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1 Summary

Minimization is a reoccurring theme in many mathematical disciplines ranging from pure
to applied ones. Of particular importance is the minimization of integral functionals that
is studied within the calculus of variations. Proofs of the existence of minimizers usually
rely on a fine property of the involved functional called (sequential) weak lower semicontinu-
ity. While early studies of weak lower semicontinuity go back to the beginning of the 20th
century, the milestones of the modern theory were set by C.B. Morrey Jr. [80] in 1952 and
N.G. Meyers [79] in 1965. We first discuss weak lower semicontinuity of integral functionals
in problems arising in continuum mechanics of solids and in magnetism. Special attention
is paid to applications where physical models do not allow for weak lower semicontinuity of
energy functionals. In this case, we search for a lower semicontinuous envelope of the orig-
inal problem. Here, generalized convexity notions (quasiconvexity, rank-one onvexity, and
polyconvexity) play a key role. In the he second part of the thesis, we review quasiconvexity
and its refinement important for a characterization of parametrized measures generated by
gradients and give some aplications to weak lower semicontinuity of integral functionals for
signed integrands. Besides, we mention results in lower semicontinuity of functionals along
sequences satisfying differential constraints and some interesting properies of quasiconvex
functions.

2 Preface

Many tasks in the world surrounding us can be mathematically formulated as minimization
or maximization problems. For example, in physics we minimize the energy, in economy one
tries to minimize the cost and maximize the profit, entrepreneurs may try to minimize the
investment risk. In addition, minimization problems appear in many more specific tasks: in
a fitting procedure, or more generally inverse problems, one tries to minimize the deviation
of the model prediction from the experimental observation or training of a neuronal network
is based on minimizing a suitable cost function.

In a very general manner, we may express these problems as

minimize I over Y , (2.1)

where Y is a set over which the minimum is sought and I : Y → R is a functional whose
meaning may be the energy, cost, risk, or gain, for instance. From the mathematical point
of view, two questions are immediate when inspecting problem (2.1): firstly whether (2.1) is
solvable, that is if I possesses minimizers on Y , and secondly how to find a solution (i.e. a
minimizer) to (2.1).

Calculus of variations is devoted to solving (2.1) when Y is (a subset) of an infinite-
dimensional vector space. Its starting point may have been a question of Johann Bernoulli
on which curve a mass point will descent the fastest in a gravitational field; the so-called
brachistochrone problem. In the most typical situation (that covers the brachistochone prob-
lem in particular), I in (2.1) is an integral functional depending on functions u : Ω → Rm

with Ω ⊂ Rn and their derivatives. In the easiest case, in which n = m = 1, Ω = [a, b], and
f : Ω× R× R→ R is a suitable integrand, the functional reads

I(u) :=

∫ b

a

f(x, u(x), u′(x)) dx with u(a) = ua and u(b) = ub, (2.2)
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where ua and ub are given boundary data. The task is to either solve (2.1) or at least to
prove existence of minimizers.

Foundations of the calculus of variations were laid down in the 18th century by L.P. Euler
and J.L. Lagrange who also realized its important connections to physics and to mechan-
ics. black These early works quite naturally concentrated on the question on how to find
(candidates for) solutions of (2.1). The classical method to do so, is to consider so-called
variations. Indeed, if u0 is a minimizer of I then

I(u0) ≤ I(u0 + εϕ) for all ϕ ∈ C∞0 ([a, b]), (2.3)

where εϕ is called a variation of the minimizer. Now, assume that f is twice continuously
differentiable and u0 ∈ C2([a, b]), then by the classical calculus (2.3) implies that d

dε
I(u0(x)+

εϕ(x))
∣∣
ε=0

vanishes for all ϕ ∈ C∞0 ([a, b]). This is equivalent to solving

∂f

∂r
(x, u0, u

′
0)− d

dx

∂f

∂s
(x, u0, u

′
0) = 0 on [a, b], (2.4)

where ∂f
∂r

and ∂f
∂s

denote the partial derivative of f with respect to the second and third
variable, respectively. Equation (2.4) is referred to as the Euler-Lagrange equation and
solving it is the classical path to finding solutions of (2.1). Of course, any critical point
of I (and not only the minimizer) is a solution to (2.4) but solving (2.4) is still an efficient
approach to (2.1) at least in a situation in which all critical points are minimizers, for example
if f is convex. For more details, see for example the book by Bolza [18].

Nevertheless, solving the Euler-Lagrange equation naturally relies on smoothness prop-
erties of f which might not be available. Therefore, it is often advantageous to address
existence of solutions to (2.1) in a non-constructive way by using suitable compactness prop-
erties of Y and continuity properties of I. For example, if Y is a bounded closed interval of
reals and I : Y → R is a function then (2.1) has a solution whenever I is continuous. This
observation goes back to Bernard Bolzano who proved it in his work “Function Theory” in
1830 and is called the Extreme Value Theorem. Later on, it was independently shown by
Karl Weierstrass. The main ingredient of the proof, namely the fact that one can extract a
convergent subsequence from a closed bounded interval of reals, is nowadays known as the
Bolzano-Weierstrass theorem.

The results of Bolzano and Weierstrass easily extend to the situation when Y is a bounded
and closed set of a finite-dimensional vector space. However, they cannot be generalized to
the situation in which, for example, Y is a ball in an infinite dimensional vector space since
the Bolzano-Weierstrass theorem is false in this case.

Thus, the only hope to transfer a variant of the Bolzano-Weierstrass theorem to infinite
dimensional spaces is to seek compactness in a “weaker” topology than the one induced by
the norm. This possibility has been opened by Riesz and Hilbert who used the weak topology
on Hilbert spaces from the beginning of the 20th century and by Stefan Banach who defined
it on other normed spaces around 1930.

Having the weak topology at hand, a generalization of the Bolzano extreme value theorem
becomes possible and is today known as the direct method of the calculus of variations. This
algorithm was proposed by David Hilbert around 1900, to show (in a non-constructive way)
the existence of a solution to the minimization problem (2.1). It consists of three steps:

1. We find a minimizing sequence along which I converges to its infimum on Y .

2. We show that a subsequence of the minimizing sequence converges to an element of Y
in some topology τ .
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3. We prove that this limit element is a minimizer.

The third step of the direct needs to rely on suitable semicontinuity properties of I; a
sufficient and widely used condition is the (sequential) lower semicontinuity of I with respect
to the weak/weak* topology:

Definition 2.1 Let Y be a subset of a Banach space. We say that the functional I : Y → R is
(sequentially) weakly/weakly* lower-semicontinuous on Y if for every sequence {uk}k∈N ⊂ Y
converging weakly/weakly* to u ∈ Y, we have that

I(u) ≤ lim inf
k→∞

I(uk).

If I is not weak/weak* lower semicontinuous solutions to (2.1) need not to exist. However,
weak lower semicontinuity of I is not a necessary condition for the existence of minimizers.
These facts are demonstrated by the following example.

Example 2.2 Consider the following special case of (2.2):

I(u) =

∫ 1

0

(
1− (u′(x))2

)2
+ (u(x))2 dx (2.5)

with
Y := {u ∈ W 1,∞(0, 1); −1 ≤ u′ ≤ 1, u(0) = u(1) = 0} .

We can see, for example by the Lebesgue dominated convergence theorem, that I is con-
tinuous on W 1,∞(0, 1) but it is not weakly lower semicontinuous. To show this, define

u(x) =

{
x if 0 ≤ x ≤ 1/2

−x+ 1 if 1/2 ≤ x ≤ 1

and extend it periodically to the whole R. Let uk(x) := k−1u(kx) for all k ∈ N and all x ∈ R.
Notice that {uk}k∈N ⊂ Y.

The sequence of “zig-zag” functions {uk}k∈N converges weakly* to zero in W 1,∞(0, 1). It
is not hard to see that I(uk)→ 0 for k →∞ but

1 = I(0) > lim
k→∞

I(uk) = 0;

so that I is not weakly* lower semicontinuous on W 1,∞(0, 1) and, in fact, no minimizer
exists in this case.

Indeed, 0 = infY I 6= minY I because I ≥ 0 and I(uk) → 0, so that 0 = infY I. However,
I(u) > 0 for every u ∈ Y, for otherwise it would mean that we could find a Lipschitz function
whose derivative is ±1 almost everywhere on (0, 1) but the function value is identically zero.

If we, however, consider a slight modification of Y by changing the boundary condition
at x = 1, and consider

Y1 := {u ∈ W 1,∞(0, 1); −1 ≤ u′ ≤ 1, u(0) = 0, u(1) = 1}

then minY1 I = 1/3 and the unique minimizer is u(x) = x for x ∈ (0, 1).
Firstly, this shows that weak/weak* lower semicontinuity of I is not necessary for the

existence of a minimizer, and, secondly, it stresses the influence of boundary conditions on
the solvability of (2.1). This phenomenon is even more pronounced in higher dimensions.
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Although the study of weak lower semicontinuity is motivated by understanding mini-
mization problems, it has become an independent subject in mathematical literature that has
been studied for its own right. In the case of integral functionals as in (2.2), further properties
of the integrand besides continuity are needed to assure weak/weak* lower-semicontinuity:
the right additional property is always some type of convexity of f . Indeed, notice that I in
Example 2.2 is not convex.

The importance of convexity for weak/weak* lower semicontinuity for integral functionals
has been discovered by Tonelli in 1920 [102], who pioneered the study of lower semicontinu-
ity of an integral functional rather than studying the associated Euler-Lagrange equation.
Connections of convexity notions and weak lower semicontinuity are a central theme of this
thesis. The first chapter is devoted to relaxation of variational problems which consists in
finding the largest lower semicontinuous envelope of a given functional. These problems nat-
urally appear in continuum physics of solids. The first paper is [67]. It deals with a model of
shape memory single crystals describing their rate-independent evolution. The weak lower
semicontinuity is a key ingredient of the theory. The second part of Chapter 1 is devoted
to mathematical modeling of ferromagnetic materials. It includes a review paper [69] which
partly maps my research in mathematical aspects of ferromagnetism and the paper [68]
which proposes and analyses an algorithm for solving a static relaxed problem. Here again
convexity plays a crucial role. Specifically, the first chapter includes the following papers
(here we refer to items in the structured bibliography where one also finds list of papers
citing each particular article):

• [C1]20 Kruž́ık, M., Mielke A., Roub́ıček, T.: Modeling of microstructure and its evo-
lution in shape memory-alloy single-crystals, in particular in CuAlNi. Meccanica 40 (2005),
389-418.

• [C1]10 Kruž́ık, M., Prohl, A.: Young measure approximation in micromagnetics. Num.
Math. 90 (2001), 291–307.

• [C1]22 Kruž́ık, M., Prohl, A.: Recent developments in modeling, analysis, and numerics
of ferromagnetism. SIAM Rev. 48 (2006), 439–483.

The second chapter of the thesis studies various convexity conditions and their relation
to weak lower semicontinuity of integral functionals with integrands whose negative part
has the same growth as the positive one. Then, besides oscillations, also concentrations of
sequences along which we study weak lower semicontinuity play an important role. The
chapter consists of the following articles:

• [C1]6 Kruž́ık, M.: On the composition of quasiconvex functions and the transposition, J.
Convex Anal. 6 (1999), 207–213.

• [C1]27 Ka lamajska, A., Kruž́ık, M.: Oscillations and concentrations in sequences of
gradients. ESAIM Control Optim. Calc. Var. 14 (2008), 71-104.

• [C1]33 Fonseca, I., Kruž́ık, M.: Oscillations and concentrations generated by A-free
mappings and weak lower semicontinuity of integral functionals. ESAIM Control Op-
tim. Calc. Var. 16 (2010), 472–502.

• [C1]44 Kruž́ık, M.: Quasiconvexity at the boundary and concentration effects generated by
gradient. ESAIM Control Optim. Calc. Var. 19 (2013), 679–700.
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These papers reviews my work on generalized Young measures, called here DiPerna-
Majda measures, which are able to detect and record not only oscillations but also con-
centrations. Analysis of oscillations and concentrations generated by sequences of gradients
Sobolev mappings allows us to discover interesting connections between weak lower semi-
continuity of certain integral functionals and concentrations of the sequence on the closure
of the domain. In what follows we discuss the content of both chapters in more detail. Main
mathematical features discussed in both chapters can be also found in [13] which is a new
review article accepted for publication in SIAM Review.

3 Overview of Chapter 1

The aim of [67] is to propose a computational method for solving non(quasi)convex vectorial
and multidimensional variational problems and to prove convergence of discrete solutions to
a solution of the original problem.

Modeling of multi-scale physical phenomena in mechanics and electromagnetics is an ac-
tive area with ambitious applications in high technology industry like the development of
“smart materials” or new recording media. Physical phenomena appearing on larger scales
are usually different from those on microscales which makes their mathematical descrip-
tion a challenging task. Many effects are accompanied by creation of microstructures which
crucially influence physical properties of the material and are often created to follow some
extremum principle as the minimal energy principle, for instance. The mathematical anal-
ysis of microstructures usually neglects the atomic scale and considers already a continuum
model. One of possible approaches to their modeling are variational models which deal with
systems spontaneously creating microstructures supposing that the microstructure satisfies
some optimality criteria. The reason for formation of fine structures is usually the nonexis-
tence of an exact optimum. Mathematical modeling must typically cope with nonconvexity
and nonexistence of solutions in Sobolev (Lebesgue) spaces, which has its drawback in nu-
merical schemes. Mathematically, the formation of microstructures is demonstrated by finer
and finer spatial oscillations of minimizing sequences. Those oscillations can only be limited
by effects on the atomic scale like, for example, surface energies but these issues are mostly
neglected. An important problem is to extract relevant information from minimizing se-
quences. This is, roughly speaking, the idea of relaxation; see e.g. Dacorogna [23] or Müller
[83]. The basic approach is to find some effective macroscopic energy density of the system
as, e.g., an effective stored energy density of an elastic material or an effective anisotropy
energy density of a ferromagnet which governs behavior of the system. In problems, which
we have in mind, the effective energy enjoys suitable convexity properties which damp out
oscillations. In applications to elasticity theory, oscillations appear in the gradient and the
appropriate convexity property is quasiconvexity introduced by Morrey [81] in 1952. We
recall that W : Rm×n → R is quasiconvex if for all ψ ∈ W 1,∞

0 (Ω;Rm) and all F ∈ Rm×n it
holds that

W (F )|Ω| ≤
∫

Ω

W (F +∇ψ(x)) dx . (3.1)

Here Ω ⊂ Rn is a bounded Lipschitz domain with the n-dimensional Lebesgue measure |Ω|.
The effective energy density is (under some technical assumptions) the quasiconvex enve-
lope (i.e. the largest quasiconvex function below the density) of the elastic energy density.
This is a common situation in a description of elastic crystals undergoing martensitic phase
transitions with negligible hysteresis effects. A similar situation occurs in micromagnetics,
however, in this case the quasiconvex envelope reduces to the usual convex one. One possible
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way how to evaluate these envelopes is to use parametrized measures, the so-caled Young
measures [108]. If we include hysteretic behavior in models then typically the evolution of
Young measures contributes to dissipation of materials.

3.1 Young measures

It is well known [6] that if {zk}k∈N ⊂ Lp(Ω;Rm×n), 1 ≤ p < +∞, is bounded then there exists
a subsequence (not relabeled) and a family ν = {νx}x∈Ω of probability measures on Ω such
that for all g ∈ L∞(Ω) and all f ∈ C(Rm×n) such that {f(zk)}k∈N is uniformly integrable in
L1(Ω) it holds that

lim
k→∞

∫
Ω

f(zk(x))g(x)) dx =

∫
Ω

∫
Rm×n

f(s)νx(ds)g(x) dx . (3.2)

Conversely, if ν = {νx}x∈Ω is such that νx is for almost all x ∈ Ω a probability
measure on Rm×n, x 7→

∫
Rm×n f(s)νx(ds) is measurable for all f ∈ C0(Rm×n), and∫

Ω

∫
Rm×n |s|

pνx(ds) dx < +∞ then there exists a sequence {zk}k∈N ⊂ Lp(Ω;Rm×n) such
that (3.2) holds. The family ν = {νx} is called Young measure and {zk} its gener-
ating sequence. It is well-known that every Young measure ν as above can be gener-
ated by a sequence {zk} such that {f(zk)} is uniformly integrable for every continuous
f ∈ Cp(Rm×n) := {f ∈ C(Rm×n); |f | ≤ C(1 + | · |p), C > 0}.

We will be interested in Young measures generated by gradients, i.e. zk := ∇uk for some
sequence {uk} ⊂ W 1,p(Ω;Rm). Such a Young measure will be refered to as gradient Young
measure. Fixing 1 ≤ p < +∞, we denote the set of gradient Young measures generated by
{∇uk} for {uk} ⊂ W 1,p(Ω;Rm) by Gp(Ω;Rm×n). Thus, if {uk} ⊂ W 1,p(Ω;Rm) is bounded
and {W (∇uk)} equiintegrable, we have (up to a subsequence) that

lim
k→∞

V (uk) =

∫
Ω

∫
Rm×n

W (s)νx(ds) dx ,

where V (u) =
∫

Ω
W (∇u(x)) dx. Let us mention that if W is coercive with superlinear

growth at infinity and {uk} is minimizing for V then the equiintegrability condition holds.
The following well-known result of Kinderlehrer and Pedregal [85] characterizes the set of
gradient Young measures.

Lemma 3.1 Let 1 < p < +∞. A Young measure ν = {νx}x∈Ω belongs to Gp(Ω;Rm×n) if
and only if the following three conditions are satisfied simultaneously:
(i) there is y ∈ W 1,p(Ω;Rn) such that for a.a. x ∈ Ω

∇y(x) =

∫
Rm×n

Fνx(dF ) , (3.3)

(ii) for this y and all quasiconvex functions v : Rm×n → R, |v| ≤ C(1 + | · |p), it holds that
for a.a. x ∈ Ω

v(∇y(x)) ≤
∫
Rm×n

v(F )νx(dF ) , (3.4)

(iii) it holds that ∫
Ω

∫
Rm×n

|F |pνx(dF ) dx < +∞ . (3.5)
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Extending the validity of (ii) to all rank-one convex functions with p-growth at infinity
defines a subset of Gp(Ω;Rm×n) called laminates [85].

An example of a Young measure ν ∈ Gp(Ω;R3×3) describing a so-called 1st-order laminate
with an underlying macroscopic deformation y ∈ W 1,p(Ω;R3) is

ν = {νx}x∈Ω, νx = ξ0(x)δF1(x) +
(
1−ξ0(x)

)
δF2(x), (3.6a)[

ξ0F1 + (1−ξ0)F2

]
(x) = ∇y(x), F1(x)−F2(x) = a0(x)⊗ n0(x), (3.6b)

0 ≤ ξ0(x) ≤ 1, a0(x), n0(x)∈R3. (3.6c)

This process can be re-iterated: a 2nd-order laminate with the macroscopic deformation y
as above is ν = {νx}x∈Ω, where

νx = ξ0(x)ξ1(x)δF1(x) + ξ0(x)
(
1−ξ1(x)

)
δF2(x)

+
(
1−ξ0(x)

)
ξ2(x)δF3(x) +

(
1−ξ0(x)

)(
1−ξ2(x)

)
δF3(x) , (3.7)

with (dropping for simplicity a dependence on x)

F1 − F2 = a1 ⊗ n1, F3 − F4 = a2 ⊗ n2 , (3.8a)

ξ1F1 + (1−ξ1)F2 − ξ2F3 − (1−ξ2)F4 = a0 ⊗ n0 , (3.8b)

∇y = ξ0ξ1F1 + ξ0(1−ξ1)F2 + (1−ξ0)ξ2F3 + (1−ξ0)(1−ξ2)F4 (3.8c)

and 0 ≤ ξi ≤ 1, ai, ni ∈ R3, i ∈ {0, 1, 2}. Analogously, we can get laminates of an arbitrary
order which are often called sequential laminates.

Young measures are an important tool in the mathematical treatment of various noncon-
vex variational problems. A prominent example is the relaxation of energy functionals in
the modeling of shape memory materials.

3.2 Shape memory alloys

Shape-memory alloys (SMAs) are active materials, and have been the subject of inten-
sive theoretical and experimental research during the past decades. Existing or poten-
tial applications can be found, for example, in medicine and mechanical or aerospace en-
gineering. Shape-memory alloys are crystalline materials that exhibit specific hysteretic
stress / strain / temperature response; they have the ability to recover a trained shape after
deformation and subsequent reheating. This is called the shape-memory effect. It is based
on the ability of the alloy to rearrange atoms in different crystallographic configurations (in
particular, with different symmetry groups). The stability depends on the temperature. Nor-
mally, at higher temperatures a high-symmetry (for example, cubic) lattice is stable, which
is referred to as the austenite phase. At lower temperatures, a lattice of lower symmetry
(for example, tetragonal, orthorhombic, monoclinic, or triclinic) becomes stable, called the
martensite phase. Due to the loss of symmetry, this phase may occur in different variants.
The number of variants M , is the quotient of the order of the high-symmetry phase and the
order of the low-symmetry group. So for a cubic high-symmetry phase, M = 3, 6, 12, or
4 for the tetragonal, orthorhombic, monoclinic, respectively triclinic martensites mentioned
above. The variants can be combined coherently with each other, forming so-called twins of
two variants.
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The mathematical and computational modeling of SMAs represents a tool for the theoret-
ical understanding of phase transition processes in solids. Such an analysis may complement
experimental results, predict the response of new materials, or facilitate the usage of SMAs
in applications. SMAs are genuine multi-scale materials and create a variety of challenges for
mathematical modeling. We refer the reader to [92] for a survey of a wide menagerie of SMA
models ranging from nano- to macro-scales. In this article, we focus on a mesoscopic model
in the framework of continuum mechanics. Beside the macroscopic deformation and its gra-
dient, the model also involves the volume fractions of phases and variants and gradients of
volume fraction. This seems a reasonable compromise, since it allows for the modeling scales
of large single crystals or polycrystals.

Although the natural physical dimension is three we will assume that our specimen
occupies a bounded domain Ω ⊂ Rn and the deformation y maps Ω to Rm. This allows
us to consider various variational problems. Nevertheless for shape memory applications we
obviously assume that m = n = 3. The stress-free parent austenite is a natural state of the
material which makes it, in the context of continuum mechanics, a canonical choice for the
reference configuration. As usual, y : Ω→ Rm denotes the deformation and u : Ω→ Rm the
displacement, which are related to each other via the identity y(x) = x+u(x), where x ∈ Ω.
Hence the deformation gradient is F := ∇y = I +∇u.

Unfortunately, not every ν ∈ Gp(Ω;R3×3) is of the form of a sequential laminate, or even
cannot be attained by sequential laminates, which can be interpreted that microstructures
might be much more chaotic; This might be connected with the Šverák’s famous counterex-
ample [99] that rank-one convexity does not imply quasiconvexity. Moreover, an efficient
description of Gp(Ω;R3×3) is not available, which is related to the lack of a local characteri-
zation of quasiconvex functions; cf. [58].

Starting from 1D-numerical experiments by Nicolaides and Walkington [84], there are
numerical studies involving gradient Young measures as e.g. [66] but, due to the mentioned
impossibility of an efficient description of the whole set Gp(Ω;R3×3), they eventually have to
deal with laminates of an order κ ≥ 1, let us denote this set as

Gp,κlam(Ω;R3×3) :=
{
ν ∈ Gp(Ω;R3×3); νx is a κ-order laminate for a.a. x∈Ω

}
. (3.9)

Nevertheless,laminates enable us to describe volume fractions of particular phases/variants
at a given material point. The idea of looking at volume fractions (sometimes in simplified
situations leading to a transformation strain as an independent variable) occurred in various
other models, too, see Frémond [35, 36], often meant for polycrystals so that the fine (and in
context of single-crystals very important) issues related with rank-one connections are often
not accounted for.

3.3 Stored energy and its minimization

The specific energy stored in the inter-atomic links in the continuum Ŵ = Ŵ (F ) is phe-
nomenologically described as a function of the deformation gradient F ; recall that we consider
temperature constant. The frame-indifference, i.e. Ŵ (F ) = Ŵ (RF ) for any R ∈ SO(3), the

group of orientation-preserving rotations, requires that Ŵ in fact depends only on the (right)
Cauchy-Green stretch tensor C := F>F . As F = I +∇u, we can express the specific stored
energy in terms of the displacement gradient as

W = W (∇u) = Ŵ (I +∇u). (3.10)
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The absence of an explicit dependence on x is related to homogenous single crystals consid-
ered. The Piola-Kirchhoff stress σ : R3×3 → R3×3 is given by σ = W ′(∇u) with W ′ denoting
the tensor-valued gradient.

We will use a St.Venant-Kirchhoff-like form of the stored energy of each particular phase
variants which allows for an explicit reference to measured data and can easily be applied to
various materials. We consider M variants of martensite determined, in the stress-free state,
by distortion matrices U`, ` = 1, ...,M , while the cubic austenite corresponds to U0 = I.

The frame-indifferent stored energy of particular phases or phase variants is considered
as a function of the Green strain tensor ε` related to the distortion of this phase (variant).
In the simplest case (cf. [86, Sect.6.6], e.g.), one can consider a function quadratic in terms
of ε` of the form

Ŵ`(F ) =
1

2

d∑
i,j,k,l=1

ε`ijC`ijklε`kl + d`, ε` =
R>` (U>` )−1F>FU−1

` R` − I
2

, (3.11)

where C` = {C`ijkl} is the 4th-order tensor of elastic moduli satisfying the usual symmetry
relations depending also on symmetry of the specific phase (variant) `, d` is some offset; d`
depends on temperature which is, however, considered as fixed – this dependence differs in
various phases due to various heat capacities, which is just what makes the shape-memory
effect.

The simplest way to assembly the overall multi-well stored energy Ŵ relying on that
materials naturally tend to minimize stored energy is to put

Ŵ := min
`=0,...,M

Ŵ` . (3.12)

The total stored energy in the bulk occupying, in its reference configuration, the domain
Ω is then

V (u) :=

∫
Ω

W (∇u) dx. (3.13)

Basic variational principle is minimization of the stored energy. Due to the multi-well charac-
ter W and here also due to the chosen St.Venant-Kirchhoff form of W , minimizing sequences
of V tend to develop, in general, faster and faster spatial oscillations of their gradients, which
is related to development of the finer and finer microstructures when the stored energy is to
be minimized. The minimum of V , under specific boundary conditions for u, say

u|ΓD
= uD (3.14)

where ΓD is a part of the (Lipschitz) boundary ∂Ω of Ω, need not ever be attained on the
space W 1,p(Ω;R3), however. This effect is due to neglecting the (usually small) energy stored
in the interfaces like the twinning plane which is certainly relevant approach on meso- and
macroscopic level. However, the minimum is attained, under suitable coercivity conditions,
on Young measures. For this, we need to extend V by continuity for such measures. Consid-
ering now the configuration as the couple (u, ν) ∈ W 1,p(Ω;R3)× Gp(Ω;R3×3), the extended
functional is

V̄ (u, ν) :=

∫
Ω

∫
R3×3

W (A) νx( dA) dx =

∫
Ω

∫
R3×3

Ŵ (I + A) νx( dA) dx. (3.15)
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The set of admissible configurations is now{
(u, ν)∈W 1,p(Ω;R3)× Gp(Ω;R3×3); (3.14) holds and∫

R3×3

Aνx( dA) = ∇u for a.a. x∈Ω
}
, (3.16)

and the minimum of V̄ on this set is the infimum of V on W 1,p(Ω;R3) under (3.14). The
process of extension V to V̄ is called relaxation, cf. [85].

3.4 Dissipation energy and its maximization

Phase transformation (PT) in SMAs is, to a large extent, a rate-independent, activated pro-
cess and leads to a specific dissipation which results in a hysteretic response in stress/strain
diagrams. Its modelling is equally important as the stored energy but the related phe-
nomenology is still less understood than the stored-energy one; indeed, as pointed out by
Bhattacharya et al. [17], ‘much remains unknown concerning the nucleation and evolution
of microstructure, and the resultant hysteresis’. Let us recall that the orbits SO(3)U` and
SO(3)Ul are rank-1 connected if

∃R ∈ SO(3) : Rank(U` −RUl) = 1 . (3.17)

There seems to be two main approaches to the dissipation problem:

(A) the hysteresis (and the related rate-independent dissipation) is determined by the
stored-energy landscape, advocated essentially by Abeyaratne, Knowles [2], Ball et
al. [7, 8], Goldstein [38], James and Zhang [47], Šilhavý [96], etc. The common phi-
losophy is that, if the orbits SO(3)U` and SO(3)Ul are rank-1 connected, then the
dissipation within PT between these (phase) variants is small, or rather zero, other-
wise it is related with metastability and a stress which the material must inevitably
withstand to move out of the bottoms of the wells during the PT.

(B) The hysteresis is quite independent of the stored energy and needs a separate phe-
nomenology (recording, e.g, various impurities and dislocations in the atomic grid that
lead to bigger dissipation), advocated essentially (besides authors’ own previous works)
by Frémond [35] or Hackl et al. [41] and many others.

It is likely that both these approaches combine mutually. Besides, for completeness let us
mention that there are attempts to apply a phenomenology like (B) but through a modifica-
tion of the stored energy which then causes a hysteresis like in the case (A), see Abeyaratne,
Chu, James [1].

We adopt a (to some extent quite simplified) standpoint that the amount of dissipated
energy within the particular PT between austenite and a martensitic variant or between
two martensitic variants can be described by a specific energy (of the dimension J/m3=Pa).
For this, we need to identify the particular phases or phase variants and thus we define a
continuous mapping L : R3×3 →4 where

4 :=
{
ζ ∈ R1+M ; ζ` ≥ 0, ` = 0, ...,M,

M∑
`=0

ζ` = 1
}

(3.18)
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is a simplex with M+1 vertexes, M = the number of martensitic variants as in Section 3.3.
As in (3.10), we assume

L(∇u) = L̂(I +∇u) with L̂ : R3×3 →4. (3.19)

Here L̂ is related with the material itself and thus is to be frame indifferent. We assume,
beside L̂` ≥ 0 and

∑M
`=0 L̂` = 1, that L̂`(F ) = 1 if F is in the `-th (phase) variant, i.e. F

is in a vicinity of `-th well SO(3)U` of W , which can be identified according to the stretch

tensor F>F close to U>` U`, cf. [77, 78]. If L̂(F ) is not in any vertex of 4, then it means that
F in the spinodal region where no definite (phase) variant is specified; we assume, however,
that the wells are sufficiently deep and the (phase) variants geometrically sufficiently far from
each other that the tendency for minimization of the stored energy will essentially prevent F
to range the spinodal region and thus the concrete form of L̂ does not seem to be important
as long as L̂ enjoys the above properties. Hence L plays the role of what is often called a
vector of order parameters or a vector-valued internal variable.

The dissipation-energy phenomenology itself is considered through the choice of a “norm”
on R1+M (not necessarily Euclidean and even not symmetric), let us denote it by | · |M ; its
physical dimension will be J/m3=Pa. The desired meaning is to set up the specific energy
E`l needed for PT of a phase (variant) ` to l as |e` − el|M , where e` = (0, .., 0, 1, 0, ...0) ∈
R1+M is the unit vector with 1 at the position `. The set {E`l}`,l=0,...,M can reflect both the
presence/lack of rank-one connections (A) and the influence of various impurities (B).

Referring to a mesoscopic description through a Young measure ν∈Gp(Ω;R3×3), the meso-
scopic volume fractions λ = λ(x) at a current “macroscopic” point x is then

λ(x) :=

∫
R3×3

L(A)νx( dA) =

∫
R3×3

L̂(I + A)νx( dA). (3.20)

As a mesoscopic configuration, we will consider a triple q = (u, ν, λ), i.e. the macroscopic
displacement, the Young measure describing the microstructure, and the volume fraction
field; of course, they are linked with each other by (3.20) and also by the constraint in
(3.16). In terms of d

dt
q, the (pseudo) potential of dissipative forces R that corresponds to

this phenomenology is

R
( dq

dt

)
= R

( du

dt
,

dν

dt
,

dλ

dt

)
:=

∫
Ω

∣∣∣∂λ(t, x)

∂t

∣∣∣
M

dx. (3.21)

This means, considering a process over the time interval [t1, t2], the overall dissipated energy
by all undergone PTs in the whole specimen Ω will be∫ t2

t1

∫
Ω

∣∣∣∂λ
∂t

∣∣∣
M

dx dt =

∫
Ω

Var
t∈[t1,t2]

λ(t, x) dx (3.22)

where the total variation “Var” with respect to the (possibly nonsymmetric) norm | · |M
counts which PTs (and how many times) have been undergone at the point x. The important
property of R is that it satisfies the triangle inequality, i.e.

∀q1, q2, q3∈Q : R(q1 − q3) ≤ R(q1 − q2) +R(q2 − q3), (3.23)

which follows immediately from convexity and the degree-1 homogeneity.
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The dissipation mechanism through the convex, degree-1 homogeneous potential R is in-
timately related with Hill’s maximum-dissipation principle [42]. The desired energy balance,
i.e. the rate of Helmholtz’ stored energy V̄ plus the dissipation rate equal to the power of
the external force, is

dV̄

dt
+R

( dq

dt

)
=
〈
f,

du

dt

〉
(3.24)

where the degree-1 homogeneous dissipation rate R can be written in the form

R
( dq

dt

)
=

∫
Ω

ω(t, x) · ∂λ(t, x)

∂t
dx with ω(t, x) ∈

[
∂| · |M

](∂λ(t, x)

∂t

)
(3.25)

with ∂| · |M denoting the subdifferential of | · |M . The last inclusion can be written as〈∂λ(t, x)

∂t
, ω(t, x)

〉
= max

z∈Z

〈∂λ(t, x)

∂t
, z
〉

with Z :=
[
∂| · |M

]
(0). (3.26)

This says that, for the considered volume-fraction rate ∂
∂t
λ, the driving stress (or specific

activation energies) ω in Pa (=J/m3) makes the dissipation caused by the PTs maximal
among all other admissible driving stresses, i.e. those from the convex set Z ⊂ R1+M . In
plasticity theory, this maximum-dissipation principle can alternatively be expressed as a
normality in the sense that the rate of plastic deformation belongs to the cone of outward
normals to the elasticity domain. Here, this would result in the observation that the rate
∂
∂t
λ(t, x) of PTs at (t, x) belongs to the normal cone of the “elasticity domain” Z at the point

ω(t, x). In particular, (3.26) says that ∂
∂t
λ = 0 (i.e. the volume fractions do not evolve) if

ω(t, x) is inside Z (i.e. there in not enough stress to activate PTs at (t, x)). Also recall that
∂R is maximal responsive. For a discussion in a 1D-case see also [74, Remark 4.5]. However,
we saw that (3.26) contains, in fact, only a rather small portion of information about the
evolution and other principles can be considered at this context, too.

3.5 Energetic solution and its discretization

We want to present briefly the model of evolution of microstructure described “mesoscop-
ically” and governed by the principles from Sections 3.3–3.4, as well as its mathematical
analysis. It exploits the definition of the so-called energetic solution invented in [77] (see
also the book [75]). We consider here a “soft-device” loading through time-varying Neu-
mann’s boundary conditions.

We denote the set Q0 of the admissible configurations q’s, i.e.

Q0 =
{

(u, ν, λ) ∈ Q ; λ=L • ν a.e.
}
, where (3.27)

Q :=
{
q = (u, ν, λ) ∈ W 1,p(Ω;R3)×Gp(Ω;R3×3)×L1(Ω;R1+M) ;

∇u(x)=

∫
R3×3

Aνx( dA), λ(x) ∈ 4 a.e. on Ω, u|ΓD
= uD

}
,

where we abbreviated

λ = L • ν where
[
L • ν

]
(x) :=

∫
R3×3

L(A) νx( dA). (3.28)
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We distinguished, just for numerical purposes later, Q, which “forgets” the constraint λ =
L • ν, from Q0.

The Gibbs’ stored energy which also counts for the time-dependent boundary conditions
and which is regularized by ρ > 0 is

G(t, q) := G(t, u, ν, λ) = V̄ (u, ν) +

∫
ΓN

f(t, x)·u(x) dx+ ρ
∣∣λ∣∣r

α,r
on Q, (3.29)

G0(t, q) :=

{
G(t, q) on Q0,
+∞ on Q\Q0,

(3.30)

with V̄ from (3.15), f : [0, T ] × ΓN → R3 a prescribed “soft-device” loading, ΓN ⊂ ∂Ω,
T > 0 a fixed time horizon, and with the semi-norm in the Sobolev-Slobodetskĭı space
Wα,r(Ω;R1+M) considered as

∣∣λ∣∣
α,r

:=

(
1

4

∫
Ω

∫
Ω

∣∣λ(x)− λ(x̃)
∣∣r

|x− x̃|3+rα
dx̃ dx

)1/r

, (3.31)

for a fixed parameter 0 < α < 1. Such a regularizing term in (3.29) gives some (possibly very
small) energy to spatial variation of mesoscopic volume fractions and is exploited for a rigor-
ous proof of existence of energetic solutions as well as convergence of numerical approxima-
tions. Gradients of mesoscopic volume fractions have already been used in Frémond’s model
[35, p.364]. Our form (3.31) corresponds to the only “α-fractional gradient” which is com-
pactifying, namely the embedding Wα,r(Ω;R1+M) ⊂ L1(Ω;R1+M) is compact. Also it allows
for an element-wise affine approximation of λ, because Wα,r(Ω;R1+M) ⊃ W 1,∞(Ω;R1+M)
or, if α < 1 − 3(r−1)/r with some 1 < r < 3/2, for an element-wise constant approx-
imation which has necessarily discontinuities on 2-dimensional manifolds requiring then
Wα,r(Ω;R1+M) ⊃ W 1,1(Ω;R1+M); later in (3.36) we choose the latter option. In [74] such
a regularization was interpreted as a limit from the Ericksen-Timoshenko model scrutinized
by Ren, Rogers, and Truskinovsky [89] who also proposed a nonlocal term like (3.31) in
the 1D case with either positive or also, for different purposes, non-positive kernels. One
can interprete the energy (3.31) as associated to a sort of non-local microstress measuring
nonlocal interactions related to spatial microstructural variations.

Definition 3.2 The process q : [0, T ] 7→ Q0 will be called an energetic solution to the
problem given by the triple (G0, R, q0), i.e. by the data (W,L, | · |M , f, uD, q0, ρ), if it satisfies
the initial condition q(0) = q0, the static stability condition:

∀ t ∈ [0, T ] ∀ q̃ ∈ Q0 : G0
(
t, q(t)

)
≤ G0(t, q̃) +R

(
q̃ − q(t)

)
, (3.32)

and the energy equality

∀ s, t∈ [0, T ] : G0
(
t, q(t)

)
+ VarR(q; s, t) = G0

(
s, q(s)

)
+

∫ t

s

∂G0

∂ϑ

(
ϑ, q(ϑ)

)
dϑ. (3.33)

Here VarR(q; s, t) is the total variation of the process q = (u, ν, λ) : [0, T ]→ Q over the time
interval [s, t] with respect to the norm | · |M , namely

VarR(q; s, t) := sup
k∑
i=1

R
(
q(ti)−q(ti−1)

)
= sup

k∑
i=1

∫
Ω

∣∣λ(ti, x)−λ(ti−1, x)
∣∣
M

dx (3.34)
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where the supremum is taken over all partition s = t0 < t1 < ... < tk = t, k ∈ N. The
definition of stability (3.32) and energy balance (3.33) could also be defined on all of Q,
since G0 equals +∞ on Q\Q0. It will be useful to define the stability set S0(t) by

S0(t) :=
{
q∈Q ; G0(t, q) < +∞, ∀q̃∈Q : G0(t, q) ≤ G0(t, q̃) +R(q̃−q)

}
. (3.35)

Let us note that the stability (3.32) just means that q(t) ∈ S0(t) for all t ∈ [0, T ]. Under some
qualification of the data (W,L, | · |M , f, uD, q0, ρ), the existence of some energetic solution
can be proved by a constructive way by approximation of the implicit Euler formula and the
spacial finite-element-like discretization combined with laminated Young measures (3.9) and
a penalization of the equality (3.20), which also suggest a numerical strategy. As already
emphasized, the set Gp(Ω;R3×3) cannot be explicitly implemented so we employ the smaller

set Gp,klam(Ω;R3×3) from (3.9), which, however, brings a necessity to treat the relation λ = L • ν
with a “tolerance”, because, due to the compactness in λ’s caused by the regularizing nonlocal
ρ-term in (3.29), it behaves like a constraint which, if treated without any tolerance, might
destroy the convergence.

To construct approximate solutions, we consider time steps τ > 0, assuming that T/τ is
integer and that τ → 0. Beside of this time discretization we will employ the finite-element
method as space discretization. We assume that Ω is a polyhedral domain triangulated
by simplicial triangulations, denoted by Th, where h > 0 is a mesh parameter satisfying
h ≥ maxS∈Th diam(S). We consider a countable set of h’s with h → 0 which are nested,
i.e. Th1 is a refinement of Th2 if h2 ≥ h1 > 0.

We fix an order of lamination κ ≥ 0 in (3.9); the concrete value of κ does not affect
the theoretical convergence results but may, of course, substantially influence the rate of
convergence and thus numerical results of concrete computational experiments if taken too
small. We introduce the spatially discretized state space as

Qh =
{
q = (u, ν, λ) ∈ Q; ν ∈ Gp,κlam(Ω;R3×3) and constant on each simplex of Th,

λ constant on each simplex of Th
}

(3.36)

Note that each u with (u, ν, λ) ∈ Qh is inevitably piecewise affine on Th, since ∇u is piecewise
constant.

In addition to the two small parameters τ > 0 and h > 0 we introduce a third small
parameter ε > 0 which is used to relax the constraint λ = L • ν. For this we introduce the
relaxed, spatially discretized energy

Gε
h(t, q) =

{
G(t, q) +

1

ε

∣∣∣∣∣∣λ−L • ν∣∣∣∣∣∣2 for q ∈ Qh,

+∞ for q ∈ Q\Qh,
(3.37)

where L • ν is from (3.28) and where ||| · ||| is the norm in a space to which L∞(Ω;R1+M) +
Wα,r(Ω;R1+M) is embedded compactly, e.g. the space H−1(Ω;R1+M) := W 1,2

0 (Ω;R1+M)∗;
recall that L∞ stands, as standard, for the space of measurable essentially bounded functions.

With these definitions, we consider a fully implicit algorithm based on the following
incremental problem: Let q0

τ = q0 be a given initial condition, and, for k = 1, ..., T/τ we

define (qε,kτ,h)k=1,...,T/τ to be a solution of the minimization problems

Minimize Gε
h(kτ, q) +R(q−qk−1)

subject to q = (u, ν, λ) ∈ Qh.

}
(3.38)
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Let us denote by qετ,h the piecewise constant approximate solution, i.e. qετ,h(t) := qε,kτ,h for
(k−1)τ < t ≤ kτ , k = 0, ..., T/τ . Beside the standard notation for Wα,p- and Lp-spaces
already explained, we now use also “BV” for the space of functions with bounded variations.

The main result is the following theorem showing approximation properties of the the
sequence of discreized problems.

Theorem 3.3 Let {qετ,h}(τ,h,ε) be a family of approximations constructed as above such that
(τ, h, ε)→ 0, such that

qετ,h(0) ∈ Sεh(0), qετ,h(0)
∗
⇀ q0, and Gε

h(0, q
ε
τ,h(0))→ G0(0, q0). (3.39)

Then, there exists a subsequence {(τk, hk, εk)}k∈N with (τk, hk, εk)→ (0, 0, 0) for k →∞ satis-
fying the stability criterion hk ≤ H(εk) and a limit process q : [0, T ]→ Q with q(0) = q0, such
that the following holds. (We shortly write qk = (uk, νk, λk) for qεkτk,hk = (uεkτk,hk , ν

εk
τk,hk

, λεkτk,hk).)

(i) q : [0, T ] → Q0 ⊂ Q is an energetic solution, i.e., q satisfies (3.32) and (3.33), and
also it holds λ ∈ L∞([0, T ];Wα,r(Ω;R1+M))∩BV([0, T ], L1(Ω;R1+M)) and u : [0, T ]→
W 1,p(Ω;R3) is bounded.

(ii) For all t ∈ [0, T ] we have λk(t) ⇀ λ(t) in Wα,r(Ω;R1+M).
(iii) For all t ∈ [0, T ] we have VarR(qk; 0, t)→ VarR(q; 0, t).

(iv) For all t ∈ [0, T ] we have Gεk
hk

(t, qk(t))→ G0(t, q(t)).

(v) ∂
∂t
Gεk
hk

(·, qk(·))
∗
⇀ ∂

∂t
G0(·, q(·)) in L∞(0, T ).

(vi) For all t ∈ [0, T ] there is a subsequence {kl}l∈N such that qkl(t)
∗
⇀ q(t) in Q.

3.6 Evolutionary problems in magnetism

The second part of Chapter 1 mainly deals with evolutionary problems of magnetism and
includes papers [68] and [69]. A large part of my research in this subject consists of meso-
scopic models of magnetic hysteresis. This phenomenon is very complex, and it is not
yet fully understood, nothwithstanding many attempts which have been made to develop
mathematical models of it for ferromagnetic and ferrimagnetic materials. See for example
[15, 19, 104, 105, 106] for various models of hysteresis. To obtain a hysteresis loop for a
general shape of a ferromagnet and general magnetization regimes, one must rely only on
experimental measurements or numerical simulations. The latter option, we are focusing
in the thesis , seems difficult to be obtained by conventionally used models which either
treat the microstructure in too much detail (so that the multi-level character of macroscopi-
cal/microscopical effects cannot be properly modeled because of capacity of usual computers)
or replaces the important information about the microstructure by mere phenomenology and
smears thus out the complex interrelations counting macroscopical geometry of a specimen.
The former sort of (domain-like) models includes Gilbert-Landau-Lifshitz’ one [37, 72] and
is discussed in detail in the paper [69], while the later one involves, e.g., models based on
Rayleigh’s modification [88] of Prandtl’s and Ishlinskĭı’s model or Preisach’s model [87] (see
also Jiles [48], Mayergoyz [73], or Visintin [104]). Another one is, e.g., due to Jiles and
Atherton [50] and its modifications as, e.g., [49, 57].

3.7 Mesoscopic models

It can roughly be said that, in our model, we combine the so-called dry-friction idea with
the mesoscopical-level description of microstructure by using basically volume fractions ex-
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pressed by Young measures. In fact, the notion of “dry-friction” is related to the maximum-
dissipation principle used in (quasi)plasticity. Dry-friction is very natural in the context of
ferromagnetism, and has been already used in a Jiles-Atherton-like model by Bergqvist [14],
in a micromagnetical-type model and in a model based on macroscopical magnetization by
Visintin in [105] and [106], respectively. The mesoscopical description of the magnetization
has been used by DeSimone [24], James and Kinderlehrer [46], and Rogers [89] (see also [53])
but only for minimization of the Gibbs energy.

The theory of rigid ferromagnetic bodies [21, 72] assumes that a magnetization m : Ω→
Rn, describing the state of a body Ω ⊂ Rn, n = 2, 3, is subjected to the Heisenberg-Weiss
constraint, i.e., has a given (in general, temperature dependent) magnitude

|m(x)| = Ms for almost all x ∈ Ω ,

where Ms > 0 is the saturation magnetization, considered here Here we relax this constraint
and only assume that the magnetization is penalized if its magnitude is not constant for
given temperature.

In the no-exchange formulation, which is valid for large bodies [24], the Helmholtz free
energy of a rigid ferromagnetic body Ω ⊂ Rn consists of two parts. The first part is the
anisotropy energy

∫
Ω
ϕ(m(x)) dx related crystallographic properties of the ferromagnet. A

typical ϕ : Sn−1 := {s ∈ Rn; |s| = Ms} → R is a nonnegative function vanishing only
at a few isolated points on Sn−1 determining directions of easy magnetization, e.g. at two
points for uniaxial materials or at six (or eight) for cubic ones. Throughout the paper we
will assume that ϕ is a restriction of some smooth function ϕ̃, i.e.,

ϕ = ϕ̃|Sn−1 ; ϕ̃ ∈ C∞(Rn) , ϕ̃ ≥ 0 and even . (3.40)

The second part of the Helmholtz energy, 1
2

∫
Rn |∇um(x)|2 dx, is the energy of the de-

magnetizing field ∇um self-induced by the magnetization m; its potential um is governed
by

div
(
−∇um +mχΩ

)
= 0 in Rn , (3.41)

where χΩ : Rn → {0, 1} is the characteristic function of Ω. The demagnetizing-field energy
thus penalizes non-divergence-free magnetization vectors. Standardly, we will understand
(3.41) in the weak sense, i.e. um ∈ W 1,2(Rn) will be called a weak solution to (3.41) if the
integral identity

∫
Rn
(
mχΩ − ∇um(x)

)
· ∇v(x) dx = 0 holds for all v ∈ W 1,2(Rn), where

W 1,2(Rn) ≡ W 1,2(Rn) denotes the Sobolev space of functions from L2(Rn) with all first
derivatives (in the distributional sense) also in L2(Rn). Altogether, the Helmholtz energy
E(m), has the form

E(m) =

∫
Ω

ϕ(m(x)) dx+
1

2

∫
Rn
|∇um(x)|2 dx . (3.42)

If the ferromagnetic specimen is exposed to some external magnetic field h = h(x), the so-
called Zeeman’s energy of interactions between this field and magnetization vectors equals to
H(m) := −

∫
Ω
h(x) ·m(x) dx. Finally, the following variational principle governs equilibrium

configurations:

minimize G(m) := E(m)−H(m)

=

∫
Ω

(ϕ(m(x))− h(x) ·m(x)) dx+
1

2

∫
Rn
|∇um(x)|2 dx ,

subject to (3.41), (m,um) ∈ A×W 1,2(Rn) ,

(3.43)
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where the introduced notation G stands for Gibbs’ energy and A is the set of admissible
magnetizations

A := {m ∈ L∞(Ω;Rn); |m(x)| = Ms for almost all x ∈ Ω} .

As A is not convex we cannot rely on direct methods in proving the existence of a solution.
In fact, the solution to (3.43) need not exist in A×W 1,2(Rn); cf. [46] for the uniaxial case.
Due to nonconvexity of A weak limits of minimizing sequences of (3.43) do not necessarily
live in A×W 1,2(Rn).

It is, therefore, natural to look for an extension (=relaxation) of our problem in which
we would properly describe behavior of (3.43) along minimizing sequences. It is well-known
[24, 85] that such relaxation can be achieved by extending the Helmholtz energy by continuity
on the convex set of Young measures

Ē(ν) =

∫
Ω

ϕ • ν dx+
1

2

∫
Rn
|∇u(id• ν)(x)|2 dx , (3.44)

where [v • ν](x) :=
∫
Rn v(s)νx(ds) and id : Rn → Rn is the identity.

This model represents a so-called mesoscopic level model because, a minimizing Young
measure ν records some, but not full information about spatial oscillations of a minimizing
sequence of (3.43) around each “macroscopic” point x through volume fractions described
as the probability distribution νx. This information makes possible to describe the effec-
tive magnetic properties by means of the first moment, the “macroscopic” magnetization
m = id • ν, and moreover seems sufficient for designing a dissipative mechanism in a good
agreement with experiments, which will be just exploited further.

3.8 Rate-independent dissipation

For usual loading regimes and magnetically hard materials, one must consider a certain
dissipation. Moreover, the dissipation mechanism in ferromagnets can be influenced by
impurities in the material without affecting substantially the stored energy. Hence, both
mechanisms (energy storage and dissipation) are, to some extent, independent of each other
and, as the dissipation mechanisms are determined on the atomistic level, it seems that the
only efficient way how to incorporate them in a higher-level model is phenomenology.

Our, to some extent simplified, standpoint is that the amount of dissipated energy
within the phase transformation from one pole to the other can be described by a single,
phenomenologically given number (of the dimension J/m3=Pa) depending on the coercive
force Hc [22]. Hence, we need to identify the particular poles according to the magneti-
zation vector. Inspired by [77, 78] and considering L poles (L = 2 for uniaxial magnets
or 6 or 8 for cubic magnets), we define a continuous mapping L : Sn−1 → 4L where

4L := {ξ ∈ RL; ξi ≥ 0, i = 1, ..., L,
∑L

i=1 ξi = 1}. In other words, {L1, ...,LL} forms a
partition of unity on Sn−1 such that Li(s) is equal 1 if s is in i-th pole, i.e. s ∈ Sn−1 is in a
neighborhood of i-th easy-magnetization direction. Of course, L(m) in the (relative) interior
of 4L indicates m in the region where no definite pole is specified. Hence L plays the role
of what is often called an order parameter.

In terms of the mesoscopic microstructure described by the Young measure ν, the “meso-
scopic” order parameter is naturally defined as

λ = Λν := L • ν (3.45)
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where [L • ν](x) :=
∫
Sn−1 L(s)νx( ds). Thus Λ is just a continuous extension of the mapping

m 7→ L(m), i.e. if {mk} converges to ν weakly* in L∞(Ω;Rn), then L(mk) ⇀ Λν weakly* in
L∞(Ω;RL).

To described phenomenologically the dissipative energetics, one must prescribe a
(pseudo)potential of dissipative forces as a function of the rate of λ. For rate-independent
processes, this potential must be convex and homogeneous of degree one. Considering a
norm | · |L on RL, one can postulate %(λ̇) = Hc|λ̇|L. The energy needed to transform i-th
pole to j-pole is then Hc|ei − ej|L with ei the unit vector with 1 at the i-th position.

(at a given time t) will be described by the couple q = q(t) ≡ (ν, λ) = ({νx,t}x∈Ω, λ(·, t)).
Let us denote by Q the convex set of admissible configurations:

Q :=
{
q = (ν, λ)∈Y(Ω;Sn−1)×L∞(Ω;RL) (3.46)

λ(x) ∈ 4L, Λν = λ for a.a. x∈Ω
}

For the analysis , we will need to consider rather a certain regularization of the stored
energy E which would control spatial smoothness of λ. For this, we will augment E by a
higher-order term

Eρ(ν, λ) := Ē(ν) +

{
ρ||λ||2Wα,2(Ω;RL) if λ∈Wα,2(Ω;RL),

+∞ otherwise,
(3.47)

where Wα,2(Ω) denotes the usual Sobolev-Slobodetskĭı space and where we assume

α, ρ > 0, fixed. (3.48)

From now on, we will work with this regularized relaxed stored energy Eρ rather than E .
Following [77] we define the “dissipation distance” by (“co” denotes the convex hull):

d(λ1, λ2) := inf

{∫ 1

0

%(
dλ

dt
) dt; λ ∈ C1

(
[0, 1];RL

)
, (3.49)

λ(t) ∈ coL(Sn−1), λ|t=0 = λ1, λ|t=1 = λ2

}
.

Let us still introduce the total “dissipation distance”

D(q1, q2) :=

∫
Ω

d(λ1, λ2) dx, qi = (νi, λi). (3.50)

Let us abbreviate the Gibbs energy by

G(t, q) := Eρ(q)− 〈H(t), q〉 , (3.51)

where

〈H(t), q〉 =
[
H(t)

]
(id • ν) = 〈ν, h(·, t)⊗ id 〉. (3.52)

Let us agree to identify quite naturally the mapping t 7→ ν(t) = {[ν(t)]x}x∈Ω with a Young
measure (x, t) 7→ νx,t.
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Definition 3.4 We say that a process q = q(t) is stable if

∀q̃ ∈ Q : G(t, q) ≤ G(t, q̃) +D(q(t), q̃) (3.53)

for all t ∈ [0, T ].

An important notion is the so-called set of stable states, S(t), at a time instant t

S(t) = {q ∈ Q; ∀q̃ ∈ Q : G(t, q) ≤ G(t, q̃) +D(q, q̃)} (3.54)

Definition 3.5 We say that the process q = q(t) satisfies the energy inequality if for a.a. s ∈
[0, T ] and a.a. t ∈ [0, T ], s ≤ t,

G(t, q(t))︸ ︷︷ ︸
effective Gibbs’
energy at time t

+ Var(D, q; s, t)︸ ︷︷ ︸
dissipated

energy

≤ G(s, q(s)))︸ ︷︷ ︸
Gibbs’ ener-
gy at time 0

−
∫ t

s

〈
dH
dt
, q(θ)

〉
dθ︸ ︷︷ ︸

reduced work of
external field

(3.55)

where the total variation over the time interval [s, t] is defined standardly, without using
explicitly any time derivative, as

Var(D, q; s, t) := sup
J∑
i=1

D(q(ti−1), q(ti)) (3.56)

≡ sup
J∑
i=1

∫
Ω

d(λ(ti−1), λ(ti)) dx,

where the supremum is taken over all J ∈ N and over all partitions of [s, t] in the form
s = t0 < t1 < ... < tJ−1 < tJ = t.

Definition 3.6 The process q = q(t), q ≡ (ν, λ), will be considered as a solution if ν ∈
Y(Ω × [0, T ];Sn−1), λ ∈ BV([0, T ];L1(Ω;RL)) and q(t) ∈ Q for all t ∈ [0, T ], and it is
stable in the sense (3.53) for all t ∈ [0, T ] and satisfies the energy inequality (3.55) for
a.a. s, t ∈ [0, T ], s ≤ t.

The paper [68] proposes an efficient algorithm based on first-order optimality conditions
which is then applied to numerical solution of of the static problem. The survey article [69]
reviews variety of effects in magnetism, in particular, its multiscale nature due to different
inherent spatio-temporal physical and geometric scales, together with nonlocal phenomena
and a nonconvex side-constraint, which are also the reason for severe problems in analysis,
model validation, reductions, and numerics.

4 Overview of Chapter 2

Chapter 2 consists of papers [62, 52, 31, 64]. The main topic is a detailed analysis of oscil-
lations and concentrations phenomena generated by sequences of gradients of Sobolev maps
and, more generally, sequences of maps from the kernel of a first-order partial differential
operator [31]. The emphasize in the gradient case is put on results describing behavior of
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sequences in the vicinity of the domain boundary. This issue seems to be omitted in existing
literature. Interestingly, a condition which we isolate in [64] to deal with p-homogeneous
integrands and which characterizes the subset of probability measures generated by gradi-
ents on the boundary is the so-called quasiconvexity at the boundary discovered by Ball and
Marsden in 1984 [9] to characterize local minimizers of variational integrals in nonlinear
elasticity. In what follows, we discuss the main results achieved in mentioned papers. The
first one concerns an interesting property of quasiconvex functions.

4.1 Quasiconvexity and transposition

The first paper in the Chapter 2 is concerned with quasiconvexity and its properties. We
again recall that W : Rm×n → R̄ := R ∪ {+∞} is called quasiconvex at A ∈ Rm×n if
for any ϕ ∈ W (Rn;Rm) := {θ ∈ W 1,∞(Rn;Rm); θ is (0, 1)n-periodic} (or equivalently any
ϕ ∈ W 1,∞

0 ((0, 1)n;Rm)) (see e.g. [23])

W (A) ≤
∫

(0,1)n
W (A+∇ϕ(x)) dx (4.1)

whenever the integral on the right hand side exists. We say that W is quasiconvex if the
previous inequality is valid for any A ∈ Rm×n. Quasiconvexity is the key property in the cal-
culus of variations. Namely, if W is only finite valued then quasiconvexity of W is equivalent
to sequential weak lower semicontinuity (omitting some growth conditions) of the functional

I(u) =

∫
Ω

W (∇u(x)) dx ,

where Ω ⊂ Rn is a bounded Lipschitz domain and u : Ω→ Rm smooth enough; cf. e.g. [3, 23].
IfW attains also the value +∞ then it is known that quasiconvexity is the necessary condition
for sequential weak lower semicontinuity of I; cf. [23]. Unfortunately, quasiconvexity is very
difficult to verify even in particular cases. On the other hand, there are known sufficient
conditions and necessary conditions for quasiconvexity.

One sufficient condition is polyconvexity; cf. [5]. W given above is polyconvex if there
is a convex function φ such that, for any A ∈ Rm×n, W (A) = φ(T (A)), where T (A) is a

vector of all subdeterminants of A, thus, T : Rm×n → RN where N :=
∑min(m,n)

l=1

(
m
l

)(
n
l

)
.

Dacorogna [23] showed that W is polyconvex at A ∈ Rm×n if and only if

W (A) = inf

{
N+1∑
i=1

λiW (Ai);
N+1∑
i=1

λiT (Ai) = T (A),
N+1∑
i=1

λi = 1, λi ≥ 0 , Ai ∈ Rm×n

}
.(4.2)

The necessary (if W is real-valued) condition is rank-one convexity. The function W (as
above) is called rank-one convex if W (λA + (1 − λ)B) ≤ λW (A) + (1 − λ)W (B) for any
0 ≤ λ ≤ 1 and any A,B ∈ Rm×n, rank(A−B) = 1; cf. e.g. [23].

If min(m,n) = 1 then quasiconvexity, polyconvexity and rank-one convexity are equiv-
alent to usual convexity. The question whether or not rank-one convexity implies quasi-
convexity if min(m,n) > 1 has been open for many years. In 1992 Šverák [99] found a
counterexample showing that this is not the case when m ≥ 3 and n ≥ 2. In particular, he
showed that for any ε > 0 there is k = k(ε) > 0 such that the function f εk : R3×2 → R

f εk(A) = f(PA) + ε(|A|2 + |A|4) + k|A− PA|2 (4.3)

21



is rank-one convex but there is ε > 0 such that f εk is not quasiconvex for any k > 0 at the
point A = 0. Above, P : R3×2 → R3×2 is an orthogonal projector given by

P

 A11 A12

A21 A22

A31 A32

 =

 A11 0
0 A22

A31+A32

2
A31+A32

2


and

f(PA) = −A11A22(A31 + A32)

2
,

where Aij, i = 1, 2, 3, j = 1, 2 mean the entries of A and | · | is the Euclidean norm.
The aim of [62] is to discuss properties of the function F ε

k : R2×3 → R defined as

F ε
k (A) = f εk(At) (4.4)

and its limit for k → ∞. The superscript “t” denotes the transposition (i.e. Atij = Aji).
Namely, we show that limk→∞ F

ε
k is quasiconvex although limk→∞ f

ε
k is not.

4.2 Gradient DiPerna-Majda measures

Let us take a complete (i.e. containing constants, separating points from closed subsets and
closed with respect to the Chebyshev norm) separable ring R of continuous bounded func-
tions Rm×n → R. It is known [28, Sect. 3.12.21] that there is a one-to-one correspondence
R 7→ βRRm×n between such rings and metrizable compactifications of Rm×n; by a compact-
ification we mean here a compact set, denoted by βRRm×n, into which Rm×n is embedded
homeomorphically and densely. For simplicity, we will not distinguish between Rm×n and its
image in βRRm×n. Similarly, we will not distinguish between elements of R and their unique
continuous extensions on βRRm×n.

Let σ ∈ M(Ω̄) be a positive Radon measure on a bounded domain Ω̄ ⊂ Rn. A mapping
ν̂ : x 7→ ν̂x belongs to the space L∞w (Ω̄, σ;M(βRRm×n)) if it is weakly* σ-measurable (i.e.,
for any v0 ∈ C0(Rm×n), the mapping Ω̄ → R : x 7→

∫
βRRm×n v0(s)ν̂x( ds) is σ-measurable in

the usual sense). If additionally ν̂x ∈ rca+
1 (βRRm×n) for σ-a.a. x ∈ Ω̄ the collection {ν̂x}x∈Ω̄

is the so-called Young measure on (Ω̄, σ) [108], see also [6, 91, 100, 103, 107].
DiPerna and Majda [25] shown that having a bounded sequence in Lp(Ω;Rm×n) with

1 ≤ p < +∞ and Ω an open domain in Rn, there exists its subsequence (denoted by the
same indices), a positive Radon measure σ ∈ M(Ω̄), and a Young measure ν̂ : x 7→ ν̂x on
(Ω̄, σ) such that (σ, ν̂) is attainable by a sequence {yk}k∈N ⊂ Lp(Ω;Rm×n) in the sense that
∀g∈C(Ω̄) ∀v0∈R:

lim
k→∞

∫
Ω

g(x)v(yk(x)) dx =

∫
Ω̄

∫
βRRm×n

g(x)v0(s)ν̂x( ds)σ( dx) , (4.5)

where
v ∈ Υp

R(Rm×n) := {v0(1 + | · |p); v0 ∈ R}.
In particular, putting v0 = 1 ∈ R in (4.5) we can see that

lim
k→∞

(1 + |yk|p) = σ weakly* in M(Ω̄) . (4.6)
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If (4.5) holds, we say that {yk}∈N generates (σ, ν̂). Let us denote byDMp
R(Ω;Rm×n) the set of

all pairs (σ, ν̂) ∈M(Ω̄)×L∞w (Ω̄, σ;M(βRRm×n)) attainable by sequences from Lp(Ω;Rm×n);
note that, taking v0 = 1 in (4.5), one can see that these sequences must be inevitably bounded
in Lp(Ω;Rm×n). We also denote by GDMp

R(Ω;Rm×n) measures from DMp
R(Ω;Rm×n) gen-

erated by a sequence of gradients of some bounded sequence in W 1,p(Ω;Rm). The explicit
description of the elements from DMp

R(Ω;Rm×n), called DiPerna-Majda measures, for un-
constrained sequences was given in [70, Theorem 2]. In fact, it is easy to see that (4.5) can
be also written in the form

lim
k→∞

∫
Ω

h(x, yk(x)) dx =

∫
Ω̄

∫
βRRm×n

h0(x, s)ν̂x( ds)σ( dx) , (4.7)

where h(x, s) := h0(x, s)(1 + |s|p) and h0 ∈ C(Ω̄⊗ βRRm×n).
We say that {yk} generates (σ, ν̂) if (4.5) holds. Moreover, we denote dσ ∈ L1(Ω) the

absolutely continuous (with respect to the Lebesgue measure) part of σ in the Lebesgue
decomposition of σ.

Let us recall that for any (σ, ν̂) ∈ DMp
R(Ω;Rm×n) there is precisely one (σ◦, ν̂◦) ∈

DMp
R(Ω;Rm×n) such that∫

Ω

∫
Rm×n

v0(s)ν̂x( ds)g(x)σ( dx) =

∫
Ω̄

∫
Rm×n

v0(s)ν̂◦x( ds)g(x)σ◦( dx) (4.8)

for any v0 ∈ C0(Rm×n) and any g ∈ C(Ω̄) and (σ◦, ν̂◦) is attainable by a sequence {yk}k∈N
such that the set {|yk|p; k ∈ N} is relatively weakly compact in L1(Ω); see [70, 91] for details.
We call (σ◦, ν̂◦) the nonconcentrating modification of (σ, ν̂). We call (σ, ν̂) ∈ DMp

R(Ω;Rm×n)
nonconcentrating if ∫

Ω̄

∫
βRRm×n\Rm×n

ν̂x(ds)σ(dx) = 0 .

There is a one-to-one correspondence between nonconcentrating DiPerna-Majda measures
and Young measures; cf. [91].

We wish to emphasize the following fact: if {yk} ∈ Lp(Ω;Rm×n) generates (σ, ν̂) ∈
DMp

R(Ω;Rm×n) and σ is absolutely continuous with respect to the Lebesgue measure it
generally does not mean that {|yk|p} is weakly relatively compact in L1(Ω). A simple
examples can be found e.g. in [71, 91].

Having a sequence bounded in Lp(Ω;Rm×n) generating a DiPerna-Majda measure (σ, ν̂) ∈
DMp

R(Ω;Rm×n) it also generates an Lp-Young measure ν ∈ Yp(Ω;Rm×n). It easily follows
from [91, Th. 3.2.13] that

νx(ds) = dσ◦(x)
ν̂◦x(ds)

1 + |s|p
for a.a. x ∈ Ω . (4.9)

Note that (4.9) is well-defined as ν̂◦x is supported on Rm×n. As pointed out in [70, Remark 2]
for almost all x ∈ Ω

dσ(x) =

(∫
Rm×n

ν̂x(ds)

1 + |s|p

)−1

. (4.10)
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In fact, that (4.8) can be even improved to∫
Ω

∫
Rm×n

v0(s)ν̂x( ds)g(x)σ( dx) =

∫
Ω̄

∫
Rm×n

v0(s)ν̂◦x( ds)g(x)σ◦( dx) (4.11)

for any v0 ∈ R and any g ∈ C(Ω̄). The one-to-one correspondence between Young and
DiPerna-Majda measures, in particular (see (4.9) and (4.11))∫

Rm×n
v(s)νx(ds) = dσ(x)

∫
Rm×n

v0(s)ν̂x(ds)

whenever v ∈ Υp
R(Rm×n), finally yields that ∀g∈C(Ω̄) ∀v∈ Υp

R(Rm×n):

lim
k→∞

∫
Ω

g(x)v(yk(x)) dx =

∫
Ω

∫
Rm×n

v(s)g(x)νx(ds) dx

+

∫
Ω̄

∫
βRRm×n\Rm×n

v(s)

1 + |s|p
ν̂x(ds)g(x)σ(dx) , (4.12)

where ν ∈ Yp(Ω;Rm×n) and (σ, ν̂) ∈ DMp
R(Ω;Rm×n) are Young and DiPerna-

Majda measures generated by {yk}k∈N, respectively. We will denote elements from
DMp

R(Ω;Rm×n) which are generated by {∇uk}k∈N for some bounded {uk} ⊂ W 1,p(Ω;Rm)
by GDMp

R(Ω;Rm×n).
The following two theorems were proved in [52].

Theorem 4.1 Let Ω ⊂ Rn be a bounded domain with Lipschitz boundary, 1 < p < +∞
and (σ, ν̂) ∈ DMp

R(Ω;Rm×n). Then then there is u ∈ W 1,p(Ω;Rm) and a bounded sequence

{uk − u}k∈N ⊂ W 1,p
0 (Ω;Rm) such that {∇uk}k∈N generates (σ, ν̂) if and only if the following

three conditions hold

for a.a. x ∈ Ω: ∇u(x) = dσ(x)

∫
βRRm×n

s

1 + |s|p
ν̂x( ds) , (4.13)

for almost all x ∈ Ω and for all v ∈ Υp
R(Rm×n) the following inequality is fulfilled

Qv(∇u(x)) ≤ dσ(x)

∫
βRRm×n

v(s)

1 + |s|p
ν̂x( ds) , (4.14)

for σ-almost all x ∈ Ω̄ and all v ∈ Υp
R(Rm×n) with Qv > −∞ it holds that

0 ≤
∫
βRRm×n\Rm×n

v(s)

1 + |s|p
ν̂x(ds) . (4.15)

The next theorem addresses DiPerna-Majda measures generated by gradients of maps
with possibly different traces.
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Theorem 4.2 Let Ω be an arbitrary bounded domain, 1 < p < +∞ and (σ, ν̂) ∈
GDMp

R(Ω;Rm×n) be generated by {∇uk}k∈N such that w-limk→∞ uk = u in W 1,p(Ω;Rm).
Then the conditions (4.13), (4.14) hold, and (4.15) is satisfied for σ-a.a. x ∈ Ω.

Remark 4.3 (i) It can happen that under the assumptions of Theorem 4.2 formula (4.15)
does not hold on ∂Ω. See an example in [10] showing the violation of weak sequential conti-
nuity of W 1,2(Ω;R2)→ L1(Ω) : u 7→ det ∇u if Ω = (−1, 1)2.
(ii) In terms of Young measures, conditions (4.13) and (4.14) read, respectively: there is
u ∈ W 1,p(Ω;Rm):

∇u(x) =

∫
Rm×n

sνx(ds) , (4.16)

for all v : Rm×n → R, |v| ≤ C(1 + | · |p):

Qv(∇u(x)) ≤
∫
Rm×n

v(s)νx(ds) . (4.17)

Finally, we have the following result from [52].

Theorem 4.4 Let Ω ⊂ Rn be a bounded Lipschitz domain. Let 0 ≤ g ∈ C(Ω̄), v ∈ C(Rm×n),
|v| ≤ C(1 + | · |p), C > 0, quasiconvex, and 1 < p < +∞. Then the functional I :
W 1,p(Ω;Rm)→ R defined as

I(u) :=

∫
Ω

g(x)v(∇u(x)) dx (4.18)

is sequentially weakly lower semicontinuous in W 1,p(Ω;Rm) if and only if for any bounded
sequence {wk} ⊂ W 1,p(Ω;Rm) such that ∇wk → 0 in measure we have lim infk→∞ I(wk) ≥
I(0).

Moreover, oscillations and concentrations effects generated by sequences from a kernel of
a first-order linear differential operator are studied in [31].

In particular, following [33], we consider linear operators A(i) : Rm → Rd, i = 1, . . . , n,
and define A : Lp(Ω;Rm)→ W−1,p(Ω;Rd) by

Au :=
n∑
i=1

A(i) ∂u

∂xi
,where u : Ω→ Rm , (4.19)

i.e., for all w ∈ W 1,p′

0 (Ω;Rd)

〈Au,w〉 = −
n∑
i=1

∫
Ω

A(i)u(x) · ∂w(x)

∂xi
dx .
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For w ∈ Rn we define the linear map

A(w) :=
n∑
i=1

wiA
(i) : Rm → Rd , (4.20)

and assume that there is r ∈ N ∪ {0} such that

rank A(w) = r for all w ∈ Rn , |w| = 1 ,

i.e., A has the so-called constant-rank property. Corresponding weak lower semicontinuity
results and characterization of DiPerna-Majda measures can be found in [31].

4.3 Quasiconvexity at the boundary

Oscillations and/or concentrations appear in many problems in the calculus of variations,
partial differential equations, or optimal control theory, which admit only Lp but not L∞

apriori estimates. While Young measures [108] successfully capture oscillatory behavior (see
e.g. [66, 83, 93, 94]) of sequences they completely miss concentrations. There are several
tools how to deal with concentrations. They can be considered as generalization of Young
measures, see for example Alibert’s and Bouchitté’s approach [4], DiPerna’s and Majda’s
treatment of concentrations [25], or Fonseca’s method described in [30]. An overview can be
found in [91, 101]. Moreover, in many cases, we are interested in oscillation/concentration
effects generated by sequences of gradients. A characterization of Young measures generated
by gradients was completely given by Kinderlehrer and Pedregal [54, 56], cf. also [83, 85].
The first attempt to characterize both oscillations and concentrations in sequences of gra-
dients is due to Fonseca, Müller, and Pedregal [32]. They dealt with a special situation
of {gv(∇uk)}k∈N where v coincides with a positively p-homogeneous function at infinity
(see (4.26) for a precise statement), uk ∈ W 1,p(Ω;Rm), p > 1, with g continuous and van-
ishing on ∂Ω. Later on, a characterization of oscillation/concentration effects in terms of
DiPerna’s and Majda’s generalization of Young measures was given in [52] for arbitrary in-
tegrands and in [31] for sequences living in the kernel of a first-order differential operator.
Recently, Kristensen and Rindler [59] characterized oscillation/concentration effects in the
case p = 1. Nevertheless, a complete analysis of boundary effects generated by gradients is
still missing. We refer to [52] for the case where uk = u on the boundary of the domain. As
already observed by Meyers [79], concentration effects at the boundary are closely related
to the sequential weak lower semicontinuity of integral functionals I : W 1,p(Ω;Rm) → R:
I(u) =

∫
Ω
v(∇u(x)) dx where v : Rm×n → R is continuous and such that |v| ≤ C(1+ | · |p) for

some constant C > 0, cf. also [60] for recent results. Indeed, consider u ∈ W 1,p
0 (B(0, 1);Rm),

where B(0, 1) is the unit ball in Rn centered at 0, and extend it by zero to the whole Rn.
Define for x ∈ Rn and k ∈ N uk(x) := kn/p−1u(kx), i.e., uk⇀0 in W 1,p(B(0, 1);Rm) and
consider a smooth convex domain Ω ∈ Rn such that 0 ∈ ∂Ω, % is the outer unit normal
to ∂Ω at 0 and let there be x ∈ Ω such that % · x < 0. Moreover, take a function v to
be positively p-homogeneous, i.e., v(αs) = αpv(s) for all α ≥ 0. Then if I is weakly lower
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semicontinuous then

0 = I(0) ≤ lim inf
k→∞

∫
Ω

v(∇uk(x)) dx = lim inf
k→∞

∫
B(0,1)∩Ω

v(∇uk(x)) dx

= lim inf
k→∞

∫
B(0,1)∩Ω

knv(∇(u(kx)) dx

=

∫
B(0,1)∩{x∈Rn; %·x<0}

v(∇u(y)) dy . (4.21)

Thus, we see that

0 ≤
∫
B(0,1)∩{x∈Rn; %·x<0}

v(∇u(y)) dy

for all u ∈ W 1,p
0 (B(0, 1);Rm) forms a necessary condition for weak lower semicontinuity of

I. Here we show that the weak lower semicontinuity of the above defined functional I is
intimately related to the so-called quasiconvexity at the boundary defined by Ball and Mars-
den in [9] and that this notion of quasiconvexity plays a crucial role in the characterization
of parametrized measures generated by sequences of gradients. Moreover, we show that if
{uk} ⊂ W 1,2(Ω;R3), uk⇀u, and h(x, s) := [Cof s] · (a(x) ⊗ %(x)) (“Cof” denotes the cofac-
tor matrix) for some a, % ∈ C(Ω̄;R3) such that % coincides with the outer unit normal to
∂Ω on the boundary ∂Ω of a smooth bounded domain Ω ⊂ R3 then h(·,∇uk) → h(·,∇u)
weakly* in Radon measures supported in Ω̄. If, additionally, h(x,∇uk(x)) ≥ 0 for all k ∈ N
and almost all x ∈ Ω then the above convergence is even in the weak topology of L1(Ω).
Hence, there is a continuous function ψ : [0,+∞)→ [0,+∞) such that limt→∞ ψ(t)/t = +∞
and supk∈N

∫
Ω
ψ (h(x,∇uk(x))) dx < +∞. This result, which can be generalized to higher

dimensions, too, is an analogy to the celebrated S. Müler’s result on higher integrability of
determinants [82]. See also [43, 55]. Nevertheless, there are indications [51] that the problem
might be more complicated for quasiconvexity at the boundary.

Following [9, 96, 98] we define the notion of quasiconvexity at the boundary. In order to
proceed, we first define the so-called standard boundary domain.

Definition 4.5 Let % ∈ Rn be a unit vector and let Ω% be a bounded open Lipschitz domain.
We say that Ω% is a standard boundary domain with the normal % if there is a ∈ Rn such that
Ω% ⊂ Ha,% := {x ∈ Rn; % · x < a} and the (n − 1)- dimensional interior Γ% of ∂Ω% ∩ ∂Ha,%

is nonempty.

We are now ready to define the quasiconvexity at the boundary. We put for 1 ≤ p ≤ +∞

W 1,p
Γ%

(Ω%;Rm) := {u ∈ W 1,p(Ω%;Rm); u = 0 on ∂Ω% \ Γ%} . (4.22)

Definition 4.6 ([9]) Let % ∈ Rn be a unit vector. A function v : Rm×n → R is called
quasiconvex at the boundary at s0 ∈ Rm×n with respect to % (shortly v is qcb at (s0, %)) if
there is q ∈ Rm such that for all u ∈ W 1,∞

Γ%
(Ω%;Rm) it holds∫

Γ%

q · u(x) dS + v(s0)|Ω%| ≤
∫

Ω%

v(s0 +∇u(x)) dx . (4.23)
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It will be convenient to define the following notion recalling the quasiconvex envelope of
v at zero. Here, however, we integrate only over a standard boundary domain with a given
normal. If % ∈ Rn has a unit length then put

Qb,%v(0) := inf
u∈W 1,p

Γ%
(Ω%;Rm)

1

|Ω%|

∫
Ω%

v(∇u(x)) dx . (4.24)

Remark 4.7 If v is positively p homogeneous with p > 1 then either Qb,%v(0) = 0 or
Qb,%v(0) = −∞. We also have that Qb,%v(0) ≤ Qv(0).

4.3.1 Compactification of Rm×n by the sphere

In what follows we will work mostly with a particular compactification of Rm×n, namely,
with the compactification by the sphere. We will consider the following ring of continuous
bounded functions

S :=

{
v0 ∈ C(Rm×n) : there exist c ∈ Rm×n , v0,0 ∈ C0(Rm×n), and v0,1 ∈ C(S(m×n)−1);

v0(s) = c+ v0,0(s) + v0,1

(
s

|s|

)
|s|p

1 + |s|p
if s 6= 0 and v0(0) = c+ v0,0(0)

}
, (4.25)

where Sm×n−1 denotes the (mn − 1)-dimensional unit sphere in Rm×n. Then βSRm×n is

homeomorphic to the unit ball B(0, 1) ⊂ Rm×n via the mapping d : Rm×n → B(0, 1),

d(s) := s/(1 + |s|) for all s ∈ Rm×n. Note that d(Rm×n) is dense in B(0, 1).
For any v ∈ Υp

S(Rm×n) there exists a continuous and positively p-homogeneous function
v∞ : Rm×n → R (i.e. v∞(αs) = αpv∞(s) for all α ≥ 0 and s ∈ Rm) such that

lim
|s|→∞

v(s)− v∞(s)

|s|p
= 0 . (4.26)

Indeed, if v0 is as in (4.25) and v = v0(1 + | · |p) then set

v∞(s) :=

(
c+ v0,1

(
s

|s|

))
|s|p for s ∈ Rm×n \ {0}.

By continuity we define v∞(0) := 0. It is easy to see that v∞ satisfies (4.26). Such v∞ is
called the recession function of v.

Our main result is the following explicit characterization of DiPerna-Majda measures
from DMp

S(Ω;Rm×n) which are generated by gradients.

Theorem 4.8 Let Ω ⊂ Rn be a smooth (at least C1) bounded domain, 1 < p < +∞, and
(σ, ν̂) ∈ DMp

S(Ω;Rm×n). Then then there is a bounded sequence {uk}k∈N ⊂ W 1,p(Ω;Rm)
such that {∇uk}k∈N generates (σ, ν̂) if and only if the following three conditions hold
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for a.a. x ∈ Ω: ∇u(x) = dσ(x)

∫
βSRm×n

s

1 + |s|p
ν̂x( ds) , (4.27)

for almost all x ∈ Ω and for all v ∈ Υp
S(Rm×n) the following inequality is fulfilled

Qv(∇u(x)) ≤ dσ(x)

∫
βSRm×n

v(s)

1 + |s|p
ν̂x( ds) , (4.28)

for σ-almost all x ∈ Ω and all v ∈ Υp
S(Rm×n) with Qv∞ > −∞ it holds that

0 ≤
∫
βSRm×n\Rm×n

v(s)

1 + |s|p
ν̂x(ds) , (4.29)

and for σ-almost all x ∈ ∂Ω with the outer unit normal to the boundary %(x) and all v ∈
Υp
S(Rm×n) with Qb,%(x)v∞(0) = 0 it holds that

0 ≤
∫
βSRm×n\Rm×n

v(s)

1 + |s|p
ν̂x(ds) . (4.30)

The following results show that sequential weak lower semicontinuity of I from (4.18)
puts serious restrictions on v.

Theorem 4.9 Let Ω ⊂ Rn be a smooth bounded domain and 1 < p < +∞. Let 0 ≤ g ∈
C(Ω̄), 0 < g on ∂Ω, v ∈ C(Rm×n), and |v| ≤ C(1+|·|p), C > 0, quasiconvex such that there is
a positively p-homogeneous function v∞ : Rm×n → R satisfying lim|s|→∞(v(s)−v∞(s))/|s|p =
0. Then the functional I defined by (4.18) is sequentially weakly lower semicontinuous in
W 1,p(Ω;Rm) if and only if Qb,%v∞(0) = 0 for every % a unit outer normal to ∂Ω.

Theorem 4.10 Let Ω ⊂ Rn be a smooth bounded domain and 1 < p < +∞. Let 0 ≤
g ∈ C(Ω̄), 0 < g on ∂Ω, v ∈ C(Rm×n), and |v| ≤ C(1 + | · |p), C > 0, quasiconvex such
that there is a positively p-homogeneous function v∞ : Rm×n → R satisfying lim|s|→∞(v(s)−
v∞(s))/|s|p = 0. Let {uk} ⊂ W 1,p(Ω;Rm) weakly converge to u ∈ W 1,p(Ω;Rm). Let |∇uk|p →
σ weakly* inM(Ω̄). Then the functional I defined by (4.18) satisfies I(u) ≤ lim infk→∞ I(uk)
if Qb,%(x)v∞(0) = 0 for every %(x), a unit outer normal to ∂Ω at x ∈ ∂Ω, for σ-a.a. x ∈ ∂Ω.

Theorem 4.11 Let Ω ⊂ R3 be a smooth bounded domain. Let {uk} ⊂ W 1,2(Ω;R3) be such
that uk → u weakly in W 1,2(Ω;R3). Let h(x, s) = Cof s ·(a(x)⊗%(x)), where a, % ∈ C(Ω̄;R3),
% coincides at ∂Ω with the outer unit normal to ∂Ω. Then for all g ∈ C(Ω̄)

lim
k→∞

∫
Ω

g(x)h(x,∇uk(x)) dx =

∫
Ω

g(x)h(x,∇u(x)) dx . (4.31)

If, moreover, for all k ∈ N h(·,∇uk) ≥ 0 almost everywhere in Ω then h(·,∇uk)→ h(·,∇u)
weakly in L1(Ω).

A more general compactifications that the one by the sphere are considered in [61]. In
particular, a general relaxation result for possibly noncoercive integrands is proved there;
see [61, Theorem 3.2].
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[12] Bartels, S., Kruž́ık, M.: An efficient approach to the numerical solution of rate-independent prob-
lems with nonconvex energies. Multiscale Modeling & Simulation 9 (2011), 1276–1300.
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