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In this chapter we briefly review a method for detection and char-
acterization of nonlinear relations in multivariate as well as in univariate
time series. The method employs the technique of uni- and multivariate sur-
rogate data and information-theoretic functionals called redundancies. The
test for nonlinearity based on the redundancy — linear redundancy approach,
combined with the surrogate data is described in detail in (Palus, 1995), its
multivariate version in (Palu§, 1996a). The univariate surrogate data have
been introduced in (Theiler et al., 1992), and the multivariate surrogate data
in (Prichard and Theiler, 1994). More details about the information-theoretic
functionals can be found in (Cover and Thomas, 1991).

Consider n discrete random variables X, ..., X,, with sets of values =,
..., =n, respectively. The probability distribution for an individual X; is
p(z;) = Pr{X; = x;}, z; € Z;. We denote the probability distribution func-
tion by p(z;), rather than px,(z;), for convenience. Analogously, the joint
distribution for the n variables X;,..., X, is p(z1,-..,Zn). The redundancy
R(Xy;...; X,), in the case of two variables also known as mutual information
I(X1; X2), quantifies average amount of common information, contained in
the n variables X1,..., X,:

R(Xi5..Xa) = > ... 3 p(ml,...,xn)log;{w (1)

T1E€EE1 Tn€En ml) o p(mn)
The marginal redundancy (X, ..., Xn—1; X»n) quantifies the average amount
of information about the variable X,,, contained in the n — 1 variables X7,
.y Xn_1:
Q(Xla-- -;Xn—l;Xn) =
T1y...,Tn
Z Z p(z1,...,zn)log (a:p( ! . ))(rc 3 (2)
1€ Z2n €5 DP(Z1,---,Tn-1)P\Tn

The relation
o(X1, o, X1 Xp) = R(X15.. 1 X) = R(X03. 5 Xt)  (3)

can be derived by simple manipulation. In addition to the redundancy (1) and
the marginal redundancy (2), various types of redundancies can be defined,
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quantifying the average amounts of information between/among variables or
groups of variables. Also conditional redundancies can be considered. See
(Palug, 1996a) for details.

Now, let the n variables Xi,..., X,, have zero means, unit variances and
correlation matrix C. Then, we define the linear redundancy L(Xi;...;X,,)
of X1,X5,...,X, as

1 n
L(X15..5Xn) = =3 ;log(oi), (4)
where o; are the eigenvalues of the n x n correlation matrix C.
If Xq,...,X, have an n-dimensional Gaussian distribution, then L(Xj;
.3 X,) and R(X7;...; X,) are theoretically equivalent (Morgera, 1985).
Based on (3) we define the linear marginal redundancy \(X1, ..., Xn_1;

X.), quantifying linear dependence of X,, on Xi,...,X,_1, as
AX1, .o, X135 Xn) = L(Xy5. .5 Xn) — L(Xq5. .05 Xpma). (5)

Similarly, for any kind of general (nonlinear) redundancy its linear equivalent
exists (Palus, 1996a). The general redundancies R detect all dependences in
data under study, while the linear redundancies L are sensitive only to linear
structures. For detailed discussion see (Palus, 1995).

The basic idea in the surrogate-data based nonlinearity test is to com-
pute a nonlinear statistic from data under study and from an ensemble of
realizations of a linear stochastic process, which mimics “linear properties”
of the studied data. If the statistic computed for the original data is sig-
nificantly different from the values obtained for the surrogate set, one can
infer that the data were not generated by a linear process; otherwise the null
hypothesis, that a linear model fully explains the data, is accepted and the
data can be further analyzed and characterized by using well-developed linear
methods. For the purpose of such test the surrogate data must preserve the
spectrum! and consequently, the autocorrelation function of the series under
study. In the multivariate case also cross-correlations of all pairs of variables
must be preserved. An isospectral linear stochastic process to a series can be
constructed by computing the Fourier transform (FT) of the series, keeping
unchanged the magnitudes of the Fourier coefficients, but randomizing their
phases and computing the inverse FT into the time domain. Different realiza-
tions of the process are obtained by using different sets of random phases. In
the multivariate case, the cross-correlations can be preserved by preserving
the original phase differences between the variables, i.e., the phases are ran-
domized by adding random numbers, so that for a particular frequency bin

! Also, preservation of histogram is usually required. A histogram transformation
used for this purpose is described in (Palug, 1995) and references within.
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the same random number is added to related phases of all the variables. More
details can be found in (Prichard and Theiler, 1994) and references therein.

An experimentalist usually deals with a multivariate time series {z1 (%),

., zp(t)}, t = 1,..., N, which is considered as a realization of a multi-
variate, stationary and ergodic stochastic process {Xi(t),..., Xn(¢)}. Then,
due to ergodicity, all redundancies can be estimated using time averages
instead of ensemble averages; in particular, correlation matrices in (4) are
obtained as the time averages over the series, and probability distributions,
used in computation of the redundancies R, are estimated as time-averaged
histograms. When the discrete variables X, ..., X, are obtained from con-
tinuous variables on a continuous probability space, then the redundancies
R depend on a partition £ chosen to discretize the space. Various strategies
have been proposed to define an optimal partition for estimating redundan-
cies of continuous variables (see (Palus et al., 1993), (Palug, 1993), (Palus,
1995), (Weigend and Gershenfeld, 1993) and references therein). We have
found that satisfactory results can be obtained by using simple box-counting
method and by observing the following two rules:
a) The partition is defined by the marginal equiquantization method, i.e.,
the marginal histogram bins are defined not equidistantly but so that there
is approximately the same number of samples in each marginal bin.
b) The relation between the number @) of quantization levels (marginal bins)
and the effective? series length N in the computation of n-dimensional re-
dundancy should be

N > Q™ (6)

otherwise results may be heavily biased.

Applying this simple recipe, the redundancy estimator should bring con-
sistent estimates in a relative sense, not unbiased estimates of absolute values,
because the absolute values of the redundancies are not important here. Sub-
jects of interest here are differences between redundancy estimates obtained
in the same numerical conditions: differences between the redundancies ob-
tained from the scrutinized data and its surrogates, as well as behaviour
of the redundancy as a function of time lags, or estimates (using the same
numerical parameters) of the redundancies from data recorded in different
experimental (physiological/pathological) conditions.

In the case of multivariate data the marginal equiquantization is applied
to each variable separately. The marginal equiquantization effectively means
a transformation of data into a uniform distribution. Pompe (This volume)
also uses this kind of partitioning, however, his approach to final redundancy

2 If a univariate series is used to construct a time-delay n-dimensional embedding,
the effective series length NV is N = Npo — (n — 1)7, where Ny is the total series
length, n is the embedding dimension, and 7 is the time delay. In a multivariate
case the effective series length is N = Ny — 7.
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estimation is different.

Having chosen an appropriate type of the redundancy, say R(X7;...; X,),
it is possible and useful to investigate dependences among lagged series, i.e.,
to evaluate redundancies of the type R(z1(t);z2(t + 71);...;Zn(t + Tno1)).
Due to stationarity this redundancy does not depend on the time ¢ and is a
function of the lags 7,..., Tn—1-

Like in (Palus§, 1995) we define the test statistic as the difference between
the redundancy obtained for the original data and the mean redundancy of a
set of surrogates, in the number of standard deviations (SD’s) of the latter.
Thus both the redundancies and redundancy-based statistics are functions of
the lags 71,...,7n—1, and their graphs are (n — 1)-dimensional hyperplanes.
Such objects are hard to study and therefore it would be practically use-
ful to define a few one-dimensional cuts of the hyperplanes, e.g., the cuts
along the axes (i.e., setting all 7’s but one to be equal to zero). When testing
nonlinearity in univariate series (Palug, 1995) also redundancies of several
variables are evaluated. Those variables, however, are obtained using a one
lagged variable with 7; = i7, with one variable 7. Evaluating the redundan-
cies and related statistics for broad ranges of the lags can bring a problem
of simultaneous statistical inference (see (Palug, 1995), (Palus and Novotn4,
1994) and references within for details). This approach, however, can be more
reliable than single-valued tests, as it was demonstrated in univariate case
in (Palug, 1995). As far as all the related considerations from (Palug, 1995)
directly apply to multivariate problems, we refer readers to (Palus, 1995)
and will not repeat them here, similarly as the discussion of the function of
the linear redundancy, which is used to check the quality of the surrogate
data: In some cases the surrogates can have auto-/cross-correlations different
from the original data, usually due to a numerical artifact. This difference
is detected by the redundancies R (or other nonlinear statistics) and can be
erroneously interpreted as detection of nonlinearity in linear data. The lin-
ear redundancy-based statistic evaluates just the differences in the “linear
properties”, i.e., in autocorrelations in the univariate tests and in crosscor-
relations in the multivariate tests. A significant result in linear redundancy-
based statistic indicates a problem in the surrogates and necessity of further
investigation before a conclusion about (non)linearity of data under study is
made. See Refs. (Palug, 1995), (Palug, 1996a) for examples.

In the study presented in this volume (Hoyer et al., this volume) only
2-variable mutual information I(X;Y) was applied: the univariate version
I(X(t); X(t + 7)) when dynamical properties and nonlinearity of individual
series (variables) were studied, and the bivariate version I(X(¢);Y (¢t + 7))
when dynamical relations between two variables were investigated. The mu-
tual information I(X;Y)[o] from the scrutinized data and the mean mutual
information I(X;Y)[s] from the surrogates, as well as the test statistics, de-
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fined above, were plotted as functions of lag 7. Significant differences found
between I(X;Y)[o] and I(X;Y")[s] were used to infer nonlinearity in dynam-
ics of a variable (in univariate case), or in a relation between two variables
(in bivariate case). The values of I(X;Y)[o] indicate a “coherence” or pre-
dictability of a variable, i.e., the dependence between z(t) and z(t + 7) (in
univariate case), or a strength of the link between two variables (in bivariate
case), both as a function of the lag 7. As noted above, the absolute value of
I(X;Y) is not of interest here, but the relative differences between I(X;Y)
obtained in different physiological states, as well as behaviour of I(X;Y") as
a function of the time lag were evaluated.

In order to help a reader to understand the presented methodology, we
present here several examples of processing numerically generated data.
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Fig. 1. a): Linear redundancy L(z(t);y(t+ 7)), b): nonlinear (general) redundancy
R(z(t);y(t+7)), for a bivariate linear autoregressive process and (coinciding curves)
for related isospectral surrogates (mean of a set of 30 realization of the surrogates);
¢): linear (L-based), and d): nonlinear (R-based) statistics; as functions of the time
lag 7.
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Consider a bivariate series {z(t), y(¢)}, generated by the linear AR model:
z(t) = 0.9z(t — 1) + 01(2),

y(t) = 0.3z(t — 1) + 0.3y(t — 1) + o2(2),

where 01 (t) and o3(t) are Gaussian deviates with zero means and unit vari-
ances. The results — the linear redundancy L(z(t);y(t + 7)), the redundancy
R(z(t);y(t + 7)), the linear (linear redundancy L-based) statistic and the
nonlinear (redundancy R-based) statistic as functions of the time lag 7 are
presented in Fig. 1. The redundancies for the data and for the surrogates
(Figs. la,b) coincide. Both the linear and nonlinear statistics (Fig. 1c and
1d, respectively) are confined between the values -2 and 2 SD’s, i.e., the
data are not significantly different from the surrogates. The linear stochastic
hypothesis is accepted in agreement with the origin of the series.
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Fig. 2. a): Linear redundancy L(z(t);y(t+ 7)), b): nonlinear (general) redundancy
R(z(t);y(t+ 7)), for a bivariate autoregressive process with a quadratic link (thick
lines) and for related isospectral surrogates (mean of a set of 30 realization of the
surrogates — thin full lines, mean+SD — thin dashed lines); c): linear (L-based), and
d): nonlinear (R-based) statistics; as functions of the time lag 7.
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Now, consider a bivariate series {z(t),y(t)}, generated by the following

model:

z(t) = 0.9z(t — 1) + o1 (¢),
y(t) = 0.3z(t — 1)> + 0.3y(t — 1) + oa(t),

where o1 (t) and o2(t) are again Gaussian deviates with zero means and unit
variances. The difference from the previous bivariate linear AR model is that
here the equation for the variable y does not contain the variable z in a linear,
but in a quadratic term. The results, presented in Fig. 2, are now different
from those in Fig. 1.

The linear redundancy L(z(t);y(t + 7)) from the data coincides with
L(z(t);y(t + 7)) from the surrogates (Fig. 2a), also there are no significant
differences in the linear statistic (Fig. 2c). This implies that the surrogates
are of a good quality and preserve the linear properties of the data. The (non-
linear) redundancy R(z(t); y(t+ 7)) for the data, however, is clearly different
from R(z(t);y(t + 7)) of the surrogates (Fig. 2b) and the nonlinear statistic
(Fig. 2d) reaches values over 200 SD’s. This result means a reliable detection
of nonlinearity in the link between the variables x and ¥, in the agreement
with the generating model, which contains the quadratic link between z and

Y.
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Fig. 8. a) The conditional redundancy R(z;y|z) as a function of variable z for the
Lorenz data (thick line) and their trivariate surrogates (mean of 30 realizations of
the surrogates — thin full line, mean+SD — thin dashed lines). b) The conditional
redundancy R(y;z|z) as a function of variable z for the Lorenz data (thick line)
and their trivariate surrogates (mean of 30 realizations of the surrogates — thin full
line, mean+SD — thin dashed lines).

The three-variable series {z(t),y(t), z2(t)}, obtained by integrating the
chaotic Lorenz system (Lorenz, 1963):

(dz/dt,dy/dt,dz/dt) = (10(y — z), 282 —y — zz,zy — 82/3), (7
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was analyzed in (Palug, 1996a). Here we present results from applying con-
ditional redundancies R(z;y|z) and R(y;z|z) (Fig. 3) in which we evaluate
the “strength” of the link between two variables (with zero lag) conditionally
given the third variable is equal to a defined value. That is, we evaluate how
the “strength” of the link between two variables is changed when changing
the value of the third variable. The conditional redundancy R(z;y|z) as a
function of the variable z is displayed in Fig. 3a. Influence of the variable z
on the link between z and y is complicated, R(z; y|#) has a local minimum in
z = 0, however, it is globally decreasing with increasing z. R(z;y|z) obtained
from the surrogates is smaller than R(z;y|z) from the Lorenz data, but it is
still positive, indicating the fact that there is also a linear link between z and
9. The dynamics of the Lorenz system, however, is not translated into the
surrogates, therefore R(z;y|z) for the surrogates does not depend on z. The
influence of the variable z on the relation between y and z is unambiguous:
The variables y and z are related only through quadratic members zy and
zz (Eq. 7), so that R(y; z|z) as a function of z (Fig. 3b) has its minimum at
2 = 0 and is approximately symmetric around zero, while R(y; z|z) for the
surrogates is equal to zero for any value of x, because there is no linear link
between y and z.

The introduced method, which combines the redundancy — linear redun-
dancy approach with the surrogate data technique, is not only a reliable
method for detection of nonlinearity in univariate and multivariate time
series, but can also bring further information about specific relations be-
tween/among variables under study and about changes in these relations in
dynamics of underlying processes.
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(grant No. 201/94/1327) and by the Academy of Sciences of the Czech Re-
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