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1 Scalar and vector waves

A sinusoidal scalar traveling wave as a function of position ~r and time t

s (~r, t) = A cos
(
~k · ~r − ωt+ φ

)
(1.1)

described by an amplitude A, wave vector ~k, angular frequency ω, and phase φ has an infinite
duration and spatial extension. It is difficult to plot or to use in numerical calculations. A more compact
mathematical form is preferred. This can be achieved by Fourier series or Fourier transforms.

Similarly to a scalar wave, we can write a vector wave in components as

~E (~r, t) =


E0x cos

(
~k · ~r − ωt+ φ

)
E0y cos

(
~k · ~r − ωt+ φ

)
E0z cos

(
~k · ~r − ωt+ φ

)
 = ~E0 cos

(
~k · ~r − ωt+ φ

)
, (1.2)

where the amplitude is now a vector with three components ~E0 = (E0x, E0y, E0z).

Problems:

1.1. Show that the scalar wave in Eq. (1.1) is periodic in time with period T = 2π/ω.
1.2. The scalar wave in Eq. (1.1) is also periodic in real space with wavelength ~λ, written as a vector.

Find the relationship between ~λ and ~k.
1.3. A scalar s is defined as s = ~a ·~b. A coordinate transformation defined by a matrix A transforms the

unit vectors ~i, ~j, and ~k into a different set of right-handed unit vectors. Show that the scalar s is
invariant under this coordinate transformation.

2 Fourier Series of Periodic Functions

A (real-valued scalar) function f (t) is called periodic with period T , if f (t) = f (t+ T ) for all values of
t. We see that the scalar wave in Eq. (1.1) is periodic with period T = 2π/ω.

A periodic function f (t) with period T can be written as (Jackson 1975, 2.36-37)

f (t) =
1

2
A0 +

∞∑
m=1

[
Am cos

(
2πmt

T

)
+Bm sin

(
2πmt

T

)]
(2.1)

or

f (t) =
1

2
A0 +

∞∑
m=1

[Am cos (mωt) +Bm sin (mωt)] (2.2)

with Fourier coefficients

Am =
2

T

T
2∫

−T
2

f (t) cos

(
2πmt

T

)
dt (2.3)

Bm =
2

T

T
2∫

−T
2

f (t) sin

(
2πmt

T

)
dt (2.4)

or in terms of the angular frequency ω

Am =
ω

π

π
ω∫

− π
ω

f (t) cos (mωt) dt (2.5)

2



Bm =
ω

π

π
ω∫

− π
ω

f (t) sin (mωt) dt (2.6)

In plain English, Eq. (2.2) means that any periodic function with period T and angular frequency ω can
be writen as a sum of its overtones. This is also called harmonic analysis.

It is inconvenient that the Fourier series written above have two terms (sines and cosines) and two sets
of coefficients. The equations can be simplified by moving to complex numbers. If we remember that

exp (−iωt) = cos (ωt)− i sin (ωt) , (2.7)

then we can show that the Fourier series becomes

f (t) =
+∞∑

m=−∞
cm exp (−imωt) (2.8)

with Fourier coefficients (check !)

cm =
ω

π

π
ω∫

− π
ω

f (t) exp (imωt) dt =


A0
2 ; m = 0
1
2 (Am + iBm) ; m > 0
1
2 (A−m − iB−m) ; m < 0

 (2.9)

Since the function f (t) is a real function (any measurable physical quantity must be real!), the series
(2.8) is not really a complex function. All imaginary terms in this series must cancel (not individually,
but after summation). The Fourier coefficients cm are only a mathematical definition and not physical
quantities. Therefore, the Fourier coefficients are usually complex quantities.

Note: Following the usual ellipsometric convention (see also Born & Wolf, Jackson 1975, etc), we
use a minus-sign in the exponential containing the time t. This is different from some math texts. The
significance of this choice will be explained later.

Problems:

2.1. A scalar function f (t) is called even, if f (t) = f (−t). It is called odd, if f (t) = −f (−t). What
can you say about the Fourier coefficients Am and Bm of even and odd functions.

2.2. Use the form of the coefficients cm in Eq. (2.9) and substitute into Eq. (2.8). Can you recover the
Fourier coefficients Am and Bm in Eqs. (2.3) and (2.4)? (Let me know if you find a mistake!)

2.3. What can you say about the Fourier coefficients cm for even and odd functions f (t)?
2.4. Solve the following integrals for arbitrary integers m1 and m2:

ω

π

π
ω∫

− π
ω

cos (m1ωt) cos (m2ωt) dt = ? (2.10)

ω

π

π
ω∫

− π
ω

sin (m1ωt) sin (m2ωt) dt = ? (2.11)

ω

π

π
ω∫

− π
ω

sin (m1ωt) cos (m2ωt) dt = ? (2.12)

The functions
√

ω
π cos (mωt) and

√
ω
π sin (mωt) (where m is an integer) form an orthonormal basis

set for the infinite-dimensional vector space of periodic functions with period T (Jackson 1975, Sec.
2.8).
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2.5. Show that the function f (t) in Eq. (2.8) is real, i.e., equal to its complex conjugate.
2.6. Check out the article on Fourier series in wikipedia and calculate the first few terms in the Fourier

series for a square wave and a sawtooth wave (stop reading after example 1). Many compilations of
mathematical tables (such as Bronstein-Semendjajew 1979) list Fourier series expansions of common
functions.

3 Fourier Transforms of Non-periodic Functions

If the function f (t) is not periodic, then the period T becomes infinite and the frequency spacing ω between
overtones becomes very small. Instead of needing a series of discrete overtones with spacing ω (as for finite
period T ), we now need a continuous set of angular frequencies ω. The Fourier series (2.8) becomes a
Fourier integral (Jackson 1975, 2.44)

f (t) =
1√
2π

∞∫
−∞

F (ω) exp (−iωt) dω. (3.1)

The function F (ω) is called the Fourier transform of f (t)

F (ω) =
1√
2π

∞∫
−∞

f (t) exp (iωt) dt. (3.2)

I have written the Fourier transform (3.2) and the inverse Fourier transform (3.1) with a symmetric
prefactor 1√

2π
. This notation can vary (Jackson 1975, 6.55-56). For any function f (t) describing a physical

quantity, the imaginary terms in the inverse Fourier transform (3.1) must cancel to make the function
real-valued. The Fourier transform F (ω) may be complex, since it is not a physical quantity. Just like the
time t, the angular frequency ω is a real quantity in these transforms.

The orthogonality and completeness relations are now (Jackson 1975, 2.46-47)

1

2π

∞∫
−∞

exp
[
i
(
ω − ω′

)
t
]
dt = δ

(
ω − ω′

)
(3.3)

and

1

2π

∞∫
−∞

exp
[
iω
(
t− t′

)]
dω = δ

(
t− t′

)
, (3.4)

where δ (t) is the Kronecker δ-function. These integrals (3.3) and (3.4) are not to be taken literally, since
the δ-function is not a real function. These equations only become meaningful mathematically within the
theory of functional analysis. Only integrals containing the δ-function as a kernel become meaningful.
The functions 1√

2π
exp (iωt) form an orthonormal basis of a Hilbert space of functions.

Problems:

3.1. The convolution (f ∗ g) (t) of two functions f (t) and g (t) is defined by

(f ∗ g) (t) =

∞∫
−∞

f
(
t′
)
g
(
t− t′

)
dt′. (3.5)

Show that the Fourier transform of the convolution of two functions f (t) and g (t) is equal to the
product of their Fourier transforms F (ω) and G (ω) (up to a factor of

√
2π), i.e.,

1√
2π

∞∫
−∞

(f ∗ g) (t) exp (iωt) dt =
√

2πF (ω)G (ω) . (3.6)
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3.2. Can we choose a normalization factor other than
√

2π in the Fourier transform to get rid of the
prefactor

√
2π in the convolution theorem?

3.3. If F (ω) is the Fourier transform of f (t), then the Fourier transform of the derivative f ′ (t) is iωF (ω).
In other words,

1√
2π

∞∫
−∞

f ′ (t) exp (iωt) dt = iωF (ω) . (3.7)

3.4. If F (ω) is the Fourier transform of f (t), show that F (−ω) = F̄ (ω) (i.e., the complex conjugate of
F (ω)).

4 Fourier Transforms and Fourier Series in Multiple Dimensions

The Fourier transforms described in Sec. 3 are written in one dimension. An example for this is the
transform from time into frequency space. We can also transform scalar or vector functions in real space
and move into wave vector space. (In quantum mechanics or solid-state physics, this would be called
momentum space or reciprocal space.)

A scalar field s (~r) in a crystal (Bravais lattice) is called periodic if s
(
~r + ~R

)
= s (~r) for all Bravais

lattice vectors ~R = u~a+ v~b+ w~c with integral coefficients u, v, and w and primitive lattice translations

~a, ~b, and ~c spanning the unit cell V = ~a ·
(
~b× ~c

)
. In this case (Ashcroft & Mermin 1976, Appendix D), the

three-dimensional Fourier series is given by a sum over all reciprocal lattice vectors ~G = h~a∗+k~b∗+ l~c∗

(with real-valued components)

s (~r) =
∑
~G

s ~G exp
(
i ~G · ~r

)
, (4.1)

where

~a∗ =
2π

V

(
~b× ~c

)
, ~b∗ =

2π

V
(~c× ~a) , and ~c∗ =

2π

V

(
~a×~b

)
(4.2)

and the Fourier coefficients are given by

s ~G =
1

V

∫
C

s (~r) exp
(
−i ~G · ~r

)
d3~r. (4.3)

The integral is over the primitive cell C spanned by ~a, ~b, and ~c with volume V . Compare the one-
dimensional case in Eq. (2.8), which is the same except for a different sign and for a factor of 23 = 8. (For
a periodic time-dependent function with period T , the unit cell volume is V = T = 2π/ω and 2π/V = ω is
the reciprocal space unit.) This formalism can also be applied to functions periodic in reciprocal space. As
always, the imaginary terms in the series (4.1) must cancel if the scalar field s (~r) is a real-valued physical
quantity.

The same equations apply to a periodic vector field

~E (~r) =
∑
~G

~E ~G exp
(
i ~G · ~r

)
, (4.4)

where the Fourier coefficients are given by

~E ~G =
1

V

∫
C

~E (~r) exp
(
−i ~G · ~r

)
d3~r. (4.5)

As always, the imaginary terms in the series (4.4) must cancel if the vector field ~E (~r) is a real-valued
physical quantity.
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Now let us turn to the Fourier transforms for non-periodic scalar and vector fields. The three-
dimensional Fourier integral for a scalar field s (~r) becomes

s (~r) =

(
1√
2π

)3
∞∫
−∞

∞∫
−∞

∞∫
−∞

S
(
~k
)

exp
(
i~k · ~r

)
d3~k. (4.6)

The function S
(
~k
)

is called the Fourier transform of s (~r)

S
(
~k
)

=

(
1√
2π

)3
∞∫
−∞

∞∫
−∞

∞∫
−∞

s (~r) exp
(
−i~k · ~r

)
d3~r. (4.7)

Similar equations hold for non-periodic vector fields ~E (~r)

~E (~r) =

(
1√
2π

)3
∞∫
−∞

∞∫
−∞

∞∫
−∞

~E
(
~k
)

exp
(
i~k · ~r

)
d3~k (4.8)

with the Fourier transform defined by

~E
(
~k
)

=

(
1√
2π

)3
∞∫
−∞

∞∫
−∞

∞∫
−∞

~E (~r) exp
(
−i~k · ~r

)
d3~r. (4.9)

As always, the imaginary terms in the inverse Fourier transforms (4.6) and (4.8) must cancel if the scalar
field s (~r) and the vector field ~E (~r) are real-valued physical quantities. The vectors ~r and ~k also have real
components.

5 Maxwell’s Equations in Vacuum (Microscopic)

In mechanics, our goal is to determine the position ~r of a particle with mass m exposed to a net force ~F ,
given the initial position and velocity. The equation of motion is Newton’s second law: ~F = m~̈r. In the
theory of electricity and magnetism, the electric field strength ~E and the magnetic field strength
~H need to be determined using initial or boundary conditions for a given charge density ρ and current
density ~j. Both fields ~E and ~H are vector fields and depend on position and time, but they can be
Fourier-transformed and then become functions of wave vector ~k and angular frequency ω. Maxwell’s
equations take the place of Newton’s second law. (The definition of the magnetic field strength ~H follows
Serway 1990, Sec. 30.9. See also Holm 1991. This allows a symmetric treatment of the dielectric and
magnetic susceptibilities involving the microscopic pair of quantities ~E and ~H turning into ~D and ~B in the
macroscopic case.)

For completeness, we also define the dielectric displacement ~D and the magnetic field ~B (also
known as the magnetic flux density)

~D = ε0 ~E (5.1)

~B = µ0 ~H. (5.2)

Let’s keep in mind that these expressions (5.1-5.2) are only valid in vacuum and need to be modified inside
a continuous medium.

In differential form, the general microscopic form of Maxwell’s equations is

Gauss’ law (electric field) ~∇ · ~E =
ρ

ε0
(5.3)
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Gauss’ law (magnetic field) ~∇ · ~H = 0 (5.4)

Faraday’s law ~∇× ~E = −µ0
∂ ~H

∂t
(5.5)

Ampere’s law ~∇× ~H = ~j + ε0
∂ ~E

∂t
, (5.6)

where ε0 is the permittivity of free space and µ0 the permeability of free space.
The first equation is Coulomb’s law and implies that the electric field strength from a point charge

drops off like the square of the distance. The second equation states that there are no magnetic charges.
Faraday’s law states that a flux change causes an induced voltage. (There is no magnetic current, because
there are no magnetic charges.) Ampere’s law states that the magnetic field strength curls around the
current. We can apply Gauss’ theorem and Stokes’ theorem to convert these equations into their
integral form (but this is not necessary here).

There’s a few other things to note about Maxwell’s equations: They are linear in the fields ~E and ~H,
they are first order in space coordinates and time, and they have constant coefficients ε0 and µ0. (Ac-
tually, if we choose different units, the speed of light c is the only parameter in these equations. The
speed of light couples the electric and magnetic field strenghts.) However, these equations are inhomo-
geneous: The charge density ρ and the current density ~j are the inhomogeneous sources. Because of the

linearity of the equations, if the systems
{
~E1, ~H1, ρ1,~j1

}
and

{
~E2, ~H2, ρ2,~j2

}
solve Maxwell’s equations,

then
{
~E1 + ~E2, ~H1 + ~H2, ρ1 + ρ2,~j1 +~j2

}
is also a solution. This linearity allows us to Fourier-transform

Maxwell’s equations. Because of linearity, the integrals commute with the partial derivatives. Finally, we
see that the electric and magnetic field strengths ~E and ~H are only coupled through the partial time deriva-
tives. Therefore, electrostatics and magnetostatics are independent and the static fields don’t mix. The
electric and magnetic field strengths ~E and ~H are only coupled, once we consider dynamic (time-dependent)
effects, for example in the theory of the propagation of electromagnetic waves.

Since we are interested in the propagation of electromagnetic waves, we don’t have to worry about free
charges (ρ=0) and currents flowing through a wire (~j = 0). Therefore, Maxwell’s equations in vacuum
read as follows (Jackson 1975, 7.1):

Gauss’ law (electric field) ~∇ · ~E = 0 (5.7)

Gauss’ law (magnetic field) ~∇ · ~H = 0 (5.8)

Faraday’s law ~∇× ~E = −µ0
∂ ~H

∂t
(5.9)

Ampere’s law ~∇× ~H = ε0
∂ ~E

∂t
. (5.10)

While the current density ~j vanishes, we note that we still need to deal with the displacement current
density on the right hand side of Ampere’s law. The speed of light c is defined by

c =
1

√
ε0µ0

. (5.11)

Maxwell’s equations are now truly homogeneous without any source terms. Because of the linearity of

the equations, if the systems
{
~E1, ~H1

}
and

{
~E2, ~H2

}
solve the homogeneous Maxwell’s equations, then{

~E1 + ~E2, ~H1 + ~H2

}
is also a solution.

Problems:

5.1. Derive the wave equations (Holm 1991, Jackson 1975)

~∇2 ~E − 1

c2
∂2 ~E

∂t2
= 0 and (5.12)
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~∇2 ~H − 1

c2
∂2 ~H

∂t2
= 0 (5.13)

from Maxwell’s equations in vacuum. See Good & Nelson 1971, 4.7.

5.2. Show the following: If the systems
{
~E1, ~H1, ρ1,~j1

}
and

{
~E2, ~H2, ρ2,~j2

}
solve Maxwell’s equations,

then
{
~E1 + ~E2, ~H1 + ~H2, ρ1 + ρ2,~j1 +~j2

}
is also a solution.

5.3. What are the units of the electric and magnetic field strengths ~E and ~H in the MKSA system? The
Poynting vector is defined as (Serway 1990, 34.23)

~S = ~E × ~H. (5.14)

What is the direction and the unit of the Poynting vector?

6 Plane Wave Solutions to Maxwell’s Equations in Vacuum

As stated before, the purpose of Maxwell’s equations is to determine the electric and magnetic field
strengths ~E (~r, t) and ~H (~r, t) for a given charge and current density. Maxwell’s equations are linear
and therefore the integrals in the Fourier transformed fields commute with the differential operators in
Maxwell’s equations. Let’s Fourier transform the electric field strength ~E (~r, t) in all four dimensions
(position ~r and time t). The resulting Fourier transforms are given by

~E
(
~k, ω

)
=

(
1

2π

)2
∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

~E (~r, t) exp
[
−i
(
~k · ~r − ωt

)]
d3~rdt and (6.1)

~E (~r, t) =

(
1

2π

)2
∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

~E
(
~k, ω

)
exp

[
i
(
~k · ~r − ωt

)]
d3~kdω (6.2)

with a corresponding expression for the magnetic field strength ~H (~r, t).
We note that the exponential phase has the opposite sign in the Fourier transform (6.1) and the inverse

Fourier transform (6.2). How we choose this phase (if the minus sign appears in the Fourier transform
or in the inverse transform) is convention. In the Nebraska convention for ellipsometric measurements as
modified by Aspnes (Muller 1969, Holm 1991, Humĺıček 2005, Jackson 1975), Eq. (6.2) with the negative
time dependence factor is the preferred choice. The form of the exponential in Eq. (6.1) with the minus
sign applied to time is also the preferred choice for a quantum-mechanical wave packet to ensure that the
kinetic energy of a free particle is positive (Holm 1991). This choice has profound consequences on the sign
of the imaginary part of the dielectric constant (related to the extinction coefficient). Unfortunately, the
positive sign of the time-dependence is almost universally in use in electrical engineering. This makes it
difficult to transition from the optical to the microwave regime, if different conventions are used. Finally,
we note that the terms involving time and space coordinates have opposite signs in the usual convention.
(In a one-dimensional case with the wave moving along the z-direction, the wave moves towards increasing
z with increasing time t.)

A plane wave ~E
(
~k, ω

)
with wave vector ~k and angular frequency ω is a δ-function in wave vector and

angular frequency space and thus all four integrals collapse. The electric field strength for a plane wave
looks like this:

~E (~r, t) = ~E0 exp
[
i
(
~k · ~r − ωt

)]
. (6.3)

There is a similar equation for the magnetic field strength ~H (~r, t) of a plane wave:

~H (~r, t) = ~H0 exp
[
i
(
~k · ~r − ωt

)]
. (6.4)
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Both ~E0 and ~B0 are vectors with complex coefficients, but they do not depend on the space and time
coordinates ~r and t.

Unfortunately, plane waves are not physical solutions to Maxwell’s equations for two reasons: First,
because the electric and magnetic field strengths are not real-valued, but complex quantities. Second, the
fields are δ-functions in wave vector and frequency space, with infinitely sharp frequencies and wave vectors.
To form a physical solution, we must do two things. First, we form a wave packet with smoothly varying

envelope functions ~E
(
~k, ω

)
and ~H

(
~k, ω

)
in frequency and wave vector space. A Gaussian superposition is

very popular, because it resembles the output of a well-tuned laser. Second, we add the complex conjugate
wave (terms with negative frequencies and wave vectors) to achieve real-valued smoothly varying solutions
~E (~r, t) and ~H (~r, t). While they are not physical solutions, plane waves form an orthonormal basis of the
Hilbert space containing all solutions to Maxwell’s equations. They are also very easy to deal with from a
mathematical viewpoint.

For a plane wave in Eqs. (6.3-6.4), the phase of the wave is a well-defined quantity for any given time
or position. We say that the coherence length of a plane wave is infinite. If we form a Gaussian wave
packet, then the frequency spread of the wave causes an uncertainty of the phase for times t 6= 0 or away
from the origin. The phase is defined reasonably well only within one coherence length of the origin.
At distances further away, only the magnitude of the wave (i.e., its intensity) is well-defined. Therefore,
interference effects of two waves with the same frequency can only be observed if the two waves are less
than one coherence lenght apart (i.e., if the path difference is less than a coherence length). In this case,
we add electric and magnetic field strenghts. For path differences much greater than one coherence length,
we add intensities, not the field amplitudes.

The Fourier transform equations (6.1) and (6.2) say that any electric field can be constructed by
superposition of plane waves (orthogonality and completeness). If we can show that the plane waves (6.3-
6.4) are a solution to Maxwell’s equations (5.7-5.10), then we can form the general solution by superposition.

Substitution of the electric and magnetic fields (6.3) and (6.4) into Maxwell’s equations (5.7-5.10) in
vacuum yields the following (see Good & Nelson 1971, page 384): (CHECK!)

Gauss’ law (electric field) ~k · ~E0 = 0 (6.5)

Gauss’ law (magnetic field) ~k · ~H0 = 0 (6.6)

Faraday’s law ~k × ~E0 = ωµ0 ~H0 (6.7)

Ampere’s law ~k × ~H0 = −ωε0 ~E0. (6.8)

Therefore, plane waves indeed solve Maxwell’s equations in vacuum, but only under certain conditions
(6.5-6.8) for the frequency and wave vector. The first two equations state that the electric and magnetic
fields for an electromagnetic wave with non-vanishing amplitudes are perpendicular to the wave vector. We
therefore say that electromagnetic waves are transverse waves, because the disturbance is perpendicular
to the direction of propagation. The last two equations state that the electric and magnetic field stregnths
are also perpendicular to each other. The unit vectors for the fields and the direction of propagation form
a right-handed coordinate system. Finally, by substituting Faraday’s law (6.7) into Ampere’s law (6.8), we
obtain the equivalent of the wave equation (5.12): (CHECK !)

k2 =
ω2

c2
(6.9)

This is called a dispersion relation, because it contains an expression between the wave vector ~k and
the angular frequency ω. This dispersion relation defines the speed of the wave (in this case the speed of
light).

Looking at the simplicity of Maxwell’s equations and the wave equation for a plane wave, you will
understand why we went through the trouble of defining the Fourier transformation and the inconvenience
of a complex-valued solution in the form of a plane wave.
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Faraday’s Law and Ampere’s Law allow us to compare the magnitude of the electric and magnetic field
strengths. We find that (Fox, A.36-37)

E0 =

√
µ0
ε0
H0 = Z0H0. (6.10)

The quantity Z0=377 Ω is called the impedance of vacuum.

Problems:

6.1. For an electric field
~E (~r, t) = ~E0 exp

[
i
(
~k · ~r − ωt

)]
(6.11)

show that (CHECK !)

~∇ · ~E (~r, t) = i~k · ~E (6.12)

~∇× ~E (~r, t) = i~k × ~E (6.13)

∂ ~E (~r, t)

∂t
= −iω ~E (6.14)

~∇2 ~E (~r, t) = −k2 ~E (6.15)

∂2 ~E (~r, t)

∂t2
= −ω2 ~E (6.16)

6.2. Derive the wave equation (6.9) from Faraday’s law and Ampere’s law in ~k-dependent form.

7 Polarized Light in Vacuum; Jones vectors; Stokes parameters

For an electromagnetic wave propagating along the z-direction, let’s write the wave vector as ~k = kk̂, where
k is the magnitude of the wave vector and k̂ the unit vector along the z-axis. Gauss’ law for plane waves
(6.5)-(6.6) forces E0z = 0 and H0z = 0, another statement of the transverse character of electromagnetic
waves. Together with the wave equation (dispersion relation) (6.9), we can write the magnetic field strength
~H as a function of the electric field strength ~E:

H0x = −
√
ε0
µ0
E0y (7.1)

H0y =

√
ε0
µ0
E0x (7.2)

Therefore, an electromagnetic plane wave is described by the following quantities:

• the direction of propagation (wave vector),
• the angular frequency ω (which defines the magnitude k of the wave vector),
• the magnitudes of the electric field strength perpendicular to the wave vector (which is related to

the magnetic field strengths through the equations above).

If we fix the angular frequency ω, the electromagnetic wave is described by only two complex numbers
Eox and E0y, i.e., four real quantities. As a function of position coordinate and time, the electric field
strength of the wave can be written as a vector with two columns

~E (~r, t) =

(
E0x

E0y

)
exp [i (kz − ωt)] . (7.3)

This wave is known as a plane wave, because the electric field strength does not depend on the x and y
coordinates. In the xy-plane (where z=0), the electric field is

~E (z = 0, t) =

(
E0x

E0y

)
exp (−iωt) . (7.4)
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Keeping in mind that the quantities E0x and E0y are complex numbers, they have an amplitude (real) and
a phase. Let’s call the (real) magnitude of the electric field E0 and the normalized real amplitudes of the
electric field strength in the x and y directions X and Y , respectively. Let’s call the corresponding phases
∆X and ∆Y . The electric field in the xy-plane then becomes

~E (z = 0, t) = E0

(
X exp (i∆X)
Y exp (i∆Y )

)
exp (−iωt) . (7.5)

We can easily rewrite this as (see Humlicek 2005, Fujiwara 2007)

~E (z = 0, t) = E0

(
X exp (i∆)

Y

)
exp [−iω (t− t0)] , (7.6)

if ∆ = ∆X −∆Y and t0 = ∆Y /ω. The vector(
X exp (i∆)

Y

)
(7.7)

is called the Jones vector of the electromagnetic wave. Defining

tanψ =
X

Y
, (7.8)

the Jones vector can also be written as (
sinψ exp (i∆)

cosψ

)
, (7.9)

where ψ and ∆ are called the ellipsometric angles.
For ∆ = 0 or ∆ = π, we obtain linearly polarized light. For ψ=π/4 and ∆ = π/2 or ∆ = −π/2, we

obtain circularly polarized light. In the most general case, where ψ ranges from 0 to π/2 and ∆ ranges
from −π to π, we obtain elliptically polarized light.

Show examples of Jones vectors for linearly and circularly polarized light. Compare Table 3.1 in
Fujiwara 2007.

Define Stokes parameters following Section 3.4 in Fujiwara 2007. Introduct Poincare sphere. Discuss
totally and partially polarized light. Introduce depolarization.

8 Ellipsometry

In an ellipsometry experiment, we have an incident beam and a detected (reflected) beam, each with an
electric field strength with complex amplitude

E0

(
X exp (i∆)

Y

)
. (8.1)

In the experiment, the detected beam was somehow altered (for example by reflection by or transmission
through a sample).

Define Jones matrix as relating the Jones vectors for the incident and reflected (or transmitted beam)
by a two-by-two matrix with complex coefficients. Off-diagonal elements vanish for isotropic materials, but
can be non-zero in case of anisotropy.

Define Mueller matrix as the relationship between incident and reflected (or transmitted) Stokes pa-
rameters.
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9 Dielectric in a Static Electric and Magnetic Field

After the propagation of electromagnetic waves (i.e., light) in vacuum has been described, we now turn to
the response of materials to an electromagnetic field. Before we can discuss the response of materials to
time-dependent fields, we must first describe their response to static electric and magnetic fields.

Referring to Fig. 1, we first consider a dielectric exposed to a homogeneous externally applied electric
field ~E0. The charges (positively charged nuclei and negatively charged electrons) in the dielectric respond
to the external field with small displacements. The positive charges in the material are pulled along the field
lines of the applied electric field (shown by solid lines), while negative charges are forced in the opposite
direction. The piece of material as a whole is still electrically neutral and the average macroscopic charge
density is zero (look inside the green box, for example). However, these small displacements collectively
create an induced electric field ~E1 opposite to the applied external field. The electric field lines of the
induced electric field (shown by the dashed lines) point from the positive charges to the negative charges.
Also, the material has acquired a positive surface charge on the left and a negative surface charge on the
right.

The total (local) electric field ~E, sometimes called ~Elocal, is the sum of the applied (external) electric
field ~E0 and the induced (depolarizing) electric field ~E1, i.e, ~E = ~E0 + ~E1 (Nye 1985). The magnitude of
the local electric field is usually smaller than that of the external applied field ~E0. This is called screening.
(See Fox 2010, Clausius-Mossotti relationship.)

Figure 1: A dielectric material is placed inside a homo-
geneous static electric field ~E0. The charges (positively
charged nuclei and negatively charged electrons) in the di-
electric respond to the external field with a small displace-
ment. This displacement creates an induced electric field ~E1

opposite to the applied external field. The total (local) elec-

tric field is therefore ~E = ~E0+ ~E1, which is called screening.
The charge displacements create a dipole moment, which is
proportional to the local electric field ~E. The dielectric po-
larization is defined as the dipole moment per unit volume.

Each small charge displacement creates an electric dipole. We remember that the magnitude of the
dipole moment ~p = q∆~r is equal to the distance between the charges times the magnitude of the charge
(Young & Freedman 1987, Sec. 21.7). The dipole moment as a vector points from the negative charge
to the positive charge. The dielectric polarization ~P is defined as the dipole moment per unit volume
(average over the green box, for example). Now we are ready to define the dielectric constant and the
dielectric displacement.

The dielectric displacement ~D for a material is obtained as a sum, including the original electric
field (in vacuum) and the dielectric polarization:

~D = ε0 ~E + ~P . (9.1)

If the electric field is not too large (below the dielectric breakdown strength of the material) and in the
absence of ferroelectric effects (where a non-vanishing dielectric polarization remains even in the absence
of an electric field), the dielectric polarization is proportional to the applied electric field. This defines the
dielectric susceptibility χe as

~P = ε0χe ~E. (9.2)

In the ferroelectric case, this can be generalized as

~P = ~Pr + ε0χe ~E, (9.3)
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where ~Pr is the remanent (ferroelectric) polarization at a vanishing electric field ~E.
The dielectric constant ε is defined by

ε = 1 + χe. (9.4)

The dielectric displacement can therefore be written as

~D = ε0 ~E + ~P = ~Pr + εε0 ~E (9.5)

as a product involving the dielectric constant and the applied electric field (if ~Pr vanishes).
So far, we have assumed that the charges in the dielectric will move the same distance (create the

same magnitude of polarization) regardless of the direction of the applied electric field ~E. This is true for
isotropic materials. In uniaxial or biaxial crystals, the charges may actually move in a direction different
from the applied electric field, because the restoring force inside the crystal varies with direction. Therefore,
the induced electric field E1, the dielectric polarization ~P , and also the dielectric displacement ~D may not
be parallel to the applied electric field ~E. In mathematical terms, the dielectric susceptibility χe and the
dielectric constant ε are not numbers, but 3×3 tensors. This makes calculations more difficult.

Furthermore, a polarization of the medium in a paramagnet can also be caused by an applied magnetic
field of strength ~H. Examples of such magneto-optical effects are the magneto-optical Faraday effect (in
transmission) and Kerr effect (in reflection). Including magneto-electric effects, the displacement is written
in an even more general form as (Schubert 2005)

~D = ε0 ~E + ~P = ~Pr + ε0ε ~E + ε0δ ~H. (9.6)

The term ε0δ ~H describes the polarization in a paramagnet. In a ferromagnet, the polarization can de-
pend on the magnetization even in the absence of a magnetic field ~H. In the ferromagnetic case, the
magneto-optical properties of the material are described by off-diagonal elements in the dielectric tensor ε
(Mansuripur 1995, Schubert 2005).

The ferroelectric remanence ~Pr will vary only slowly with time, especially at optical frequencies, because
the charges must be moved across large ferroelectric domains, which takes longer than moving a single
charge. Therefore, without loss of generality, we may assume that

∂ ~Pr
∂t

= 0. (9.7)

Similarly, if the ferroelectric domains are infinitely large, then the spatial derivatives of ~Pr will vanish also,
but this is not true across domain walls.

Problems:

9.1. What are the units of ~E, ~D, ~P , χε, ε0, and ε, in MKSA units?
9.2. A dielectric contains bound charges with charge q and charge density n. We apply a static electric field

~E. Assume that the charges respond by moving in the same direction as the field (isotropic model) and
that the restoring force is proportional to the displacement with a spring constant k = mω2

0 (linear
approximation for small electric fields). Show that the static dielectric susceptibility is (Jackson 1975,
4.72)

χe =
nq2

mε0ω2
0

=
ω2
P

ω2
0

. (9.8)

For reasons that will become clear later, the term

ωP =

√
nq2

mε0
(9.9)

is called the plasma frequency.
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9.3. Let’s treat an ideal gas as a dielectric. What is the density of molecules at normal temperature
and pressure? Each molecule has several types of charges. The nuclei (positive charges) contribute
very little, because of the large mass in the denominator. Charges in completely filled (inner) shells
contribute very little, because they are bound very tightly and have large values of ω0. Let’s only
consider electrons in partially filled shells contributing to molecular bonds. What is the plasma
frequency for such a gas (give a range, based on the number of charges per molecule)? Assuming
that the resonance wavelength λ0 is 100 to 300 nm, estimate a range of expected values for the
susceptibility of a gas (like hydrogen, oxygen, nitrogen, etc). Compare your result with literature
values for the refractive indices of various gases. (See Jackson 1975, Sec. 4.6.)

10 Magnetostatics and Magnetization

While there are no magnetic charges, an applied magnetic field can align microscopic magnetic dipoles
(e.g., spins) inside a material. The average magnetic dipole moment per unit volume is called
magnetization ~M , similar to the dielectric polarization ~P . The magnetic field ~B in the magnetic
material is a sum involving the applied magnetic field strength ~H and the magnetization ~M

~B = µ0 ~H + ~M. (10.1)

When comparing the definition of the magnetization (10.1) with the definition of the dielectric displacement
(9.1), we note a symmetry in the units, which motivates this convention (which is a bit unusual compared
to the literature).

In the absence of ferromagnetic effects (where a non-zero magnetization exists for a vanishing magnetic
field strength) and for small magnetic field strengths, the magnetization is proportional to the magnetic
field strength, leading to the definition of the magnetic susceptibility χm

~M = µ0χm ~H. (10.2)

In the ferromagnetic case, this can be generalized as

~M = ~Mr + µ0χm ~H. (10.3)

where ~Mr is the remanent (ferromagnetic) magnetization (also called remanence) at a vanishing magnetic
field ~H.

The magnetic permeability µ is defined by

µ = 1 + χm. (10.4)

Finally, we get an expression of ~B as a function of ~H involving the magnetic permeability

~B = µ0 ~H + ~M = ~Mr + µµ0 ~H, (10.5)

which is symmetric to the expressions for the dielectric constant. If we also consider that (through a
different magneto-optical effect) the magnetization can be created by an electric field, then more general
expression reads (Schubert 2005)

~B = µ0 ~H + ~M = ~Mr + µ0µ ~H + µ0γ ~E, (10.6)

Just like in the electrostatic case, the magnetic susceptibility χm and the magnetic permeability µ are
3×3-tensors, since the magnetization may not be parallel to the applied magnetic field strength vector ~H.
Therefore, ~B and ~H may not be parallel.

Also, it is very difficult for the magnetization to follow the applied field at optical frequencies. Therefore,
µ (ω) and γ (ω) are always zero at optical frequencies (from the infrared to the UV), but static electric
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and magnetic fields can, of course, produce a magnetization, which implies that µ (0) and γ (0) may be
non-zero. Similarly to the case of the ferroelectric polarization, we may assume without loss of generality
that

∂ ~Mr

∂t
= 0. (10.7)

The spatial derivatives of ~Mr will vanish within a single ferromagnetic domain, but they will be non-zero
across domain boundaries.

Problems:

10.1. What are the units of ~H, ~B, ~M , χµ, µ0, and µ, in MKSA units?

11 Dielectric Response Function

As described above, the charges (and permanent electric dipoles) in a material will respond to the applied
electric field and produce a dielectric polarization (see Fig. 1), but there will be a time delay. In the linear
optical case (ignoring ferroeletric and magneto-optical effects), the resulting dielectric polarization can be
written as (Yu & Cardona, 1996, 6.1)

~P (~r, t) = ε0

∫
χ̂e
(
~r′, ~r, t′, t

)
~E
(
~r′, t′

)
dt′d3~r′, (11.1)

where the integral is a four-dimensional infinite integral (time and space as four coordinates t′ and ~r′). If
the susceptibility tensor χ̂e is a δ-function in the differences of the time and space coordinates, we recover
the static expression (9.2).

Let’s examine this integral (11.1): The dielectric polarization ~P (~r, t) depends not only on the electric
field ~E (~r, t) applied at time t, but also on the electric fields ~E (~r, t′) applied previously (t′ < t). This is
known as temporal dispersion (or simply dispersion) or temporal non-locality. Why is that? Because
of the inertia of the charges and the related damping, it will take some time for them to respond to the
applied electric field. One example is the charging of a capacitor: Because of the finite (non-zero) resistance
of the wiring, the capacitor is not charged instantly, but the charge increases gradually over time and it
takes an infinite amount of time for the capacitor to reach its full charge. Another example is the Lorentz
model (see problems).

Similarly, a charge located at position ~r is influenced not only by the electric field at position ~r, but
also at positions ~r′. Why is that? Imagine that the applied electric field is non-zero at position ~r′ and zero
everywhere else. The charge at position ~r′ will move in response to the applied electric field by an amount
∆~r′. If the distance between the charges is comparable to the magnitude of ∆~r′, then nearby charges will
be affected by this displacement ∆~r′ and respond with their own displacement. (You can think of Fermi’s
exclusion principle, which does not allow two identical charges to be at the same place at the same time.
You can also think of a system of coupled pendulums, where one mass is displaced and thus causes a
displacement of the other masses also.) This phenomenon is called screening. Its effect on the dielectric
susceptibility χe is known as spatial dispersion or spatial non-locality (sometimes just non-locality).

We conclude that the dielectric response of a material to an applied electric field is non-local in both
space and time coordinates. Spatial dispersion is difficult to observe in bulk materials, but it has been found
near the band-gap of semiconductors by resonant Raman scattering (Yu 1971) and even has implications
for deep-UV lithography in deep-submicron CMOS lithography (Serebryakov 2003). Temporal dispersion
is easily found in all materials, where the complex dielectric function usually varies with frequency.

It is impossible for the charges to respond to an electric field that has not yet been applied. This is
known as causality. There is no mechanism in physics to predict the future (clairvoyance). Therefore,

χ̂e
(
~r′, ~r, t′, t

)
= 0 for t′ > t. (11.2)
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There is no causality rule for the spatial coordinates. A charge will usually respond to an electric field
applied to its right the same way as to a field applied to its left. (If the material has inversion symmetry,
the two responses will be identical. If not, there may be a small difference.)

Since space and time are homogeneous (assuming an infinite homogeneous crystal, which is true if
the wavelength of the electromagnetic wave is large compared to the relevant atomic length scales of the
material), we can show (see problems) that (Yu & Cardona 1996, 6.2)

χ̂e
(
~r′, ~r, t′, t

)
= χe

(
~r′ − ~r, t′ − t

)
. (11.3)

Causality implies that
χe (~ρ, τ) = 0 for τ > 0. (11.4)

This simplifies the integral (11.1) to

~P (~r, t) = ε0

∫
χe
(
~r′ − ~r, t′ − t

)
~E
(
~r′, t′

)
dt′d3~r′. (11.5)

Obviously, this is a four-dimensional convolution in time and space coordinates. Remembering the convo-
lution theorem (3.6), we take the Fourier transform of Eq. (11.5) and obtain

~P
(
~k, ω

)
= (2π)2 ε0χe

(
~k, ω

)
~E
(
~k, ω

)
. (11.6)

The factor 4π2 is nasty and there’s got to be a way to get rid of it with a different definition
of the Fourier transform, but I don’t know how. Who can help? Let’s assume the prefactor is
not there and write in a different set of units:

~P
(
~k, ω

)
= ε0χe

(
~k, ω

)
~E
(
~k, ω

)
. (11.7)

Similarly, we can use the definition of the dielectric displacement and the dielectric function to obtain

~D
(
~k, ω

)
= ε0ε

(
~k, ω

)
~E
(
~k, ω

)
. (11.8)

The inverse relationship

~E
(
~k, ω

)
=

1

ε0
η
(
~k, ω

)
~D
(
~k, ω

)
. (11.9)

defines the loss function η, which is the inverse matrix of ε. (Let’s keep in mind that the dielectric
susceptibility χe and the dielectric function ε and its inverse η are 3×3-tensors with complex coefficients.)

A similar response function to (11.1) can be introduced to describe the response of the magnetization
~M to an applied magnetic field strength ~H. Quite naturally, we find similar constitute relations

~M
(
~k, ω

)
= µ0χm

(
~k, ω

)
~H
(
~k, ω

)
and (11.10)

~B
(
~k, ω

)
= µ0µ

(
~k, ω

)
~H
(
~k, ω

)
. (11.11)

Since the magnetic response is usually very slow, we almost always have µ
(
~k, ω

)
= 1 for ω 6= 0.

If we also allow magneto-electric coupling, we obtain the following constitutive relations for ω 6= 1
(where ferroelectric and ferromagnetic effects can be ignored):

~D
(
~k, ω

)
= ε0ε

(
~k, ω

)
~E
(
~k, ω

)
+ ε0δ

(
~k, ω

)
~H
(
~k, ω

)
and (11.12)

~B
(
~k, ω

)
= µ0µ

(
~k, ω

)
~H
(
~k, ω

)
+ µ0γ

(
~k, ω

)
~E
(
~k, ω

)
. (11.13)

Problems:
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11.1. For an infinite homogeneous crystal, we are free to choose the origin of our four-dimensional space
and time coordinates ~r′ and t′ in the integral (11.1) without changing the functional form of the
polarization ~P (~r, t). Show that this implies

χ̂e
(
~r′, ~r, t′, t

)
= χe

(
~r′ − ~r, t′ − t

)
. (11.14)

11.2. Ignoring spatial dispersion, what is the dielectric response function ε (~r′ − ~r, t′ − t) within the Lorentz
model? (Caution: I am not sure how to solve this, but I would start with Eq. (16.15) and take the
inverse Fourier transform. The resulting integral may be hard. You can solve it numerically, if you
like, with the assumption γ/ωP=0.1)

12 Maxwell’s Equations for Homogenous Continuous Media

With these conventions for the macroscopic electric and magnetic fields, Maxwell’s equations take the
following differential form:

Gauss’ law (electric field) ~∇ · ~D = ρ = 0 (12.1)

Gauss’ law (magnetic field) ~∇ · ~B = 0 (12.2)

Faraday’s law ~∇× ~E = −∂
~B

∂t
(12.3)

Ampere’s law ~∇× ~H = ~j +
∂ ~D

∂t
=
∂ ~D

∂t
, (12.4)

In an uncharged material without external currents, the inhomogeneous sources (charge density ρ and
current density ~j) vanish as usual.

We proceed by deriving the wave equations from Faraday’s Law and Ampere’s Law for the specific
case of linear optics (with the possible presence of ferroeletric and ferromagnetic properties, but ruling out
nonlinear effects). First, we take the curl on both sides in Faraday’s Law and assume that the zero-field
magnetization ~Mr is either homgeneous (with zero curl) or does not depend on time:

~∇× ~∇× ~E = ~∇×
(
− ∂

∂t
~B

)
= − ∂

∂t
~∇×

(
~Mr + µµ0 ~H

)
= − µ0

∂

∂t
~∇× µ ~H (12.5)

In the isotropic case (if µ is a number, not a tensor), we could apply Ampere’s Law, but not in the

anisotropic case. Similarly, to evaluate ~∇ × ~∇ × ~E = ~∇
(
~∇ · ~E

)
−∆ ~E, we would use Gauss’ Law in the

isotropic case. Unfortunately, in the anisotropic case, where ~D = ~Pr + ε0ε ~E, Gauss’ Law only states that

0 = ~∇ · ~D = ~∇ ·
(
~Pr + εε0 ~E

)
= ε0~∇ · ε ~E (12.6)

which tells us nothing about ~∇ · ~E. (We have assumed that the remanent ferroelectric polarization is
homogeneous and therefore its divergence vanishes.)

The anisotropic wave equation therefore reads

∆ ~E − ~∇
(
~∇ · ~E

)
= µ0

∂

∂t
~∇× µ ~H (12.7)

Of course, this is not really a wave equation, because we are unable to apply Ampere’s Law.
A similar wave equation can be found for the magnetic field. We again assume that the remanent

polarization ~Pr is either homogeneous or not a function of time. Taking the curl on both sides in Ampere’s
Law yields

~∇× ~∇× ~H = ~∇× ∂ ~D

∂t
=

∂

∂t
~∇× ~D = ε0

∂

∂t
~∇× ε ~E, (12.8)
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where we are unable to apply Faraday’s Law. The wave equation is

∆ ~H − ~∇
(
~∇ · ~H

)
= − ε0

∂

∂t
~∇× ε ~E. (12.9)

Instead of two uncoupled second-order wave equations, we now have two coupled first-order equations,
which we cannot simplify because of the anistropy.

In the isotropic case, where ε and µ are simple numbers (diagonal tensors with all elements equal to
each other), the divergences of the fields vanish and the curl commutes with ε and µ. We then recover the
usual isotropic wave equations

∆ ~E =
µε

c2
∂2

∂t2
~E (12.10)

∆ ~H =
µε

c2
∂2

∂t2
~H (12.11)

The phase velocity of this wave is

vphase =
c
√
µε

(12.12)

and therefore we identify n =
√
µε as the refractive index. In most cases (unless we deal with very exotic

materials like metamaterials or photonic band gaps), µ will be equal to 1 at optical frequencies. If ε is
less than one (for example in the x-ray regime at very high frequencies), the phase velocity will exceed the
speed of light. That is not a conflict with the special theory of relativity, as long as the phase velocity
remains below the speed of light.

In the more general, magneto-electric case, allowing also ferromagnetism and ferroelectricity, we have

~∇× ~∇× ~E = ~∇×
(
− ∂

∂t
~B

)
= − ∂

∂t
~∇×

(
~Mr + µ0µ ~H + µ0γ ~E

)
or

∆ ~E − ~∇
(
~∇ · ~E

)
= µ0

∂

∂t
~∇× µ ~H + µ0

∂

∂t
~∇× γ ~E and (12.13)

~∇× ~∇× ~H = ~∇× ∂ ~D

∂t
=

∂

∂t
~∇×

(
~Pr + ε0ε ~E + ε0δ ~H

)
or

∆ ~H − ~∇
(
~∇ · ~H

)
= −ε0

∂

∂t
~∇× ε ~E − ε0

∂

∂t
~∇× δ ~H, (12.14)

since the time derivative of the ferro-electric and ferro-magnetic terms vanishes.
Instead of considering two coupled equations for ~E and ~H, each with three components, it is convenient

to combine both fields into a single vector with six components and a single equation.

Problems:

12.1. Simplify the anisotropic wave equations (12.13) and (12.14) for the isotropic case and vanishing
magneto-electric mixing (i.e., δ=0 and γ=0).

13 Generalized Plane Waves

In Snell’s Law of Refraction
sin θ1
sin θ2

=
n2
n1
, (13.1)

we immediately see that there is a problem if the refractive index is complex. While we understand the
meaning of a complex refractive index, where the real part describes dispersion of a wave and the imaginary
part describes absorption, what is the meaning of a complex angle of refraction? To address this question,
we introduce generalized plane waves.
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Following Mansuripur (1995), we define a generalized plane wave through the same equation as
previously in (6.3)

~E (~r, t) = ~E0 exp
[
i
(
~k · ~r − ωt

)]
, (13.2)

but with a complex wave vector ~k. We might write ~k as

~k = ~k1 + i~k2 = k1~u+ ik2~u
′, (13.3)

where ~k1 and ~k2 are ordinary vectors with real components, ~u and ~u′ are unit vectors and k1 and k2 are
real numbers. The wave (13.2) then takes the form

~E (~r, t) = ~E0 exp
(
−~k2 · ~r

)
exp

[
i
(
~k1 · ~r − ωt

)]
. (13.4)

The first exponential clearly describes the attenuation of the wave according to Beer’s Law, whereas the
second exponential describes the oscillatory part of the wave. This generalized plane wave is similar to the
solution for a damped harmonic oscillator and describes the propagation of a wave inside an attenuating
(absorbing) medium.

Generalized plane waves still satisfy the relationships (6.12,6.13,6.14,6.15,6.16):

~∇ · ~E (~r, t) = i~k · ~E (13.5)

~∇× ~E (~r, t) = i~k × ~E (13.6)

∂ ~E (~r, t)

∂t
= −iω ~E (13.7)

~∇2 ~E (~r, t) = −k2 ~E what does this mean for complex k ??? (13.8)

∂2 ~E (~r, t)

∂t2
= −ω2 ~E (13.9)

~∇
[
~∇ · ~E (~r, t)

]
= i~∇

[
~k · ~E

]
= −

(
~k · ~E

)
~k (13.10)

This definition of a generalized plan wave is not particularly interesting, if ~k1 and ~k2 are parallel, since
the planes of constant phase are the same as the planes of constant amplitude. However, this statement
breaks down if the two vectors are no longer parallel. In other words, the propagation of the wave might
occur in a different direction than its attenuation.

14 Generalized Plane Waves in Homogenous Continuous Media

We would like to write down Maxwell’s equations in ~k-space for plane waves. The problem is, however,
that plane waves with constant amplitudes ~E0 and ~H0 do not solve Maxwell’s equations in an absorbing
medium with absorption coefficient α, where the field strenghts decay like ~E0 exp (−αd/2), if d is the
distance traveled in the medium. (Since the intensity decays exponentially with a penetration depth
λP = 1/α following Beer’s Law, the electric field decays with a decay constant α/2.)

To solve Maxwell’s equations for a monochromatic wave with angular frequency ω, we therefore try
generalized (or inhomogeneous) plane waves

~E (~r, t) = ~E0 exp
[
i
(
~k · ~r − ωt

)]
and (14.1)

~H (~r, t) = ~H0 exp
[
i
(
~k · ~r − ωt

)]
(14.2)

with a complex wave vector ~k = ~k1+ i~k2, where the imaginary parts of the wave vector coefficients describe
the exponential decay of the amplitude according to Beer’s Law.

19



For generalized plane waves with a common complex phase factor exp
[
i
(
~k · ~r − ωt

)]
, Maxwell’s equa-

tions look as follows

Gauss’ law (electric field) ~k · ~D0 = 0 (14.3)

Gauss’ law (magnetic field) ~k · ~B0 = 0 (14.4)

Faraday’s law ~k × ~E0 = ω ~B0 (14.5)

Ampere’s law ~k × ~H0 = −ω ~D0. (14.6)

Using the constitutive relations

~D0 = ε0ε ~E0 + ε0δ ~H0 and (14.7)

~B0 = µ0µ ~H0 + µ0γ ~E0 (14.8)

similar to (9.6) and (10.6), we find the anisotropic wave equations∣∣∣~k∣∣∣2 ~E0 −
(
~k · ~E0

)
~k = − ~k × ~k × ~E0 = −ω~k × ~B0 = − µ0ω~k ×

(
µ ~H0 + γ ~E0

)
and (14.9)∣∣∣~k∣∣∣2 ~H0 −

(
~k · ~H0

)
~k = − ~k × ~k × ~H0 = ω~k × ~D0 = ε0ω~k ×

(
ε ~E0 + δ ~H0

)
(14.10)

In the isotropic case and ignoring magneto-electric coupling, this reduces to the isotropic wave equa-
tions ∣∣∣~k∣∣∣2 ~E0 = µε

ω2

c2
~E0 and (14.11)∣∣∣~k∣∣∣2 ~H0 = µε

ω2

c2
~H0. (14.12)

The dispersion relation is (CHECK use of complex variables)∣∣∣~k∣∣∣2 = µε
ω2

c2
or k =

√
µε
ω

c
. (14.13)

The relationship between the electric and magnetic field strengths is now

E0 =
ω

k
B0 =

ω
√
µε

c

ω
µµ0H0 =

√
µ

ε

√
µ0
ε0
H0 =

√
µ

ε
Z0H0, (14.14)

where Z0=377 Ω is the impedance of vacuum.

15 Energy Density and Energy Flow of an Electromagnetic Wave

The electromagnetic energy density (ignoring magneto-electric coupling) is (Jackson 1975)

u =
1

2

(
~E · ~D + ~H · ~B

)
=

1

2

(
~E · ε0ε ~E + ~H · µ0µ ~H

)
. (15.1)

In the isotropic case, we can use the impedance to eliminate the magnetic field strength to obtain

u =
εε0
2

∣∣∣ ~E0

∣∣∣2 , (15.2)

but this cannot be done in the anisotropic case, where the field and the response are not parallel.
In the anisotropic case, we can explicitly write Eq. (15.1) as

u =
1

2
(Eiε0εijEj +Hiµ0µijHj) (15.3)
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with the usual Einstein convention for summing over repeated indices. Taking the second derivative with
respect to the electric field yields (Nye 1985)

∂2u

∂Ei∂Ej
=

ε0
2
εij . (15.4)

Since the partial derivatives commute, we find that

εij (ω) = εji (ω) . (15.5)

In other words, the dielectric tensor (and the corresponding suspectibility and conductivity tensors) are
symmetric.

Poynting’s theorem states that the rate of change of the energy density is related to the Poynting vector
through (Jackson 1975)

∂u

∂t
= −~∇ · ~S −~j · ~E. (15.6)

The second term represents the Ohmic power (product of current and voltage). For electromagnetic waves,
the current ~j vanishes and therefore the Ohmic power is zero, leaving only the first term.

16 Dielectric Function: Drude and Lorentz Model

In Sec. 9, we discussed the response of a dielectric to a static electric field. How does the dielectric respond
to a time-varying AC electric field? This depends on the relationship between the frequency of the field
and the resonance frequency of the dielectric (let’s assume there is only one). Actually, this is a damped
harmonic oscillator problem. If the field varies very slowly compared to the resonance frequency of the
dielectric (adiabatic case), then the charges can follow the field quite easily without a phase delay, but the
amplitude will be small. As the frequency of the field increases and approaches resonance, the amplitude of
the oscillation becomes very large and the phase difference between the electric field and the polarization
reaches π/2. Finally, for very large frequencies of the applied electric field, the amplitude decreases again
and the phase difference approaches π (see Serway 1990).

There are two very simple models called the Lorentz and Drude model, which describe the frequency-
dependent dielectric functions of insulators and metals treated as a simple isotropic medium consisting of
charges responding to an applied electric field (see problems). Similar models can be constructed for
permanent molecular dipoles (such as in liquid water) which are randomly oriented without an electric
field, but preferentially orient themselves under an applied electric field (Jackson 1975, Secs. 4.6 and
7.5(e)). In the next section, we will develop a more general framework.

In the most general case, the Drude-Lorentz model describes the dielectric function as

ε (ω) = ε∞ +
∑
i

ω2
P,i

ω2
0,i − ω2 − iγiω

−
∑
j

ω2
P,j

ω2 + iγjω
, (16.1)

where the first sum describes the contribution of bound carriers (with Lorentz terms containing the plasma
frequency ωP,i, resonance frequency ω0,i and broadening γi) and the second sum describes the contribution
of free carriers (with Drude terms containing the plasma frequency ωP,jand broadening γj).

Problems:

16.1. Lorentz oscillator: Derive the dielectric function ε (ω) for bound charges with charge q and den-
sity n in a dielectric under the influence of an electromagnetic field E (t) = E0 exp (−iωt) with a
wavelength much larger than the interatomic distance. Assume that the amplitude E0 of the electric
field is small. Assume that the frictional force on the moving charge is proportional to the velocity
of the charge with damping constant b = γm. Also, assume that the restoring force on the charge is
proportional to the displacement with constant k. Compare Jackson 1975, Sec. 7.5.
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(a) Draw a force diagram showing all forces acting on the charge.
(b) How would you describe this type of motion in two or three words?
(c) What is the equation of motion for the charge?
(d) Determine the position of the charge as a function of time. Also, calculate the velocity and the

acceleration of the charge as a function of time.
(e) What is the phase difference φ between the position (x) and the applied electric field E (t) for

a positive charge q.
(f) What is the magnitude of the complex susceptibility?
(g) What is the complex dielectric constant ε (ω) as a function of angular frequency ω for this

dielectric with density n of the bound charges?
(h) Calculate the static and high-frequency dielectric constants at zero and infinite frequency. What

is the value of ε at the resonance frequency?
(i) Calculate the peak frequency and the full width at half maximum for the imaginary part of this

dielectric function. What are the extrema of the real part?
(j) Plot the complex dielectric function, complex refractive index, and absorption coefficient for a

Lorentz oscillator with a resonance frequency of 3 eV, scattering rate of 0.2 eV, and an oscillator
strength of 3 eV.

Solution:

(a) Draw a force diagram showing all forces acting on the charge.

(b) How would you describe this type of motion in two or three words?
Forced oscillation (damped, harmonic).

(c) What is the equation of motion for the charge?
F = ma, so qE − bv − kx = ma.

(d) Determine the position of the charge as a function of time. Also, calculate the velocity and the
acceleration of the charge as a function of time.
Substitute x (t) = x0 exp (−iωt) into the equation of motion

qE0 + ibx0ω − kx0 = −mω2x0 (16.2)

x0 =
−qE0

mω2 + ibω − k
(16.3)

x (t) =
−qE0

mω2 + ibω − k
exp (−iωt) (16.4)

v (t) =
qiωE0 exp (−iωt)
mω2 + ibω − k

(16.5)

a (t) =
qω2E0 exp (−iωt)
mω2 + ibω − k

(16.6)

Let us define the resonance frequency ω0 of the undamped oscillator as

ω0 =

√
k

m
or k = mω2

0. (16.7)
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This allows us to write the position of the charge differently

x (t) =
−qE0/m

ω2 − ω2
0 + iγω

exp (−iωt) (16.8)

This result seems unphysical, because the position becomes a complex quantity with a non-
vanishing imaginary part. This is alright, because the applied electromagnetic field is also
non-physical (has a non-vanishing imaginary part).

(e) What is the phase difference φ between the position x (t) and the applied electric field E (t) for
a positive charge q.
The phase difference depends on the damping. If the damping constant b vanishes, then x0 is
real and the phase difference is zero (for mω2 < k) or π (for mω2 > k). In the case of non-zero
damping, we can study the low-frequency and high-frequency limits: For zero frequency, the
phase difference is still zero. For infinite frequency, the phase difference approaches π. To find
the phase change in the general case, we must write the amplitude x0 of the oscillation as a real
and imagnary part and take the arctan of their ratio (CHECK !):

x0 =
−qE0

(
mω2 − k

)
(mω2 − k)2 + b2ω2

+ i
qE0bω

(mω2 − k)2 + b2ω2
(16.9)

tanφ = − bω

mω2 − k
=

γω

ω2
0 − ω2

. (16.10)

At the resonance frequency (ω = ω0), tanφ becomes infinite and the phase difference is therefore
π/2.

(f) What is the complex dielectric constant ε (ω) as a function of angular frequency ω for this
dielectric with density n of the bound charges?
Hint: Remember that the polarization P is the dipole moment per unit volume.

P (t) = qnx (t) =
−q2n

mω2 + ibω − k
E (t) = ε0χ (ω)E (t) (16.11)

The dielectric susceptibility χ (ω) therefore becomes

χ (ω) =
−q2n

ε0 (mω2 + ibω − k)
. (16.12)

The dielectric function ε (ω) equals

ε (ω) = 1 + χ (ω) = 1− q2n

ε0m (ω2 + ibω/m− k/m)
. (16.13)

We define the plasma frequency as

ω2
P =

nq2

mε0
. (16.14)

The dielectric function then becomes simplified:

ε (ω) = 1− mω2
P

mω2 + ibω − k
= 1 +

ω2
P

ω2
0 − ω2 − iγω

. (16.15)

Comment: The damping constant γ is usually much smaller than the resonance frequency ω0.
The imaginary part therefore is small far away from resonance. At frequencies much lower than
the resonance frequency (ω � ω0), the real part ε1 is positive and increases with increasing
frequency. This is known as normal dispersion. At very high frequencies (ω � ω0), the
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susceptibility (second term) is negative, but still increases with increasing frequency (normal
dispersion). Because of the continuity of ε1, there must be a frequency range in the vicinity
of the resonance frequency, where ε1 decreases from positive to negative values. This is known
as anomalous dispersion. In these regions, the real part in the denominator is small and
the imaginary part dominates, leading to a large imaginary part ε2 in the region of anomalous
dispersion. Compare Jackson 1975, Fig. 7.8.

(g) What is the magnitude of the complex susceptibility?
The magnitude of the susceptibility χ = ε−1 is defined by |χ (ω)|2 = [χ1 (ω)]2+[χ2 (ω)]2. Using
the definition of the plasma frequency (16.14), we find

|χ (ω)|2 =
1[(

ω2 − ω2
0

)2
+ γ2ω2

]2 [ω4
P

(
ω2 − ω2

0

)2
+ ω4

Pγ
2ω2

]
=

ω4
P(

ω2 − ω2
0

)2
+ γ2ω2

. (16.16)

By taking the square root, we obtain the answer

|χ (ω)| =
ω2
P√(

ω2 − ω2
0

)2
+ γ2ω2

. (16.17)

(h) Calculate the static and high-frequency dielectric constants at zero and infinite frequency. What
is the value of ε at the resonance frequency?
At zero frequency,

ε0 = ε (ω = 0) = 1 +
ω2
P

ω2
0

. (16.18)

Note the definition of ε0, which can easily be confused with the permittivity of the vacuum. This
expression holds quite well to describe the refractive index of insulators in the near-infrared. In
the high-frequency limit, we have

ε∞ = ε (ω →∞) = 1− ω2
P

ω2
≈ 1. (16.19)

The high-frequency dielectric constant is just below one, which is important for x-ray optics. It
is very important to remember that ε0 > ε∞, because the charges can follow the low frequencies
more easily than the high frequencies. At the resonance frequency, we have

ε (ω = ω0) = 1 + i
ω2
P

γω0
. (16.20)

The real part of the susceptibility vanishes at resonance, but is the imaginary part peaked here?
(i) Calculate the peak frequency and the full width at half maximum for the imaginary part of this

dielectric function. What are the extrema of the real part?
We need to write the real and imaginary parts of the dielectric function separately. We find
that (16.15) becomes

ε (ω) = 1− ω2
P

(
ω2 − ω2

0

)(
ω2 − ω2

0

)2
+ γ2ω2

+ i
ω2
Pγω(

ω2 − ω2
0

)2
+ γ2ω2

= ε1 + iε2. (16.21)

At the peak frequency, the derivative of the imaginary part of the dielectric function vanishes.
Using the quotient rule for derivatives(

u

v

)′
=

uv′ − u′v
v2

, (16.22)
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it is clear that the derivative of the quotient u/v will vanish, if the nominator uv′−u′v vanishes
Therefore, with the substitutions

u = ω v =
(
ω2 − ω2

0

)2
+ γ2ω2 and (16.23)

u′ = 1 v′ = 4ω
(
ω2 − ω2

0

)
+ 2γ2ω, (16.24)

we find

0 = 4ω2
(
ω2 − ω2

0

)
+ 2γ2ω2 −

(
ω2 − ω2

0

)2
− γ2ω2 = 3ω4 − 2ω2ω2

0 − ω4
0 + γ2ω2. (16.25)

This biquadratic equation has the solution

ω2 =
1

6

[
2ω2

0 − γ2 ±
√(

2ω2
0 − γ2

)2
+ 12ω4

0

]
. (16.26)

or

6ω2 = 2ω2
0 − γ2 ±

√(
2ω2

0 − γ2
)2

+ 12ω4
0 = 2ω2

0 − γ2 ±
√

16ω4
0 − 4ω2

0γ
2 + γ4. (16.27)

Since the term under the square root is not a complete square, we can only simplify this expres-
sion in the limit γ � ω0 and find the approximate position of the peak in the imaginary part
of the susceptibility to lowest order in γ. It is obvious that we need the solution with the plus
sign to obtain a positive value of ω2.

6ω2 = 2ω2
0 − γ2 ± 4ω2

0

√
1− γ2

4ω2
0

≈ 2ω2
0 − γ2 + 4ω2

0

(
1− γ2

8ω2
0

)
= 6ω2

0 −
3

2
γ2 (16.28)

By taking the square root and again keeping terms to first order in γ/ω0, we find

ωpeak =
√
ω2
0 − γ2/4 ≈ ω0

(
1− γ2

8ω2
0

)
. (16.29)

As expected, the damping shifts the peak to lower energies. For ω0=3 eV and γ=0.2 eV, this
shift equals 0.5 meV. The shift grows to 0.037 eV, if we keep ω0=3 eV, but increase γ to 1 eV.
Since this shift is much smaller than the full width at half maximum of the peak, it will be
difficult to see experimentally.
To find the peak amplitude of the imaginary part of the dielectric function, we insert our solution
(16.29) into the Lorentz oscillator equation (16.21). Thus we find

ε2 (ωpeak) =
ω2
P

γω0

(
1 +

γ2

16ω2
0

)
. (16.30)

For typical values of ω0=3 eV and γ=0.1 eV, the correction to the peak amplitude given in
(16.20) is about 7×10−5 and therefore negligible.
To show that the full width at half maxium is γ, we must use (16.21) to evaluate

ε2 (ωpeak − γ/2) ≈ ε2 (ω0 − γ/2) = (16.31)

and
ε2 (ωpeak + γ/2) ≈ ε2 (ω0 + γ/2) = (16.32)

to first order in γ, ignoring terms on the order of γ2.
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(j) Plot the complex dielectric function, complex refractive index, and absorption coefficient for a
Lorentz oscillator with a resonance frequency of 3 eV, scattering rate of 0.2 eV, and a plasma
frequency of 3 eV.

A few items are worth noting: (1) Since the plasma frequency and the resonance frequency are
equal, the low-frequency limit of the dielectric constant is 1+1=2. (2) The imaginary part ε2
is very symmetric and peaks at the resonance frequency. The real part ε1 has a resonance-type
lineshape and also looks pretty symmetric around the resonance frequency. (3) The refractive
index and the extinction coefficient are very asymmetric. (4) The real part ε1 crosses one right
at the resonance frequency (and later becomes negative). (5) The absorption oefficient and the
extinction coefficient are related by α = 4π

λ k. If the broadening is much smaller than the peak
energy, the prefactor is nearly constant around the peak. Therefore, the shape of the peaks of
α and κ are very similar. Both have peaks near 3.06 eV, shifted to higher energies compared to
the peak of ε2 at 3 eV.

16.2. A Lorentz oscillator with zero broadening (damping) is called a pole. What is the dielectric function
for a pole? Write the expression for the pole as a function of wavelength and compare it with the
Cauchy and Sellmeier expressions.
Solution: The imaginary part of ε is proportional to the damping b or γ and therefore vanishes.
The dielectric function is real and has a pole (diverges) at ω = ω0:

ε (ω) = 1 +
ω2
P

ω2
0 − ω2

(16.33)

As a function of wavelength λ, this becomes

ε (λ) = 1 +
ω2
P

ω2
0 − (2πc/λ)2

= 1 +
ω2
Pλ

2

ω2
0λ

2 − 4π2c2
= 1 +

Bλ2

λ2 − C
(16.34)

with adjustable coefficients B and C, which is known as the Sellmeier equation for ε1 = n2 in
transparent glasses (Wikipedia). To get a good description for glass, one actually needs to add several
terms with this function form (i.e., several Sellmeier expressions are needed). We conclude that the
Sellmeier expression is an expansion in several Lorentz oscillators with zero damping.
Comments: In practice, the refractive index (or the dielectric function) of an insulator in its trans-
parent region is often described by two poles, one above and one below the transparent spectral
range. From a materials physics perspective, we can think of the infrared pole (below the transpar-
ent spectral range) as a phonon reststrahlen band (lattice vibrations), which are usually in the 10 to
100 meV range. Similarly, the pole above the transparent region describes the onset of absorption
(band gap) of the material, usually in the UV between 3 and 10 eV. For BK7 borosilicate crown
glass, Wikipedia lists the two poles in the UV at 77 and 141 nm plus one in the infrared near 10 µm.
The Cauchy equation

n (λ) =
√
ε (λ) = A+

B

λ2
+
C

λ4
(16.35)

is different, but it can be viewed as a Laurent expansion of the Sellmeier equation

n (λ) =
√
ε (λ) =

√
1 +

Bλ2

λ2 − C
. (16.36)
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16.3. Model the refractive index and the dielectric function of BK7 glass, sapphire (ordinary and extraor-
dinary direction), and fused silica (quartz) from 190 to 2500 nm (0.5 to 6.6 eV) using the Sellmeier
coefficients found in Wikipedia. Plot the results in units of wavelength and of photon energy. First
use a spreadsheet program like Excel, then use the the Woollam software to achieve the same plots.
Copy and paste your figures into a Word document.

16.4. Drude model for the optical response of metals: In a metal, the charges are free to move
around. Thus the restoring force vanishes (k=0, ω0=0).

(a) What is the dielectric function within the Drude model? Separate the real and imaginary terms.
(b) If we neglect damping, what happens at the plasma frequency ωP ?
(c) What is the dielectric function of a metal at high frequencies (ω � γ)?
(d) Plot the real and imaginary parts of the dielectric function in units of x = ω/ωP from 0.2 to 2.

Assume that γ = 0.1ωP .

Solution:

(a) What is the dielectric function within the Drude model? Separate the real and imaginary terms.
From Eq. (16.15), we obtain (Jackson, 1975, 7.56)

ε (ω) = 1− mω2
P

mω2 + ibω
= 1− ω2

P

ω2 + iγω
= 1 + i

ω2
P

ω (γ − iω)
. (16.37)

In components, this reads

ε (ω) = ε1 (ω) + iε2 (ω) = 1− ω2
P

ω2 + γ2
+ i

ω2
P

ω2 + γ2
× γ

ω
. (16.38)

The plasma frequency ω2
P = nq2/mε0 depends on the charge density n of the metal and the mass

m of the carriers. (Sometimes an effective mass is used to describe the motion of the carriers
in the metal, which is different from the mass of the same charge in vacuum.) The scattering
rate γ describes the friction of carriers in the metal. We see that the imaginary part of smaller
than the real part by a factor γ/ω.

(b) If we neglect damping, what happens at the plasma frequency ωP ?
The dielectric constant ε1 vanishes at the plasma frequency ωP , if we neglect damping.

(c) What is the dielectric function of a metal at high frequencies (ω � γ)?
In this approximation, we have (Jackson 1975, Sec. 7.5 (d))

ε (ω) ≈ 1− ω2
P

ω2
. (16.39)

If the angular frequency is below the plasma frequency (but still much larger than the damping),
then the dielectric constant is negative. The light penetrates only a very short distance into the
metal and is almost entirely reflected (this needs to be shown later). For frequencies above
the plasma frequency, the dielectric function is now real and positive and the metal becomes
transparent. This can actually be observed in the UV region for many metals.

(d) Plot the real and imaginary parts of the dielectric function in units of x = ω/ωP from 0.2 to 2.
Assume that γ = 0.1ωP .
In units of x = ω/ωP , we need to plot

ε1 (x) = 1− 1

x2 + 0.01
(16.40)

ε2 (x) =
1

x2 + 0.01
× 0.1 (16.41)

There are number of interesting things to note in this plot: First, the real part diverges towards
−∞, while the imaginary part diverges towards +∞. No DC electric field can exist in a metal,

27



therefore the absorption becomes infinitely large at small frequencies. Second, the imaginary
part is much smaller than the real part (by a factor of γ/ω). Finally, the real part crosses zero
approximately at the plasma frequency.

(e) To avoid the Drude divergence of ε (ω) for low frequencies, one defines the complex optical
conductivity as

σ (ω) = −iε0ω [ε (ω)− 1] . (16.42)

Show that the Drude contribution to the optical conductivity equals

σ (ω) =
ε0ω

2
P

ω2 + γ2
(γ + iω) =

ε0ωP

(ω/ωP )2 + (γ/ωP )2
(γ/ωP + iω/ωP ) (16.43)

Draw a figure showing the real and imaginary part of σ as a function of frequency. Assume
γ/ωP=0.1 and define x = ω/ωP . Draw the figure from x=0 to x=2.

17 Macroscopic Optical Constants

Complex refractive index n
Refrative index N
Extinction coefficient k.
Reflected intensity equals

R =

∣∣∣∣n− 1

n+ 1

∣∣∣∣2 =

∣∣∣∣N + ik − 1

N + ik + 1

∣∣∣∣2 (17.1)

Complex optical conductivity
Calculate reflected intensity for the Lorentz and Drude model and discuss.

Problems:

17.1. Consider a Drude metal with a plasma frequency of 10 eV and a broadening of 1 eV. Prepare
publication-quality figures with figure captions showing the following quantities (a) complex dielectric
function; (b) complex refractive index (refractive index N and extinction coefficient k); (c) reflection
coefficient; (d) absorption coefficient (in units of cm−1); (e) complex optical conductivity σ. Choose
a suitable range of photon energies in your plots to show all the important physics. Use complete
sentences to describe the features shown in the figures in relationship to the parameters of the Drude
oscillator model. Do not use color unless required to increase the information content of the figure.
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17.2. Consider an insulator with the following parameters to describe lattice vibrations: Amplitude A=3,
TO energy 10 meV, broadening 1 meV. Prepare publication-quality figures with figure captions show-
ing the following quantities (a) complex dielectric function; (b) complex refractive index (refractive
index N and extinction coefficient k); (c) reflection coefficient; (d) absorption coefficient (in units
of cm−1); (e) complex optical conductivity σ. Choose a suitable range of photon energies in your
plots to show all the important physics. Use complete sentences to describe the features shown in
the figures in relationship to the parameters of the Lorentz oscillator model. Do not use color unless
required to increase the information content of the figure.

17.3. Calculate h̄c in units of eVcm−1. For a Drude metal with a plasma frequency of 10 eV and a
broadening parameter of γ=1 eV, calculate the absorption coefficient (in units of cm−1 at 2 eV.

17.4. Show analytically that within the Drude model the reflectivity R approaches 1 and the absorption
coefficient α goes to zero, as the frequency goes to zero. (Hint: Use a Taylor expansion of the Drude
dielectric function for small ω.

17.5. Within the Drude model, calculate the reflectance at the plasma frequency to first order in γ/ωP ,
where γ is much less than ωP .

18 Causality, Kramers-Kronig-Relations, and Sum Rules

We remember from the theory of functions with complex variables (Janich 1983) that any well-behaved
complex function f (z) (which is analytical everywhere in the complex plane except for a finite number of
poles) can be written as a Laurent series

f (z) =
g (z)

h (z)
=

∞∑
n=−∞

an (z − z0)n , (18.1)

where g (z) and h (z) are analytical functions, usually polynomials with complex coefficients. For such a
function, the residual of f at z0 defined by

Resz0f =
1

2πi

∮
|z−z0|=r

f (z) dz (18.2)

can be calculated as follows, if f has a pole at z0 of no higher order than k:

Resz0f =
1

(k − 1)!

dk−1

dzk−1
(z − z0)k f (z)

∣∣∣∣∣
z=z0

(18.3)

If f has a simple pole (k=1) at z0, then

Resz0f =
g (z0)

h′ (z0)
. (18.4)

We now remember from (11.4) that the dielectric response function χe (τ) = 0 for τ>0, i.e., it vanishes
for positive times. The complex function χe therefore vanishes in the upper complex half plane. We assume
that it is analytical in the lower complex half plane, including the real axis.

19 Analytical properties of the dielectric function

Since the electric field ~E (~r, t) and the polarization ~P (~r, t) are real quantities, the susceptibility and the
dielectric function must satisfy the condition

ε
(
−~k,−ω

)
= ε

(
~k, ω

)
, (19.1)

χ
(
−~k,−ω

)
= χ

(
~k, ω

)
, (19.2)
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where ε̄ is the complex conjugate of ε. One can also show that

ε
(
−~k, ω

)
= tε

(
~k, ω

)
and χ

(
−~k, ω

)
= tχ

(
~k, ω

)
, (19.3)

which is known as the Onsager relation.
Ignoring spatial dispersion, we write

~P (ω) = ε0χe (ω) ~E (ω) , (19.4)

~D (ω) = ε0ε (ω) ~E (ω) , (19.5)

~E (ω) =
1

ε0
η (ω) ~D (ω) . (19.6)

This implies

ε (−ω) = ε (ω), (19.7)

η (−ω) = η (ω), (19.8)

χ (−ω) = χ (ω), (19.9)

ε (ω) = tε (ω) (19.10)

χ (ω) = tχ (ω) (19.11)

η (ω) = tη (ω) . (19.12)

The dielectric, loss function, and susceptibility tensors are therefore symmetric.
A proof for the symmetry of the tensor properties can be derived from energy considerations and is

given by Nye (1985). The energy density of the wave is

u =
1

2

(
~E · ~D + ~H · ~B

)
=

1

2

(
~E · ε0ε ~E + ~H · µ0µ ~H

)
=

1

2
(Eiε0εijEj +Hiµ0µijHj) , (19.13)

where the right hand side of the equation uses the Einstein convention for summing over repeated indices.
Since the derivatives with respect to the fields along the i and j directions commute, we have

ε0
2
εij =

∂2u

∂Ei∂Ej
=

∂2u

∂Ej∂Ei
=

ε0
2
εji, (19.14)

with a similar equation for the permeability and magnetic susceptibility.
Berreman and Unterwald (1968) note that any complex analytical function can be written as a Laurent

series (Jahnich 1983)

ε (ω) =

M∏
m=1

(ω − Zm)

N∏
n=1

(ω − Pn)

(19.15)

with as many zeroes Zm and poles Pn as needed. Since ε → 1 for ω → ∞, the number of poles must be
equal to the number of zeroes (M = N). The poles are near the TO frequencies and the zeroes are near
the LO frequencies. See (19.25) for an exact relationship between the LO/TO energies and broadenings
and the location of the zeroes and poles.

To satisfy the relations (19.1) and (19.7), the poles and zeroes must be symmetric around the imaginary
axis. In other words, if Pn is a pole and Zm a zero, then −Pn is also a pole and −Zm is also a zero (Lowndes
1970). This reduces the dielectric function to (Lowndes 1970)

ε (ω) = ε∞

N∏
j=1

ω2
LO,j − ω2 − iγLO,jω

ω2
TO,j − ω2 − iγTO,jω

. (19.16)
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The quantity ε∞ was introduced to account for the effects of poles and zeroes are very large frequencies
(high above the experimentally observed range), whose effect is only a multiplication with a constant,
without any influence on the spectral dispersion.

Because of causality, the poles and zeroes must all be below the real axis (this must be shown, Berreman
& Unterwald cite Davidov, 1965, Sec. 112).

By comparing the Lowndes equation (19.16) with the Drude-Lorentz model (16.1), we find that we have
replaced the sum of Lorentz terms with a product of similar fractions. We now allow distinct broadenings
for the TO and LO vibration modes, whereas only one broadening parameter was contained in each Lorentz
term. It helps to remember the key assumptions underlying the Lorentz model: (1) The response of charges
to an electromagnetic field is harmonic and the restoring force is proportional to the displacement. (2) The
frictional force is proportional to the velocity of the charges. (3) There is no interaction between charges of
different types. The Lowndes model does not make any of these assumptions and only has the analyticity
of the dielectric function as its basis. If some poles or zeroes are close to each other (relative to the damping
parameter), a better fit to experimental data is often achieved with the Lowndes model. Allowing different
broadening parameters for the TO and LO vibrations is equivalent to a frequency-dependent damping term
in the uncoupled (Lorentz) oscillator (Berreman & Unterwald 1968).

Problems:

19.1. Show that (Yu & Cardona 1996)

ε
(
−~k,−ω

)
= ε

(
~k, ω

)
, (19.17)

where ε̄ is the complex conjugate of ε. Remember that the observable quantities ~E (~r, t) and ~D (~r, t)
as a function of space and time coordinates must be real. Therefore, the tensor ε (~r, t) must have real
components also.

19.2. Show that (Yu & Cardona 1996, Nye 1985)

ε
(
−~k, ω

)
= tε

(
~k, ω

)
, (19.18)

where tε is the transposed matrix of ε. (This is known as the Onsager relation.)
19.3. Lowndes (1970) claims that ε (ω) = −ε (ω), due to the causal relationship between the electric field

and the dielectric displacement. Does this make sense? Also, he claims that causality requires the
poles and zeroes of ε (ω) to be in the negative complex plane (below the real axis). Can you show
this?

19.4. If the dielectric function has the form

ε (ω) =
2N∏
j=1

ω − Zj
ω − Pj

, (19.19)

with zeroes Zj and poles Pj , show that the poles and zeroes are symmetric relative to the imaginary
axis in the complex plane. What is the physical reason behind this? Use this symmetry property to
write the dielectric function as a product of N terms with quadratic polynomials in the numerator
and denominator. Find the relationship between the zeroes Zj and poles Pj and the LO and TO
energies and broadenings specified in (19.16).
Solution: By evaluating (19.19) for negative frequencies, we conclude that

ε (−ω) =
2N∏
j=1

−ω − Zj
−ω − Pj

=
2N∏
j=1

ω + Zj
ω + Pj

=
2N∏
j=1

ω − (−Zj)
ω − (−Pj)

. (19.20)

Since the fields must be real, the property (19.7) requires that

ε (−ω) = ε (ω) =
2N∏
j=1

ω − Zj
ω − Pj

. (19.21)
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By comparing (19.20) and (19.21) and taking the complex conjugate, we find that

ε (ω) =
2N∏
j=1

ω − Zj
ω − Pj

=
2N∏
j=1

ω −
(
−Zj

)
ω −

(
−Pj

) . (19.22)

For this to be true at any frequency, the zeroes Zj and −Zj must belong to the same set, which
proves that the zeroes are symmetric relative to the imaginary axis. The same argument holds for
the poles. The physical reason behind this relationship is the fact that the electromagnetic fields
must be real quantities. We can use the symmetry property to reduce the number of products as

ε (ω) =
2N∏
j=1

ω − Zj
ω − Pj

=
N∏
j=1

(ω − Zj)
(
ω + Zj

)
(ω − Pj)

(
ω + Pj

) =
N∏
j=1

ω2 + ωZj − ωZj − ZjZj
ω2 + ωPj − ωPj − PjPj

=

=
N∏
j=1

ω2 − |Zj |2 + ω
(
Zj − Zj

)
ω2 − |Pj |2 + ω

(
Pj − Pj

) =
N∏
j=1

|Zj |2 − ω2 + ω
(
Zj − Zj

)
|Pj |2 − ω2 + ω

(
Pj − Pj

) . (19.23)

Considering that z − z̄ = 2Im (z) for any complex number z, we conclude that

ε (ω) =
N∏
j=1

|Zj |2 − ω2 + 2ωIm (Zj)

|Pj |2 − ω2 + 2ωIm (Pj)
. (19.24)

A comparison with (19.16) yields

ωLO = |Zj | ; ωTO = |Pj | ; γLO = − 2Im (Zj) ; γTO = − 2Im (Pj) ; (19.25)

20 Experimental Assignments

20.1. Turn off the Xe lamp. Insert the monochromator calibration lamp into the side port of the spacer
between the Xe lamp and the monochromator. Optimize the intensity in white-light configuration
of the monochromator. Acquire transmission spectra to obtain the wavelengths of the spectral lines
emitted by the lamp. How does the width of these lines vary with the slit width of the monochro-
mator? Derive an expression for the linear dispersion of the monochromator (in nm/mm). Compare
with the manual.

20.2. Acquire a transmission spectrum of the Xe short-arc lamp. Interpret what you see in the spectrum,
based on the absorption in the optical fiber, the spectral lines of the monochromator, the grating
changes, and the filter wheel. Compare with the hardware.cnf file describing the configuration of
the instrument.

20.3. Purchase some colored glass at a hobby store. Acquire transmission spectra for colored glass. Can
you calculate the absorption coefficient (in cm−1) for the material? (Schott glass filters can also be
used, but they are more expensive, probably.)

20.4. Acquire isotropic ellipsometry data with depolarization for the series of AlN films on Si. Fit the data
using a Cauchy layer with an Urbach tail over the transparent region of the spectrum. Next, use
the GenOsc model with increasing complexity to better describe the data in the range of absorption.
What is the band gap of the material?
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