similar, ng(bcR) ~ 2.29358e+17.

Example 6.4. Now suppose that S is computed by the SR decomposition of G,

1.0871e+02  1.4643¢+01 —5.4969¢—01 —1.1806e—02  9.2375e¢+00 —6.5123¢—01
—5.2820e+01  —8.8338¢+00  5.8813e—01  1.3947e¢+00 —2.8501e+00  4.1022e—01
G~ | ~1:8322e401  1.5381e+00 —5.1659¢—02 —9.0207e—01 —1.8338¢+00 —2.9221e—01
—5.9464¢+01  1.1893¢+00 —5.9404e—03  4.0911e—05 —4.2155¢+00 —5.9519¢—01 |’
3.7614e+01  3.0091e+00 —3.9718¢—01 —8.4084¢—03  3.7575e+00  4.9976e—04
6.1056e+01  4.3350e+00 —1.7096e+00  1.2893e—01  6.0988e+00 —5.6762¢—02
as

1.0871 0.5946 0.5606 0.0000  —0.5411 —1.08e—19

—0.5282 —0.4608 —0.5934 1.3825  —1.3738 1.0868

9~ —0.1832 0.3004 0.0498  —0.9011 0.3677  —0.1288

| —0.5946 0.5946 0.0000 0.0000  —0.5411 0.0000

0.3761 1.02e—20  0.4009 —6.78¢e—21 —0.7482  —0.4133

0.6106 —0.0550 1.7157 0.1649 —1.2150 —0.6106

The corresponding R is equal to one from Ezample 6.3.
The optimal scaling of rows of S is obtained by a block diagonal matriz D,

0.8634 1.1876
1.1582
1.0913 —0.1685

0.9164

OU<

1.2107 0.2583
0.8260
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The scaled matriz

1.2590 —-0.7775  0.5137  0.0944 —-0.4470  0.1398
—0.6117  0.2294 —0.5438 1.4087 —1.1347 1.6706
—0.2122 04769  0.0457 —0.9750  0.3037 —0.2509
—0.6887 1.2196  0.0000  0.0000 —0.4470  0.1398

0.4356 —0.4467  0.3674  0.0675 —0.6180 —0.3072

0.7071 —0.7725 1.5722  0.4689 —1.0036 —0.4254

Sﬁc_l A

has a somewhat higher condition number than the original S. Indeed, we have
ko(S) = 18.0149, ng(Slv)C_l) = 21.9625, 0 = 1.7800, u=1.2168,

with the row-norms equal to 1.7800, and ac = 10.1756.

7. Concluding remarks

The results of this paper may help to refine the relative perturbation results for the
eigendecomposition of skew-symmetric matrices computed by the algorithm derived by
Pietzsch in his PhD thesis [11].
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