Photosynthetica, 2020 (vol. 58), SPECIAL ISSUE

Photosynthetica 2020, 58(2):460-467 | DOI: 10.32615/ps.2019.178

Special issue in honour of Prof. Reto J. Strasser – Chlorophyll fluorescence of Nicotiana tabacum expressing the green fluorescent protein

N. KEUTGEN1, M. TOMASZEWSKA-SOWA2, A.J. KEUTGEN1
1 BOKU - University of Natural Resources and Life Sciences, Institute of Vegetables and Ornamentals at the Department of Crop Sciences, Gregor Mendel Str. 33, 1180 Vienna, Austria UTP University of Science and Technology, Department of Agricultural Biotechnology, Laboratory of Genetics
2 and Plant Physiology, Bernardyńska 6, 85-029 Bydgoszcz, Poland

Evidence that the green fluorescence protein (GFP) develops a significant toxicity in plants has not been found, but it may represent a source of free radicals as a consequence of its fluorescence. In addition, green light is known to trigger the acclimatisation of the photosynthetic system towards a shady environment. Moreover, the light-harvesting system may acclimate to an increased availability of green light. Each of these effects may be induced by the GFP. Therefore, the hypothesis was tested, whether transformation of Nicotiana tabacum cv. Bursan to express the GFP could affect chlorophyll fluorescence parameters. The analysis revealed a significantly lower absorption of energy per excited cross section in GFP-transformed tobacco, a lower number of active reaction centres per excited cross section, a larger absorption and trapped energy flux leading to the reduction of the primary quinone electron acceptor of PSII per reaction centre, and a lower variable fluorescence.

Keywords: low-light stress; OJIP transient; steady-state procedure; toxicity of GFP.

Received: July 14, 2019; Revised: December 9, 2019; Accepted: December 18, 2019; Prepublished online: February 13, 2020; Published: April 7, 2020Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
KEUTGEN, N., TOMASZEWSKA-SOWA, M., & KEUTGEN, A.J. (2020). Special issue in honour of Prof. Reto J. Strasser – Chlorophyll fluorescence of Nicotiana tabacum expressing the green fluorescent protein. Photosynthetica58(SPECIAL ISSUE), 460-467. doi: 10.32615/ps.2019.178.
Download citation

References

  1. Akimoto S., Mimuro M.: Excitation relaxation dynamics of carotenoids probed by ultrafast fluorescence spectroscopy. -In: Wada N., Mimuro M. (ed.): Recent progress of bio/chemi-luminescence and fluorescence analysis in photosynthesis. Pp 213-214. Research Signpost, Serala 2005.
  2. Akimoto S., Yokono M., Ohmae M. et al.: Ultrafast excitation-relaxation dynamics of lutein in solution and in the light-harvesting complex II isolated from Arabidopsis thaliana. - J. Phys. Chem. B 109: 12612-12619, 2005.
  3. Bilger W., Björkman, O.: Relationships among violaxanthin deepoxidation, thylakoid membrane conformation, and non-photochemical chlorophyll fluorescence quenching in leaves of cotton (Gossypium hirsutum L.) - Planta 193: 238-246, 1994. Go to original source...
  4. BioTek Instruments: Excitation and Emission of Green Fluores-cent Proteins. Tech Note, Winooski, Vermont 05404-0998 USA, 2006. Available at: https://www.biotek.com/resources/docs/FL600_Excitation_and_Emission_of_Green_Fluorescent_Proteins_Tech_Note.pdf. Accessed: 6 June 2018.
  5. Cheng D.-D., Zhang Z.-S., Sun X.-B. et al.: Photoinhibition and photoinhibition-like damage of the photosynthetic apparatus in tobacco leaves induced by Pseudomonas syringae pv. tabaci under light and dark conditions. - BMC Plant Biol. 16: 29, 2016. Go to original source...
  6. CORESTA - Cooperation Centre for Scientific Research Relative to Tobacco: A scale of coding growth in tobacco crops. - CORESTA Guide No. 7. Pp. 15. Available at: https://www.coresta.org/scale-coding-growth-stages-tobacco-crops-29211.html, 2009.
  7. Elliott A.R., Campbell J.A., Dugdale B.R. et al.: Green fluorescent protein facilitates rapid in vivo detection of genetically transformed plant cells. - Plant Cell Rep. 18: 707-714, 1999. Go to original source...
  8. Falqueto A.R., da Silva Jr R.A., Gomes M.T.G. et al.: Effects of drought stress on chlorophyll a fluorescence in two rubber tree clones. - Sci. Hortic.-Amsterdam 224: 238-243, 2017.
  9. Golovatskaya I.F., Karnachuk R.A.: Role of green light in physiological activity of plants. - Russ. J. Plant Physl+ 62: 727-740, 2015.
  10. Kalaji H.M., Carpentier R., Allakhverdiev S.I., Bosa K.: Fluorescence parameters as early indicators of light stress in barley. - J. Photoch. Photobio. B 112: 1-6, 2012. Go to original source...
  11. Kalaji H.M., Goltsev V.N., Żuk-Gołaszewska K. et al.: Chloro-phyll Fluorescence. Understanding Crop Performance -Basics and Applications. Pp. 222. CRC Press, Boca Raton, 2017b. Go to original source...
  12. Kalaji H.M., Schansker G., Brestič M. et al.: Frequently asked questions about chlorophyll fluorescence, the sequel. - Photosynth. Res. 132: 13-66, 2017a. Go to original source...
  13. Kalaji H.M., Schansker G., Ladle R.J. et al.: Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. - Photosynth. Res. 122: 121-158, 2014. Go to original source...
  14. Keşan G., Litvín R., Bína D. et al.: Efficient light-harvesting using non-carbonyl carotenoids: Energy transfer dynamics in the VCP complex from Nannochloropsis oceanica. - BBA-Bioenergetics 1857: 370-379, 2016.
  15. Lawton R., Winfield S., Daniell H. et al.: Expression of green-fluorescent protein gene in sweet potato tissues. - Plant Mol. Biol. Rep. 18: 139a-139i, 2000. Go to original source...
  16. Li Z., Jayasankar S., Gray D.J.: Expression of a bifunctional green fluorescent protein (GFP) fusion marker under the control of three constitutive promoters and enhanced derivatives in transgenic grape (Vitis vinifera). - Plant Sci. 160: 877-887, 2001. Go to original source...
  17. Lichtenthaler H.K.: Applications of chlorophyll fluorescence in stress physiology and remote sensing. - In: Steven M.D., Clark J.A. (ed.): Applications of Remote Sensing in Agri-culture. Pp. 287-305. Butterworth-Heinemann, Stoneham 1990. Go to original source...
  18. Lichtenthaler H.K., Babani F., Langsdorf G., Buschmann C.: Measurement of differences in red chlorophyll fluorescence and photosynthetic activity between sun and shade leaves by fluorescence imaging. - Photosynthetica 38: 521-529, 2000. Go to original source...
  19. Lichtenthaler H.K., Buschmann C., Knapp M.: How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer. - Photosynthetica 43: 379-393, 2005. Go to original source...
  20. Lichtenthaler H.K., Meier D., Buschmann C.: Development of chloroplasts at high and low light quanta fluence rates. - Israel J. Bot. 33: 185-194, 1984.
  21. Liu H.S., Jan M.S., Chou C.K. et al.: Is green fluorescent protein toxic to the living cells? - Biochem. Bioph. Res. Co. 260: 712-717, 1999. Go to original source...
  22. Logan B.A., Demmig-Adams B., Adams III W.W., Grace S.C.: Antioxidants and xanthophyll cycle-dependent energy dissipation in Cucurbita pepo L. and Vinca major L. acclimated to four growth PPFDs in the field. - J. Exp. Bot. 49: 1869-1879, 1998.
  23. Malabadi R.B., Teixeira da Silva J.A., Nataraja K.: Green fluorescent protein in the genetic transformation of plants. - Transgenic Plant J. 2: 86-109, 2008.
  24. Murchie E.H., Lawson T.: Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. - J. Exp. Bot. 64: 3983-3998, 2013. Go to original source...
  25. Nishio J.N.: Why are higher plants green? Evolution of the higher plant photosynthetic pigment complement. - Plant Cell Environ. 23: 539-548, 2000. Go to original source...
  26. Oxborough K., Baker N.R.: Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components - calculation of qP and Fv'/Fm' without measuring F0'. - Photosynth. Res. 54: 135-142, 1997. Go to original source...
  27. Rappaport F., Béal D., Joliot A., Joliot P.: On the advantages of using green light to study fluorescence yield changes in leaves. - BBA-Bioenergetics 1767: 56-65, 2007. Go to original source...
  28. Roháček K.: Chlorophyll fluorescence parameters: the defini-tions, photosynthetic meaning, and mutual relationships. - Photosynthetica 40: 13-29, 2002. Go to original source...
  29. Ruban A.V., Pascali A.A., Robert B., Horton P.: Configuration and dynamics of xanthophylls in light-harvesting antennae of higher plants. Spectroscopic analysis of isolated light-harvesting complex of photosystem II thylakoid membranes. -J. Biol. Chem. 276: 24862-24870, 2001. Go to original source...
  30. Schreiber U., Schliwa U., Bilger W.: Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. - Photosynth. Res. 10: 51-62, 1986. Go to original source...
  31. Stewart Jr C.N.: The utility of green fluorescent protein in transgenic plants. - Plant Cell Rep. 20: 376-382, 2001. Go to original source...
  32. Stirbet A., Lazár D., Kromdijk J., Govindjee: Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? - Photosynthetica 56: 86-104, 2018. Go to original source...
  33. Strasser R.J., Srivastava A., Tsimilli-Michael M.: The fluores-cence transient as a tool to characterize and screen photosyn-thetic samples. - In: Yunus M., Pathre U., Mohanty P. (ed.): Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Pp. 445-483. Taylor & Francis, London 2000.
  34. Strasser R.J., Tsimilli-Michael M., Qiang S., Goltsev V.: Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. - BBA-Bioenergetics 1797: 1313-1326, 2010. Go to original source...
  35. Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. - In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 321-362. Springer, Dordrecht 2004. Go to original source...
  36. Sun J., Nishio J.N., Vogelmann T.C.: Green light drives CO2 fixation deep within leaves. - Plant Cell Physiol. 39: 1020-1026, 1998. Go to original source...
  37. Terashima I., Fujita T., Inoue T. et al.: Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green. - Plant Cell Physiol. 50: 684-697, 2009. Go to original source...
  38. Troczyńska J., Flasiński S., Drozdowska L.: [Agrobacterium tumefaciens-mediated transformation of rapeseed with green fluorescent protein gene.] - Oilseed Crops 22: 569-578, 2001. [In Polish]
  39. Tsien R.Y.: The green fluorescent protein. - Annu. Rev. Biochem. 67: 509-544, 1998. Go to original source...
  40. Wang Y., Folta K.M.: Contributions of green light to plant growth and development. - Am. J. Bot. 100: 70-78, 2013. Go to original source...
  41. Zhou X., Chandrasekharan M.B., Hall T.C.: High rooting efficiency and functional analysis of GUS and GFP expression in transgenic Medicago truncatula A17. - New Phytol. 162: 813-822, 2004. Go to original source...