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Optical Properties of Solids: Lecture 5+6
Lorentz and Drude model: Applications
1. Metals, doped semiconductors
2. Insulators
Sellmeier equation, Poles, Cauchy dispersion
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NiO
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References: Dispersion, Analytical Properties
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Standard Texts on Electricity and Magnetism:
• J.D. Jackson: Classical Electrodynamics
• L.D. Landau & J.M. Lifshitz, Vol. 8: Electrodynamics of Cont. Media

Ellipsometry and Polarized Light:
• R.M.A. Azzam and N.M. Bashara: Ellipsometry and Polarized Light
• H.G. Tompkins and E.A. Irene: Handbook of Ellipsometry

(chapters by Rob Collins and Jay Jellison)
• H. Fujiwara, Spectroscopic Ellipsometry
• Mark Fox, Optical Properties of Solids
• H. Fujiwara and R.W. Collins: Spectroscopic Ellipsometry for PV (Vol 1+2)
• Zollner: Propagation of EM Waves in Continuous Media (Lecture Notes)
• Zollner: Drude and Kukharskii mobility of doped semiconductors extracted 

from FTIR ellipsometry spectra, J. Vac. Sci. 37, 012904 (2019). 
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Question: Inhomogeneous Plane Waves
Plane waves do not solve Maxwell’s equations, if Im(ε)≠0.

Inhomogeneous plane wave (aka generalized plane waves):

Allow complex wave vector: 

The amplitude of the plane 
wave decays in the medium 
due to absorption.

Snell:
sin 𝜃𝜃1
sin𝜃𝜃2

=
𝑛𝑛1
𝑛𝑛2

𝐸𝐸 𝑟𝑟, 𝑡𝑡 = 𝐸𝐸0 exp 𝑖𝑖 𝑘𝑘 � 𝑟𝑟 − 𝜔𝜔𝑡𝑡

𝑘𝑘 = 𝑘𝑘1 + 𝑖𝑖𝑘𝑘2 = 𝑘𝑘1𝑢𝑢 + 𝑖𝑖𝑘𝑘2�⃗�𝑣

𝐸𝐸 𝑟𝑟, 𝑡𝑡 = 𝐸𝐸0 exp −𝑘𝑘2 � 𝑟𝑟 exp 𝑖𝑖 𝑘𝑘1 � 𝑟𝑟 − 𝜔𝜔𝑡𝑡
Attenuation Propagation
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Mansuripur, Magneto-Optical Recording, 1995
Stratton, Electromagnetic Theory, 1941/2007

Landau-Lifshitz§63, Jackson, Clemmow
Dupertuis, Proctor, Acklin, JOSA 11, 1159 (1994).
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Drude and Lorentz Models: Free and Bound Charges

𝜀𝜀 𝜔𝜔 = 1 +
𝜔𝜔𝑃𝑃2

𝜔𝜔02 − 𝜔𝜔2 − 𝑖𝑖𝑖𝑖𝜔𝜔

𝜔𝜔𝑃𝑃2 =
𝑛𝑛𝑏𝑏𝑞𝑞2

𝑚𝑚𝜀𝜀0
𝜔𝜔02 =

𝑘𝑘
𝑚𝑚

plasma frequency

resonance frequency

H. Helmholtz, Ann. Phys 230, 582 (1875)

𝐸𝐸 𝑡𝑡 = 𝐸𝐸0 exp −𝑖𝑖𝜔𝜔𝑡𝑡

q

Lorentz:
Bound Charges

q q
x

qE

bv

v

𝐸𝐸 𝑡𝑡 = 𝐸𝐸0 exp −𝑖𝑖𝜔𝜔𝑡𝑡

Drude:
Free Charges

𝜀𝜀 𝜔𝜔 = 1 −
𝜔𝜔𝑃𝑃
2

𝜔𝜔2 + 𝑖𝑖𝑖𝑖𝜔𝜔

𝜔𝜔𝑃𝑃
2 =

𝑛𝑛𝑓𝑓𝑒𝑒2

𝑚𝑚𝜀𝜀0
𝜔𝜔0
2 = 0

plasma frequency

resonance frequency

P. Drude, Phys. Z. 1, 161 (1900).
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Drude-Lorentz Model: Free and Bound Charges

𝐸𝐸 𝑡𝑡 = 𝐸𝐸0 exp −𝑖𝑖𝜔𝜔𝑡𝑡

qq q
x

qE

bv

v

𝐸𝐸 𝑡𝑡 = 𝐸𝐸0 exp −𝑖𝑖𝜔𝜔𝑡𝑡

𝜀𝜀 𝜔𝜔 = 1 −�
𝑖𝑖

𝜔𝜔𝑃𝑃,𝑖𝑖
2

𝜔𝜔2 + 𝑖𝑖𝑖𝑖𝐷𝐷,𝑖𝑖𝜔𝜔
+ �

𝑖𝑖

𝐴𝐴𝑖𝑖𝜔𝜔0,𝑖𝑖
2

𝜔𝜔0,𝑖𝑖
2 − 𝜔𝜔2 − 𝑖𝑖𝑖𝑖0,𝑖𝑖𝜔𝜔

ωP (unscreened) plasma frequency of free charges
ω0 resonance frequency of bound charges
γD, γ0 broadenings of free and bound charges
A amplitude of bound charge oscillations (density, strength)

𝜔𝜔𝑃𝑃
2 =

𝑛𝑛𝑓𝑓𝑒𝑒2

𝑚𝑚𝜀𝜀0
Discuss plasma frequency trends. 

Lorentz:
Bound Charges

Drude:
Free Charges
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Drude-Lorentz Model: Free and Bound Charges

𝜀𝜀 𝜔𝜔 = 1 −�
𝑖𝑖

𝜔𝜔𝑃𝑃,𝑖𝑖
2

𝜔𝜔2 + 𝑖𝑖𝑖𝑖𝐷𝐷,𝑖𝑖𝜔𝜔
+ �

𝑖𝑖

𝐴𝐴𝑖𝑖𝜔𝜔0,𝑖𝑖
2

𝜔𝜔0,𝑖𝑖
2 − 𝜔𝜔2 − 𝑖𝑖𝑖𝑖0,𝑖𝑖𝜔𝜔



Metals
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Atomic Radius
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H He

 Li Be B C N O F Ne

 Na Mg Al Si P S Cl Ar

 K Ca Ga Ge As Se Br Kr

 Rb Sr In Sn Sb Te I Xe

 Cs Ba Tl Pb Bi Po At Rn

atomic radius decreases

Atomic radius decreases from K to Ca to Cu. 



(Unscreened) Plasma Frequency
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𝜔𝜔𝑃𝑃
2 =

𝑛𝑛𝑓𝑓𝑒𝑒2

𝑚𝑚𝜀𝜀0

Fox, Table 7.1Valency determined by row in period table.
Atomic radius decreases from K to Ca to Cu. 



Free-Carrier Reflection/Absorption in Metals
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Dielectric function ε Refractive index n+ik=√ε

𝜀𝜀 𝜔𝜔 = 1 −
𝜔𝜔𝑃𝑃
2

𝜔𝜔2 + 𝑖𝑖𝑖𝑖𝜔𝜔
ωp=3 eV, γ=1 eV 

𝑅𝑅90 𝜔𝜔 =
𝑛𝑛 + 𝑖𝑖𝑘𝑘 − 1
𝑛𝑛 + 𝑖𝑖𝑘𝑘 + 1

2

ε1<0 below 3 eV 

Metals reflect below ωP
(plasma edge)

Fox, Fig. 7.1

R=1 if n is purely imaginary (γ=0) below ωP.
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R.W. Wood, Phys. Rev. 44, 353 (1933)

Fox, Table 7.2

λ (Å)

K

ωP=4.4 eV (280 nm)

U.S. Whang et al., PRB 6, 2109 (1972)

Transparent Alkali Metals above ωP



Bands of Total Reflection
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Drude model:

Small damping (γ`ωP):

Small frequency (ω<ωP):

Refractive index (ω<ωP):

Reflectance at 90Ø (ω<ωP):

𝜀𝜀 𝜔𝜔 = 1 −
𝜔𝜔𝑃𝑃
2

𝜔𝜔2 + 𝑖𝑖𝑖𝑖𝜔𝜔

𝜀𝜀 𝜔𝜔 = 1 −
𝜔𝜔𝑃𝑃
2

𝜔𝜔2
(real, negative)

𝜀𝜀 𝜔𝜔 < 0

�𝑛𝑛 𝜔𝜔 = 𝜀𝜀 𝜔𝜔 = 𝑖𝑖𝑘𝑘

𝑅𝑅90 𝜔𝜔 =
𝑛𝑛 + 𝑖𝑖𝑘𝑘 − 1
𝑛𝑛 + 𝑖𝑖𝑘𝑘 + 1

2

=
𝑖𝑖𝑘𝑘 − 1
𝑖𝑖𝑘𝑘 + 1

2

=
𝑖𝑖𝑘𝑘 − 1 −𝑖𝑖𝑘𝑘 − 1
𝑖𝑖𝑘𝑘 + 1 −𝑖𝑖𝑘𝑘 + 1

= 1

(purely imaginary)

Occur below plasma frequency and between TO/LO energies.
Increased sensitivity to weak absorption processes.



Free-Carrier Reflection in Ag and Al
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Ag is a noble metal.
Filled 4d-shell, 5s1

High reflectance 
below ωP=9 eV (138 nm)
Sharp drop above ωP. Damping.

silver

Al

Al has three electrons (3s2, 3p1)
High reflectance 
below ωP=16 eV (78 nm)
Sharp drop above ωP.
Damping, interband absorption.

ωP

Fox, Optical Properties of Solids



Free-Carrier Reflection in Al
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Al

Al has three electrons (3s2, 3p1)
High reflectance 
below ωP=16 eV (78 nm)
Sharp drop above ωP.
Damping, interband absorption.

Al

Interband transitions at W 
cause absorption band at 
1.5 eV, lowers reflectivity.

Fox, Optical Properties of SolidsSee also: G. Jungk, Thin Solid Films 234, 428 (1993).



Free-Carrier Reflection in Cu
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Noble metal, 4s1, ωP=10.8 eV
Transitions from 3d to 4s at 2 eV 
(near L and X). Similar for Ag, Au.

Fox, Optical Properties of Solids



Gold is not always yellow.
Nanoparticle radius a<λ

m: metal, d: dielectric
Enhance molecular absorption.

Plasmon resonance in gold nanoparticles
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20 to 100 nm

ln
(α

t)

𝛼𝛼 = 4𝜋𝜋𝑎𝑎3
𝜀𝜀𝑚𝑚 − 𝜀𝜀𝑑𝑑
𝜀𝜀𝑚𝑚 + 𝜖𝜖𝑑𝑑

Fox, Optical Properties of Solids
Little, APL 98, 101910 (2011)

Ag



Dielectric function of transition metals (Pt)
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Drude-like ε above 1 eV

The dielectric function of Pt deviates from the Drude model below 
1 eV due to d-interband transitions.
Pt is not a noble metal, partially filled d-shell.

S. Zollner, phys. stat. solidi (a) 177, R7 (2000)
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Dielectric function of transition metals (Ni)
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Farzin Abadizaman (unpublished)
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Low frequency:
ψ→0, ∆→180°Ni, 300 K

σDC=143,000/Ωcm
Even at 30 meV, the optical σ
is still much smaller than σDC.



Band structure of Ni; Interband transitions
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Lina Abdallah, Ph.D. thesis (2014)



Thickness dependence of dielectric function (Ni)
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50 Å not 
metallic

σ1 with t
reduced grain boundary 
scattering in thicker films  

Ola Hunderi, PRB, 1973

Lina Abdallah, Ph.D. thesis (2014)



Difference between Ni and Pt
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Lina Abdallah, Ph.D. thesis (2014)

Ni 3d states are more localized.
Pt 5d states are broader, more dispersive.

Ni-Pt alloys have broader transitions than pure Ni.
• Alloy broadening: Potential fluctuations
• Initial Pt 5d states broader than Ni 3d states.
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Lina Abdallah, Ph.D. thesis (2014)

Total DOS Ni3Pt Projected DOS

EF EF



Optical conductivity of Ni-Pt alloys
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Lina Abdallah, Ph.D. thesis (2014)

Si CMOS
32 nm

(~10% Pt)

Interband transitions broader in Ni-Pt alloys than in pure Ni.



Semiconductors
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Free-Carrier Reflection in doped semiconductors
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Fox, Optical Properties of Solids

Doped semiconductors behave just like a metal, except for the 
lower carrier density; plasma frequency in infrared region.

Carrier density in m-3

InSb

Reflectance minimum 
near plasma frequency



Why infrared ellipsometry ?
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Advantages:
• Measures amplitude ψ and phase ∆.
• Direct access to complex ε (no Kramers-Kronig transform).
• Modeling may contain depth information.
• No need to subtract substrate reference data.
• Anisotropy information (off-diagonal Jones and MM data)
• Possible measurements in a magnetic field (optical Hall effect)
• Obtain plasma frequency and scattering rate (B=0)
• Obtain carrier density, scattering rate, effective mass (B≠0).
Disadvantages:
• Time-consuming (15 FTIR reflectance spectra)
• Requires polarizing elements (polarizer, compensator)
• Requires large samples (no focusing), at least 5 by 10 mm2

• Requires modeling for thin layer on substrate.
• Commercial instruments only down to 30 meV (250 cm−1)



Summary
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• Drude model explains optical response of metals.
• High reflectance below the plasma frequency.
• Interband transitions overlap with Drude absorption.

• Doped semiconductors have infrared plasma 
frequencies.

• Lorentz model explains infrared lattice absorption.
• TO/LO modes result in reststrahlen band.
• Multiple modes for complex crystal structures.
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