Photosynthetica, 2020 (vol. 58), SPECIAL ISSUE

Photosynthetica 2020, 58(2):433-442 | DOI: 10.32615/ps.2019.181

Special issue in honour of Prof. Reto J. Strasser – Can we predict winter survival in plants using chlorophyll a fluorescence?

T. SWOCZYNA1, J. MOJSKI2, A.H. BACZEWSKA-DĄBROWSKA3, H.M. KALAJI5, N.I. ELSHEERY6
Department of Environment Protection and Dendrology, Institute of Horticulture Sciences, Warsaw University
1 of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warszawa, Poland
2 Twój Świat Jacek Mojski, ul. Okrzei 39, 21-400 Łuków, Poland
3 Polish Academy of Sciences Botanical Garden - Center for the Conservation of Biological Diversity in Powsin, Prawdziwka 2, 02-973 Warszawa, Poland
5 Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warszawa, Poland
6 Agriculture Botany Department, Faculty of Agriculture, Tanta University, Egypt

In the last years, JIP-test became to be a tool widely applied to assess the performance of photosynthetic apparatus of plants growing under environmental stresses. The objective of our work was to check whether JIP-test can help to predict winter survival in plants. An experiment with outdoor vertical garden was conducted in June 2015 on a south-oriented wall in Lublin city, Poland. Plants were cultivated in pockets made of polyester felt and irrigated by automatic controlled system. After winter period (2015/2016) only 16 species and cultivars from 23 initially planted taxa substantiated successful survival. Chlorophyll fluorescence measurements were performed twice in 2015 and six times in 2016. Survival rate of examined species did not show any significant correlation with performance indices of PSII (PIABS and PItotal) and parameters related to quantum yields. On the other hand, changes of some parameters related to specific energy fluxes per active reaction centres were found to be connected, to some extent, to plants winter survival. These changes could play a key role in plants ability to survive winter conditions.

Keywords: green wall; JIP-test; perennials; plant winter hardiness; vertical garden.

Received: October 23, 2019; Revised: December 16, 2019; Accepted: December 30, 2019; Prepublished online: February 13, 2020; Published: April 7, 2020Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
SWOCZYNA, T., MOJSKI, J., BACZEWSKA-DĄBROWSKA, A.H., KALAJI, H.M., & ELSHEERY, N.I. (2020). Special issue in honour of Prof. Reto J. Strasser – Can we predict winter survival in plants using chlorophyll a fluorescence? Photosynthetica58(SPECIAL ISSUE), 433-442. doi: 10.32615/ps.2019.181.
Download citation

References

  1. Alexandri E., Jones P.: Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates. -Build. Environ. 43: 480-493, 2008. Go to original source...
  2. Bąba W., Kalaji H.M., Kompała-Bąba A., Goltsev V.: Acclimati-zation of photosynthetic apparatus of tor grass (Brachypodium pinnatum) during expansion. - PLoS ONE 11: e0156201, 2016. Go to original source...
  3. Bacarin M.A., Deuner S., da Silva F.S.P. et al.: Chlorophyll a fluorescence as indicative of the salt stress on Brassica napus L. - Braz. J. Plant Physiol. 23: 245-253, 2011. Go to original source...
  4. Brestič M., Živčák M., Kalaji H.M. et al.: Photosystem II thermostability in situ: Environmentally induced acclimation and genotype-specific reactions in Triticum aestivum L. - Plant Physiol. Bioch. 57: 93-105, 2012. Go to original source...
  5. Bussotti F., Desotgiu R., Pollastrini M., Cascio C.: The JIP test: a tool to screen the capacity of plant adaptation to climate change. - Scand. J. Forest Res. 25: 43-50, 2010. Go to original source...
  6. Bussotti F., Pollastrini M.: Field surveys of ozone symptoms in Europe. Problems, reliability and significance for ecosystems. -Ann. Bot.-London 5: 31-37, 2015.
  7. Christen D., Schönmann S., Jermini M. et al.: Characterization and early detection of grapevine (Vitis vinifera) stress responses to esca disease by in situ chlorophyll fluorescence and comparison with drought stress. - Environ. Exp. Bot. 60: 504-514, 2007. Go to original source...
  8. Dąbrowski P., Baczewska A.H., Pawluśkiewicz B. et al.: Prompt chlorophyll a fluorescence as a rapid tool for diagnostic changes in PSII structure inhibited by salt stress in Perennial ryegrass. - J. Photoch. Photobio. B 157: 22-31, 2016. Go to original source...
  9. Dąbrowski P., Baczewska-Dąbrowska A.H., Kalaji H.M. et al.: Exploration of chlorophyll a fluorescence and plant gas exchange parameters as indicators of drought tolerance in perennial ryegrass. - Sensors-Basel 19: 2736, 2019. Go to original source...
  10. Dąbrowski P., Pawluśkiewicz B., Baczewska A.H. et al.: Chlorophyll a fluorescence of perennial ryegrass (Lolium perenne L.) varieties under long term exposure to shade. - Zemdirbyste 102: 305-312, 2015. Go to original source...
  11. Duan Y., Zhang M., Gao J. et al.: Thermotolerance of apple tree leaves probed by chlorophyll a fluorescence and modulated 820 nm reflection during seasonal shift. - J. Photoch. Photobio. B 152: 347-356, 2015. Go to original source...
  12. Fan J., Hu Z., Xie Y. et al.: Alleviation of cold damage to photosystem II and metabolisms by melatonin in Bermudagrass. - Front. Plant Sci. 6: 925, 2015. Go to original source...
  13. Fiorani F., Schurr U.: Future scenarios for plant phenotyping. - Annu. Rev. Plant Biol. 64: 267-291, 2013. Go to original source...
  14. Goltsev V., Zaharieva I., Chernev P. et al.: Drought-induced modifications of photosynthetic electron transport in intact leaves: Analysis and use of neural networks as a tool for a rapid non-invasive estimation. - BBA-Bioenergetics 1817: 1490-1498, 2012.
  15. Hermans C., Smeyers M., Rodriguez R.M. et al.: Quality assessment of urban trees: A comparative study of physio-logical characterisation, airborne imaging and on site fluores-cence monitoring by the OJIP-test. - J. Plant Physiol. 160: 81-90, 2003. Go to original source...
  16. Jedmowski C., Brüggemann W.: Imaging of fast chlorophyll fluorescence curve (OJIP) parameters, applied in a screening study with wild barley (Hordeum spontaneum) genotypes under heat stress. - J. Photoch. Photobio. B 151: 153-160, 2015. Go to original source...
  17. Jiang C.-D., Jiang G.-M., Wang X. et al.: Increased photosynthetic activities and thermostability of photosystem II with leaf development of elm seedlings (Ulmus pumila) probed by the fast fluorescence rise OJIP. - Environ. Exp. Bot. 58: 261-268, 2006. Go to original source...
  18. Kalaji H.M., Bąba W., Gediga K. et al.: Chlorophyll fluorescence as a tool for nutrient status identification in rapeseed plants. - Photosynth. Res. 136: 329-343, 2018b. Go to original source...
  19. Kalaji H.M., Bosa K., Kościelniak J., Hossain Z.: Chlorophyll a fluorescence - a useful tool for the early detection of temperature stress in spring barley (Hordeum vulgare L.). - Omics 15: 925-934, 2011. Go to original source...
  20. Kalaji H.M., Carpentier R., Allakhverdiev S.I., Bosa K.: Fluorescence parameters as early indicators of light stress in barley. - J. Photoch. Photobio. B 112: 1-6, 2012. Go to original source...
  21. Kalaji H.M., Jajoo A., Oukarroum A. et al.: Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. - Acta Physiol. Plant. 38: 102, 2016. Go to original source...
  22. Kalaji H.M, Račková L., Paganová V. et al.: Can chlorophyll-a fluorescence parameters be used as bio-indicators to distinguish between drought and salinity stress in Tilia cordata Mill? - Environ. Exp. Bot. 152: 149-157, 2018a. Go to original source...
  23. Kalaji H.M., Rastogi A., Živčák M. et al.: Prompt chlorophyll fluorescence as a tool for crop phenotyping: an example of barley landraces exposed to various abiotic stress factors. - Photosynthetica 56: 953-961, 2018c. Go to original source...
  24. Keča N., Tkaczyk M., Żółciak A. et al.: Survival of European ash seedlings treated with phosphite after infection with the Hymenoscyphus fraxineus and Phytophthora species. - Forests 9: 442, 2018.
  25. Lepeduš H., Jurković V., Štolfa I. et al.: Changes in photosystem II photochemistry in senescing maple leaves. - Croat. Chem. Acta 83: 379-386, 2010.
  26. Medl A., Stangl R., Florineth F.: Vertical greening systems - A review on recent technologies and research advancement. - Build. Environ. 125: 227-239, 2017. Go to original source...
  27. Oukarroum A., Lebrihi A., El Gharous M. et al.: Desiccation-induced changes of photosynthetic transport in Parmelina tiliacea (Hoffm.) Ach. analysed by simultaneous measure-ments of the kinetics of prompt fluorescence, delayed fluores-cence and modulated 820 nm reflection. - J. Lumin. 198: 302-308, 2018. Go to original source...
  28. Oukarroum A., Madidi S.E., Schansker G., Strasser R.J.: Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. - Environ. Exp. Bot. 60: 438-446, 2007. Go to original source...
  29. Parvanova D., Popova A., Zaharieva I. et al.: Low temperature tolerance of tobacco plants transformed to accumulate proline, fructans, or glycine betaine. Variable chlorophyll fluorescence evidence. - Photosynthetica 42: 179-185, 2004. Go to original source...
  30. Paunov M., Koleva L., Vassilev A. et al.: Effects of different metals on photosynthesis: cadmium and zinc affect chlorophyll fluorescence in durum wheat. - Int. J. Mol. Sci. 19: 787, 2018. Go to original source...
  31. Pietruschka R., Schurr U.: Plant phenotyping: Past, present, and Future. - Plant Phenom. 2019: 7507131, 2019.
  32. Pollastrini M., Holland V., Brüggeman W. et al.: Interaction and competition processes among tree species in young experimental mixed forests, assessed with chlorophyll fluorescence and leaf morphology. - Plant Biol. 16: 323-331, 2014. Go to original source...
  33. Rapacz M., Sasal M., Kalaji H.M. Kościelniak J.: Freezing tolerance of common wheat and triticale under variable winter environments? - PLoS ONE 10: e0134820, 2015. Go to original source...
  34. Rastogi A., Živčák M., Tripathi D.K. et al.: Phytotoxic effect of silver nanoparticles in Triticum aestivum: Improper regulation of photosystem I activity as the reason for oxidative damage in the chloroplast. - Photosynthetica 57: 209-216, 2019. Go to original source...
  35. Redillas M.C., Jeong J.S., Strasser R.J. et al.: JIP analysis on rice (Oryza sativa cv Nipponbare) grown under limited nitrogen conditions. - J. Korean Soc. Appl. Bi. 54: 827-832, 2011. Go to original source...
  36. Skarżyński D., Pływaczyk A., Pęczkowski G.: [Evaluation of performance of selected green wall systems located in the lowlands of the Lower Silesia.] - Inż. Ekolog. 39: 166-175, 2014. [In Polish with English abstract]
  37. Snider J.L., Thangthong N., Pilon C. et al.: OJIP-fluorescence parameters as rapid indicators of cotton (Gossypium hirsutum L.) seedling vigor under contrasting growth temperature regimes. - Plant Physiol. Bioch. 132: 249-257, 2018. Go to original source...
  38. Strasser B.J., Strasser R.J.: Measuring fast fluorescence transients to address environmental questions: The JIP test. - In: Mathis P. (ed.): Photosynthesis: From Light to Biosphere. Vol. 5. Pp. 977-980. Kluwer Academic Publishers, Dordrecht 1995. Go to original source...
  39. Strasser R.J., Govindjee: On the O-J-I-P fluorescence transient in leaves and Dl mutants of Chlamydomonas reinhardtii. - In: Murata N. (ed.): Research in Photosynthesis. Vol. 4. Pp. 29-32. Kluwer Academic Publishers, Dordrecht 1992.
  40. Strasser R.J., Srivastava A., Tsimilli-Michael M.: The fluores-cence transient as a tool to characterize and screen photosyn-thetic samples. - In: Yunus M., Pathre U., Mohanty P. (ed.): Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Pp. 445-483. Taylor & Francis, London 2000.
  41. Strasser R.J., Tsimilli-Michael M., Qiang S., Goltsev V.: Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. - BBA-Bioenergetics 1797: 1313-1326, 2010. Go to original source...
  42. Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. - In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 321-362. Springer, Dordrecht 2004. Go to original source...
  43. Swoczyna T., Kalaji H.M., Pietkiewicz S., Borowski J.: Ability of various tree species to acclimation in urban environments probed with the JIP-test. - Urban For. Urban Gree. 14: 544-553, 2015. Go to original source...
  44. Swoczyna T., Łata B., Stasiak A. et al.: JIP-test in assessing sensitivity to nitrogen deficiency in two cultivars of Actinidia arguta (Siebold et Zucc.) Planch. ex Miq. - Photosynthetica 57: 646-658, 2019. Go to original source...
  45. Timur Ö.B., Karaca E.: Vertical gardens. - In: Ozyavuz M. (ed.): Advances in Landscape Architecture. Pp. 587-622. InTechOpen, Rijeka, 2013.
  46. Tsonev T., Velikova V., Yildiz-Aktas L. et al.: Effect of water deficit and potassium fertilization on photosynthetic activity in cotton plants. - Plant Biosyst. 145: 841-847, 2011. Go to original source...
  47. Tuba Z., Saxena D.K., Rathore K.S. et al.: Chlorophyll a fluorescence measurements for validating the tolerant bryophytes for heavy metal (Pb) biomapping. - Curr. Sci. India 98: 1505-1508, 2010.
  48. Ugolini F., Bussotti F., Lanini G.M. et al.: Leaf gas exchanges and photosystem efficiency of the holm oak in urban green areas of Florence, Italy. - Urban For. Urban Gree. 11: 313-319, 2012. Go to original source...
  49. Valentini R., Epron D., De Angelis P. et al.: In situ estimation of net CO2 assimilation, photosynthetic electron flow and photorespiration in Turkey oak (Q. cerris L.) leaves: Diurnal cycles under different levels of water supply. - Plant Cell Environ. 18: 631-640, 1995. Go to original source...
  50. Walter A., Liebisch F., Hund A.: Plant phenotyping: from bean weighing to image analysis. - Plant Methods 11: 14, 2015. Go to original source...
  51. Wang Z.X., Chen L., Ai J. et al.: Photosynthesis and activity of photosystem II in response to drought stress in Amur Grape (Vitis amurensis Rupr.). - Photosynthetica 50: 189-196, 2012. Go to original source...
  52. Wong N.H., Tan A.Y.K., Tan P.Y., Wong N.C.: Energy simulation of vertical greenery systems. - Energ. Buildings 41: 1401-1408, 2009. Go to original source...
  53. Wong N.H., Tan A.Y.K., Tan P.Y. et al.: Perception studies of vertical greenery systems in Singapore. - J. Urban Plan. D. 136: 330-338, 2010. Go to original source...
  54. Živčák M., Brestič M., Olšovská K., Slamka P.: Performance index as a sensitive indicator of water stress in Triticum aestivum L. - Plant Soil Environ. 54: 133-139, 2008.
  55. Živčák M., Olšovská K., Slamka P. et al.: Application of chlorophyll fluorescence performance indices to assess the wheat photosynthetic functions influenced by nitrogen deficiency. - Plant Soil Environ. 60: 210-215, 2014a.
  56. Živčák M., Olšovská K., Slamka P. et al.: Measurements of chlorophyll fluorescence in different leaf positions may detect nitrogen deficiency in wheat. - Zemdirbyste 101: 437-444, 2014b.
  57. Zushi K., Kajiwara S., Matsuzoe N.: Chlorophyll a fluorescence OJIP transient as a tool to characterize and evaluate response to heat and chilling stress in tomato leaf and fruit. - Sci. Hortic.-Amsterdam 148: 39-46, 2012. Go to original source...