Optical Properties of Solids: Lecture 5

Stefan Zollner

New Mexico State University, Las Cruces, NM, USA and Institute of Physics, CAS, Prague, CZR (Room 335) zollner@nmsu.edu or zollner@fzu.cz

These lectures were supported by

- European Union, European Structural and Investment Funds (ESIF)
- Czech Ministry of Education, Youth, and Sports (MEYS), Project IOP Researchers Mobility – CZ.02.2.69/0.0/0.0/0008215

Thanks to Dr. Dejneka and his department at FZU.

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

http://ellipsometry.nmsu.edu

NSF: DMR-1505172

Optical Properties of Solids: Lecture 5+6

- Lorentz and Drude model: Applications
- 1. Metals, doped semiconductors
- 2. Insulators
- Sellmeier equation, Poles, Cauchy dispersion

References: Dispersion, Analytical Properties

Standard Texts on Electricity and Magnetism:

- J.D. Jackson: *Classical Electrodynamics*
- L.D. Landau & J.M. Lifshitz, Vol. 8: *Electrodynamics of Cont. Media*

Ellipsometry and Polarized Light:

- R.M.A. Azzam and N.M. Bashara: *Ellipsometry and Polarized Light*
- H.G. Tompkins and E.A. Irene: Handbook of Ellipsometry (chapters by Rob Collins and Jay Jellison)
- H. Fujiwara, Spectroscopic Ellipsometry
- Mark Fox, Optical Properties of Solids
- H. Fujiwara and R.W. Collins: Spectroscopic Ellipsometry for PV (Vol 1+2)
- Zollner: *Propagation of EM Waves in Continuous Media* (Lecture Notes)
- Zollner: Drude and Kukharskii mobility of doped semiconductors extracted from FTIR ellipsometry spectra, J. Vac. Sci. 37, 012904 (2019).

Question: Inhomogeneous Plane Waves

Plane waves do not solve Maxwell's equations, if $Im(\varepsilon) \neq 0$.

The amplitude of the plane wave decays in the medium due to absorption. Snell: $\frac{\sin \theta_1}{\sin \theta_2} = \frac{n_1}{n_2}$

Inhomogeneous plane wave (aka generalized plane waves): $\vec{E}(\vec{r},t) = \vec{E}_0 \exp[i(\vec{k}\cdot\vec{r}-\omega t)]$ Allow complex wave vector: $\vec{k} = \vec{k}_1 + i\vec{k}_2 = k_1\vec{u} + ik_2\vec{v}$

$$\vec{E}(\vec{r},t) = \vec{E}_0 \exp\left[-\vec{k}_2 \cdot \vec{r}\right] \exp\left[i\left(\vec{k}_1 \cdot \vec{r} - \omega t\right)\right]$$

Attenuation

Propagation

Mansuripur, Magneto-Optical Recording, 1995Landau-Lifshitz § 63, Jackson, ClemmowStratton, Electromagnetic Theory, 1941/2007Dupertuis, Proctor, Acklin, JOSA 11, 1159 (1994).

Drude and Lorentz Models: Free and Bound Charges

Drude-Lorentz Model: Free and Bound Charges

- γ_D , γ_0 **broadenings** of free and bound charges
- A **amplitude** of bound charge oscillations (density, strength)

Discuss plasma frequency trends.

n_fe²

mer

Drude-Lorentz Model: Free and Bound Charges

Metals

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
1	1 1 H Hydrogen 1.00794	Atomic # Symbol Name Atomic Mass	С	Solid				Metals			Nonmet	tals						2 ² He Helium 4.002902	8
2	3 7 Li Lithum 0.941	4 2 Be Beryllum 9.012182	Hg H	Liquid Gas		Alkali me	Alkaline earth met	Lanthanoid	metals	Poor met	Other	Noble ga	5 1 B Boron 10.811	6 4 C Carbon 12.0107	7 8 N Nitrogen 14.0007	8 6 O Dxygen 15 9994	9 F F Floorine 18.9984032	10 3 Neon 20.1797	K L
3	11 Na Bodium 22.98976928	12 Mg Magnesium 24.3050	Rf	Unknow	'n	tals	als	Actinoids		als	CA A	ses	13 5 Al Aluminium 26.9815386	14 Si Silcon 28.0855	15 P Phosphorus 30.973762	16 8 Sulfar 32.065	17 2 Cl Chlorine 35.453	18 28 Ar Argon 39.948	Rr X
4	19 K 1 Potassium 39.0993	20 68 20 20 20 20 20 20 20 20 20 20 20 20 20	21 5 Scandium 44 955912	22 10 10 10 10 10 10 10 10 10 10 10 10 10	23 V Vanadium 50.9415	24 2 Chromium 51.9961	25 Mn Manganese 54,938045	² ² ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰	27 58.933195	28 Ni Nickel 58.8934	29 Cu Copper 63.546	30 Zn 2inc 65.38	31 5 Gallum 69.723	32 Ge Germanium 72.64	33 As Arsenic 74.92160	34 telenium 78.96	35 ¹⁸ Br ¹⁹ Bromine 79.904	36 38 Kr Krypton 83.798	K-UNN
5	37 8 Rb 18 Rubidium 85.4878	38 58 Sr 58 Strontium 87.62	39 to 10 to	40 50 Zr 50 21/conium 91.224	41 Nb Nobium 92.90638	42 Molybdenum 95.98	43 TC Technetium (97.9072)	44 Ruthenium 101.07	45 Rh Rhodium 102.90550	46 Pd Palladium 106.42	47 Ag Stver 107.8882	48 Cd Cadmium 112.411	49 18 In 18 Indium 114.818	50 Sn ^{Tin} 118.710	51 Sb Antimony 121.760	52 Te	53 18 63 10 100 120 90447	54 18 Xe 18 Xenon 131.293	OXErx
6	55 28 Cs 15 Caesium 1 132,9054519	56 88 15 55 55 55 55 55 55 55 55 55 55 55 55	57–71	72 28 Hf 30 Hafnium 178.49	73 Ta Tantalum 180.94788	74 W 10 Tungeten 183.84	75 Re Rhenium 186.207	76 28 28 28 28 28 28 28 28 28 28 28 28 28	77 20 Ir 20 192.217	78 Pt Platinum 195.084	79 Au Gold 195.955569	80 Hg Nercury 200.59	81 18 Ti Thalium 204.3833	82 Pb Lead 207.2	83 5 Bi 55 Biemuth 208,98040	84 33 Polonium (208.9624)	85 13 At 15 (209.9871)	86 8 Rn 8 Radon (222.0176)	ROZZIA
7	87 2 Fr 18 Francium 2 (223)	88 200 100 100 100 100 100 100 100 100 100	89–103	104 28 28 28 28 28 28 28 28 28 28 28 28 28	105 Db Dubnium (252)	106 Sg Seaborgium (208)	107 Bh Bohrium (284)	108 20 108 Hs 20 Hassium 22 (277) 2	109 Mt 302 Metherium 152	110 Ds Damstadium (271)	111 182 182 192 10 10 10 10 10 10 10 10 10 10	112 Uub (205)	113 Uut (204)	114 Uurgaadum (289)	115 Uupperturn (288)	116 Uuh Ununhexium (292)	117 Uus Uhunseptum	118 Uuo Ununootium (294)	0.00ZErvx
				F	For elen	nents wit	h no sta	able isoto	pes, the	mass	number o	of the iso	tope wit	h the lor	igest hal	f-life is i	n parenti	neses.	
				Design and Interface Copyright © 1997 Michael Dayah (michael@dayah.com). http://www.ptable.com/															
	Dta	blo		57 5 La 5 Lanthanum 138.90547	58 Ce Cenum 140.110	59 Pr Paseodymium 140.90705	60 Nd Neodymium 144.242	61 18 Pm 23 Promethium 2 (145)	62 58 Samarium 150.38	63 Eu Europium 151.964	64 64 63 6 6 6 6 6 6 6 6 6 6 6 6 7 6 7 6 7 8 6 7 8 6 7 8 6 7 8 7 8	65 Tb 158.92535	66 55 Dy Dysprosium 162.500	67 Ho Holmium 164.93032	68 Er Erbium 107.259	69 50 50 50 50 50 50 50 50 50 50 50 50 50	70 50 50 50 50 50 50 50 50 50 50 50 50 50	71 Lu Lutetium 174.9008	19 00 10 10 10
		com		89 10 10 10 10 10 10 10 10 10 10 10 10 10	90 Th Thorium 232.03808	91 Pa Protectinium 231.03568	92 U Uranium 238.02891	93 Np (237)	94 10 10 10 10 10 10 10 10 10 10 10 10 10	95 Am Americium (243)	96 Cm 32 Curium (247)	97 Bk Berkelium (247)	98 Cf Californium (251)	99 Es Einsteinium (252)	100 Fm 3 Fermium 2 (257)	101 101 10 Md 10 Nendelsvium 10 (258)	102 102 10 No Nobelium 22 (259)	103 Lr Lawrencium (262)	NUMBER

STATE

Atomic Radius

Atomic radius decreases from K to Ca to Cu.

(Unscreened) Plasma Frequency

	18 16	 alkali (valency 1) alkaline earth (valency 2) Al (valency 3) noble metals (valency 1) 	Be	$\omega_P^2 = \frac{n_f e^2}{m\varepsilon_0}$						
, (eV)	14	-	-	Metal	Valency	$\frac{N}{(10^{28} \mathrm{m}^{-3})}$	$\frac{\omega_{\rm p}/2\pi}{(10^{15}{\rm Hz})}$	λ_{I} (nm)		
$\psi \omega_{F}$	12	 Cu,Mg		Li (77 K) Na (5 K) K (5 K)	1 1 1	$4.70 \\ 2.65 \\ 1.40$	$1.95 \\ 1.46 \\ 1.06$	$154 \\ 208 \\ 282$		
	10	Ag,Au	-	$ \begin{array}{c} \mathrm{Rb} \ (5 \mathrm{K}) \\ \mathrm{Cs} \ (5 \mathrm{K}) \end{array} $	1 1	$\begin{array}{c} 1.15 \\ 0.91 \end{array}$	$\begin{array}{c} 0.96 \\ 0.86 \end{array}$	$312 \\ 350$		
	8	- <mark>Ca,Li</mark>	-	Cu Ag Au	1 1 1	8.47 5.86 5.90	$2.61 \\ 2.17 \\ 2.18$	$113 \\ 138 \\ 138$		
	6 4 2	Cs,Rb,K		Be Mg	$\frac{1}{2}$	24.7 8.61	4.46 2.63	130 67 114		
	- (0 5 10 15 20	25	Ca Al	$\frac{2}{3}$	$4.61 \\ 18.1$	$1.93 \\ 3.82$	150 79		
		n (10 ²² cm ⁻³)				F	ox Table	7 1		

Valency determined by row in period table. Atomic radius decreases from K to Ca to Cu.

Free-Carrier Reflection/Absorption in Metals

Transparent Alkali Metals above ω_P

Bands of Total Reflection

- Occur below plasma frequency and between TO/LO energies. Increased sensitivity to weak absorption processes.
- Drude model:

$$\varepsilon(\omega) = 1 - \frac{\omega_P^2}{\omega^2 + i\gamma\omega}$$

- Small damping $(\gamma \circ \omega_P)$:
- Small frequency ($\omega < \omega_P$):
- Refractive index ($\omega < \omega_P$):

Reflectance at 900 ($\omega < \omega_{\rm P}$):

$$\varepsilon(\omega) = 1 - \frac{\omega_P^2}{\omega^2}$$
 (real, negative)
 $\varepsilon(\omega) < 0$

$$\tilde{n}(\omega) = \sqrt{\varepsilon(\omega)} = ik$$

(purely imaginary)

$$R_{90}(\omega) = \left|\frac{n+ik-1}{n+ik+1}\right|^2 = \left|\frac{ik-1}{ik+1}\right|^2 = \frac{(ik-1)(-ik-1)}{(ik+1)(-ik+1)} = 1$$

Free-Carrier Reflection in Ag and Al

Free-Carrier Reflection in Al

Interband transitions at W cause absorption band at 1.5 eV, lowers reflectivity. Al has three electrons $(3s^2, 3p^1)$ High reflectance below ω_p =16 eV (78 nm) Sharp drop above ω_p . Damping, interband absorption.

See also: G. Jungk, Thin Solid Films **234**, 428 (1993).

16

Plasmon resonance in gold nanoparticles

Little, APL 98, 101910 (2011)

Dielectric function of transition metals (Pt)

The dielectric function of Pt deviates from the Drude model below 1 eV due to d-interband transitions.

Pt is not a noble metal, partially filled d-shell.

S. Zollner, phys. stat. solidi (a) 177, R7 (2000)

18

Dielectric function of transition metals (Ni)

Band structure of Ni; Interband transitions

Thickness dependence of dielectric function (Ni)

Ola Hunderi, PRB, 1973 σ_1^{\uparrow} with t[↑] reduced grain boundary scattering in thicker films

Lina Abdallah, Ph.D. thesis (2014)

Difference between Ni and Pt

Ni 3d states are more localized. Pt 5d states are broader, more dispersive.

Ni-Pt alloys have broader transitions than pure Ni.

- Alloy broadening: Potential fluctuations
- Initial Pt 5d states broader than Ni 3d states.

Lina Abdallah, Ph.D. thesis (2014)

Total DOS

Ni₃Pt Projected DOS

Optical conductivity of Ni-Pt alloys

Interband transitions broader in Ni-Pt alloys than in pure Ni.

Lina Abdallah, Ph.D. thesis (2014)

Semiconductors

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
1	1 1 H Hydrogen 1.00794	Atomic # Symbol Name Atomic Mass	С	Solid				Metals			Nonmetals							2 2 He Helium 4.002902	к
2	3 7 Li Lithium 0.941	4 2 Be Beryllum 9.012182	Hg H	Liquid Gas		Alkali me	Alkaline earth met	Lanthanoi	metals	Poor met	Other nonmetal	Noble ga	5 B Boron 10.811	6 C Carbon 12.0107	7 N Nitrogen 14.0067	8 6 0 Dxygen 15.9994	9 # F Floorine 18.9964032	10 3 Ne Neon 20.1797	K L
3	11 Na Sodium 22.98970928	12 B Mg Magnesium 24.3060	Rf	Unknow	n	tals	als	Actinoids		als	S	ses	13 Al Aluminium 28.9815388	14 Si Silcon 28.0855	15 P Phosphorus 30.973762	16 8 Sultur 32.085	17 2 Cl Chlorine 35,453	18 28 Ar Argon 39.948	N-12
4	19 K 1 Potassium 39.0963	20 Ca Calolum 40.078	21 5 Scandum 44.955912	22 8 Ti Titanium 47.887	23 V Vanadium 50.9415	24 Cr Chromium 51.9901	25 Mn Manganese 54,938045	26 26 24 Fe 20	27 Co Cobalt 58.933195	28 Ni Nickel 58.6934	29 12 Copper 63.540	30 Zn 2010 65.38	31 Ga Gallum 69.723	32 Ge Germanium 72.64	33 As Arsenic 74.92160	34 ² See ^{Selenium} 78.96	35 18 Br 19 Bromine 79.904	36 58 58 58 58 58 58 58 58 58 58 58 58 58	K-UN
5	37 Rb Rubidium 85.4678	38 Sr Strontium 87.82	39 88 Y 10 92 Yttnum 88.90585	40 58 Zr 102 21roonlum 91.224	41 Nb Nobium 52 90638	42 Mo Molybdenum 95.90	43 TC Technetium (97.9072)	44 Ruthenium 101.07	45 Rh Rhodium 102.90550	46 Pd Palladum 108.42	47 47 Ag Silver 107.8882	48 Cd Cadmium 112.411	49 In Indium 114.818	50 Sn Tin 118.710	51 Sb Antimony 121.780	52 52 Te 58 Telunum 127.60	53 8 6 100ine 120.90447	54 18 Xe 18 Xenon 131.293	OXErx
6	55 18 Cs 132,9054619	56 88 15 15 15 15 15 15 15 15 15 15 15 15 15	57–71	72 28 Hf 10 Hafnium 178.49	73 Ta Tantalum 180.94788	74 W 19 Tungsten 183.84	75 Re Rhenium 186.207	76 05 05 09 09 09 09 09 09 09 09 09 09 09 09 09	77 Ir Iridium 192.217	78 Pt Platinum 185.084	79 Au Gold 196.966569	80 Hg Nercury 200.59	81 Ti Thailium 204.3833	Pb Lead 207.2	83 Bi Biamuth 208.98040	84 28 Polonium (208.9624)	85 38 At 15 Astatine (209.9871)	86 8 Rn 3 Radon (222.0176)	K-UZOP
7	87 2 Fr 18 Francium 1 (223)	88 22 Ra 15 Radium 22 (228)	89–103	104 28 322 25 25 25 25 25 25 25 25 25 25 25 25 2	105 Db Dubnum (262)	106 Sg Seaborgium (200)	107 Bh Bohrium (284)	108 20 108 40 108 40 108 100 100 100 100 100 100 100 100 10	109 Mt Metherium (256)	110 DS Damstadium (271)	111 Romportum (272)	112 Uub Ununblum (285)	113 Uut Ununtrium (284)	114 Uuq ^{Uhrquadum} (289)	115 Uup Urupertum (284)	116 Uuh Ununhextum (292)	117 Uus Uhunseptum	118 Uuo Ununootium (294)	0.00ZELX
				F	or elen	nents wit	h no sta	able isoto	opes, the	mass	number o	of the iso	tope wit	h the lor	ngest ha	f-life is i	n parenti	neses.	
				Design and Interface Copyright © 1997 Michael Dayah (michael@dayah.com). http://www.ptable.com/															
1	Dta	blo		57 58 La 18 Lanthanum 138.90547	58 Ce Cenum 140.110	59 Pr Paseodymium 140.90705	60 Nd Neodymium 144.242	61 50 50 50 50 50 50 50 50 50 50 50 50 50	62 Sm Samarium 150.36	63 Eu Europium 151.904	64 64 Gadolinum 157.25	65 Tb 158.92535	66 Dy Dysprosium 162.500	67 Ho Holmium 164.93032	68 Er Erbium 107.259	69 50 50 50 50 50 50 50 50 50 50 50 50 50	70 10 10 10 10 10 10 10 10 10 10 10 10 10	71	An and a second s
		com		89 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	90 Th Thorium 232.03806	91 Pa Protectinium 231.03568	92 U Uranium 238.02891	93 Np (237)	94 Pu Plutonium (244)	95 Am Americium (243)	96 Cm Curium (247)	97 Bk Berkelium (247)	98 Cf Californium (251)	99 Es Einsteinium (252)	100 Fm Fermium (257)	101 101 100 100 100 100 100 100 100 100	102 No Nobelium (259)	103 10 Lr 32 (262)	8101131101010

STAT

Free-Carrier Reflection in doped semiconductors

Doped semiconductors behave just like a metal, except for the lower carrier density; **plasma frequency in infrared region.**

Fox, Optical Properties of Solids

Why infrared ellipsometry ?

<u>Advantages:</u>

- Measures amplitude ψ and phase Δ .
- Direct access to complex ϵ (no Kramers-Kronig transform).
- Modeling may contain depth information.
- No need to subtract substrate reference data.
- Anisotropy information (off-diagonal Jones and MM data)
- Possible measurements in a magnetic field (optical Hall effect)
- Obtain plasma frequency and scattering rate (B=0)
- Obtain *carrier density*, scattering rate, *effective mass* (B≠0).

Disadvantages:

- Time-consuming (15 FTIR reflectance spectra)
- Requires polarizing elements (polarizer, compensator)
- Requires large samples (no focusing), at least 5 by 10 mm²
- Requires modeling for thin layer on substrate.
- Commercial instruments only down to 30 meV (250 cm⁻¹)

Summary

- **Drude model** explains optical response of metals.
- High reflectance below the plasma frequency.
- Interband transitions overlap with Drude absorption.
- Doped semiconductors have infrared plasma frequencies.
- Lorentz model explains infrared lattice absorption.
- TO/LO modes result in reststrahlen band.
- Multiple modes for complex crystal structures.

