Photosynthetica, 2020 (vol. 58), SPECIAL ISSUE

Photosynthetica 2020, 58(2):595-607 | DOI: 10.32615/ps.2020.008

Special issue in honour of Prof. Reto J. Strasser – Additive main effect and digenic epistatic quantitative trait loci for chlorophyll fluorescence traits influencing salt tolerance at seedling stage in rice

K. CHATTOPADHYAY1, J. VIJAYAN2, A. RAY1, K. CHAKRABORTY1, R.K. SARKAR1
1 ICAR - National Rice Research Institute, 753006 Cuttack, India
2 ICAR - Central Island Agricultural Research Institute, 744105 Port Blair, India

In this investigation, an attempt was made to identify quantitative trait locus (QTL)/gene associated with JIP-test parameters in rice. Thirty main effect additive QTLs (M-QTLs) along with more than 500 digenic epistatic QTLs were detected using a backcross-derived population from tolerant genotype Pokkali (AC41585) and the susceptible counterpart IR64. These M-QTLs were located in almost all the chromosomes except chromosome number 6 and 8. Most of the M-QTLs showed pleiotropic effects. Positional similarity of all these overlapping additive and additive × additive interaction, QTLs indicated the substantial resemblance of the genetic basis of many JIP-test parameters which imparted salinity tolerance in rice at the seedling stage. Twenty-three potential functional genes were also delineated inside these additive QTLs regions. The identified putative QTLs for JIP-test parameters and probable functional genes lying therein are useful for imparting greater photosynthetic potential in rice under salt stress.

Keywords: Oryza sativa L; photosystem II; recombinant inbred lines.

Received: August 31, 2019; Revised: December 17, 2019; Accepted: January 17, 2020; Prepublished online: March 29, 2020; Published: April 7, 2020Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
CHATTOPADHYAY, K., VIJAYAN, J., RAY, A., CHAKRABORTY, K., & SARKAR, R.K. (2020). Special issue in honour of Prof. Reto J. Strasser – Additive main effect and digenic epistatic quantitative trait loci for chlorophyll fluorescence traits influencing salt tolerance at seedling stage in rice. Photosynthetica58(SPECIAL ISSUE), 595-607. doi: 10.32615/ps.2020.008.
Download citation

Supplementary files

Download fileChattopadhyay 2388 supplement.docx

File size: 170.64 kB

References

  1. Asano T., Hayashi N., Kobayashi M. et al.: A rice calcium-dependent protein kinase OsCPK12 oppositely modulates salt-stress tolerance and blast disease resistance. - Plant J. 69: 26-36, 2012. Go to original source...
  2. Azam F., Chang X., Jing R.: Mapping QTL for chlorophyll fluorescence kinetics parameters at seedling stage as indicators of heat tolerance in wheat. - Euphytica 202: 245-258, 2015. Go to original source...
  3. Baba W., Kompala-Baba A., Zabochnicka-Światek et al.: Discovering trends in photosynthesis using modern analytical tools: More than 100 reasons to use chlorophyll fluorescence. -Photosynthetica 57: 668-679, 2019. Go to original source...
  4. Bertholdsson N-O., Holefors A., Macaulay M., Crespo-Herrera L.A.: QTL for chlorophyll fluorescence of barley plants grown at low oxygen concentration in hydroponics to simulate waterlogging. - Euphytica 201: 357-365, 2015. Go to original source...
  5. Bhusal N., Sharma P., Sareen S., Sarial A.K.: Mapping QTLs for chlorophyll content and chlorophyll fluorescence in wheat under heat stress. - Biol. Plantarum 62: 721-731, 2018. Go to original source...
  6. Bocianowski J.: Epistasis interaction of QTL effects as a genetic parameter influencing estimation of the genetic additive effect. - Genet. Mol. Biol. 36: 93-100, 2013. Go to original source...
  7. Campbell M.T., Knecht N.C., Berger B. et al.: Integrating image-based phenomics and association analysis to dissect the genetic architecture of temporal salinity responses in rice. - Plant Physiol. 168: 1476-1489, 2015. Go to original source...
  8. Chakraborty K., Chattaopadhyay K., Nayak L. et al.: Ionic selectivity and coordinated transport of Na+ and K+ in flag leaves render differential salt tolerance in rice at the reproductive stage. - Planta 250: 1637-1653, 2019. Go to original source...
  9. Chattopadhyay K., Gayan S., Mondal I. et al.: Stress tolerant rice and on-farm seed production ensure food security and livelihood to small and marginal farmers of Sunderbans (Indian site). - SAARC J. Agric. 17: 127-139, 2019.
  10. Chattopadhyay K., Nath D., Mohanta R.L. et al.: Morpho-physiological and molecular variability in salt-tolerant and susceptible popular cultivars and their derivatives at seedling stage and potential parental combinations in breeding for salt-tolerance in rice. - Cereal Res. Commun. 43: 236-248, 2014.
  11. Chibon P-Y., Schoof H., Visser R.G., Finkers R.: Marker2 sequence, mine your QTL regions for candidate genes. - Bioinformatics 28: 1921-1922, 2012.
  12. Czyczyło-Mysza I., Tyrka M., Marcin´ska I. et al.: Quantitative trait loci for leaf chlorophyll fluorescence parameters, chlorophyll and carotenoid contents in relation to biomass and yield in bread wheat and their chromosome deletion bin assignments. - Mol. Breeding 32:189-210, 2013. Go to original source...
  13. De Leon T.B., Linscombe S., Subudhi P.K.: Molecular dissection of seedling salinity tolerance in rice (Oryza sativa L.) using a high-density GBS-based SNP linkage map. - Rice 9: 52, 2016. Go to original source...
  14. Doerge R.W., Rebaï A.: Significance thresholds for QTL interval mapping tests. - Heredity 76: 459-464, 1996. Go to original source...
  15. Du H., Liu L., You L. et al.: Characterization of an inositol 1,3,4-trisphosphate 5/6-kinase gene that is essential for drought and salt stress responses in rice. - Plant Mol. Biol. 77: 547-563, 2011. Go to original source...
  16. Gao P., Bai X., Yang L. et al.: Osa-MIR393: a salinity- and alkaline stress-related micro RNA gene. - Mol. Biol. Rep. 38: 237-242, 2011. Go to original source...
  17. Goh L., Yap V.B.: Effects of normalization on quantitative traits in association test. - BMC Bioinformatics 10: 415, 2009 Go to original source...
  18. Govindaraj P., Vinod K.K., Arumugachamy A., Maheswaran M.: Analysing genetic control of cooked grain traits and gelatinization temperature in a double haploid population of rice by quantitative trait loci mapping. - Euphytica 166: 165-176, 2009. Go to original source...
  19. Gregorio G.B., Senadhira D., Mendoza R.D.: Screening Rice for Salinity Tolerance. IRRI Discussion Paper Series No. 22. Pp. 30. International Rice Research Institute, Manila 1997.
  20. Guo P., Baum M., Varshney R.K. et al.: QTLs for chlorophyll and chlorophyll fluorescence parameters in barley under post-flowering drought. - Euphytica 163: 203-214, 2008. Go to original source...
  21. Herritt M., Dhanapal A.P., Purcell L.C., Fritschi F.B.: Identification of genomic loci associated with 21chlorophyll fluorescence phenotypes by genome-wide association analysis in soybean. - BMC Plant Biol. 18: 312, 2018. Go to original source...
  22. Kalaji H.M., Jajoo A., Oukarroum A. et al.: Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. - Acta Physiol. Plant. 38: 102, 2016. Go to original source...
  23. Kalaji H.M., Pietkiewicz S.: Salinity effects on plant growth and other physiological processes. - Acta Physiol. Plant. 15: 89-124, 1993.
  24. Ke Y.-G., Yang Z.-J., Yu S.-W. et al.: Characterization of OsDREB6 responsive to osmotic and cold stresses in rice. - J. Plant Biol. 57: 150-161, 2014. Go to original source...
  25. Lazár D., Nauš J.: Statistical properties of chlorophyll fluores-cence induction parameters. - Photosynthetica 35: 121-127, 1998. Go to original source...
  26. Liu J., Liu Y., Liu X. Deng H.W.: Bayesian mapping of quanti-tative trait loci for multiple complex traits with the use of vari-ance components. - Am. J. Hum. Genet. 81: 304-320, 2007. Go to original source...
  27. Mackill D.J., Khush G.S.: IR64: a high-quality and high-yielding mega variety. - Rice 11: 18, 2018. Go to original source...
  28. Matsuda S., Nagasawa H., Yamashiro N. et al.: Rice RCN1/OsABCG5 mutation alters accumulation of essential and nonessential minerals and causes a high Na/K ratio, resulting in a salt-sensitive phenotype. - Plant Sci. 224: 103-111, 2014. Go to original source...
  29. Meng L., Li H., Zhang L., Wang J.: QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. - Crop J. 3: 269-283, 2015. Go to original source...
  30. Molla K.A., Debnath A.B., Ganie S.A., Mondal T.K.: Identification and analysis of novel salt responsive candidate gene based SSRs (cgSSRs) from rice (Oryza sativa L.). - BMC Plant Biol. 15: 122, 2015. Go to original source...
  31. Murray M.G., Thompson W.F.: Rapid isolation of high molecular weight plant DNA. - Nucleic Acids Res. 8: 4321-4325, 1980. Go to original source...
  32. Pradhan B., Chakraborty K., Prusty N. et al.: Distinction and characterization of rice genotypes tolerant to combined stresses of salinity and partial submergence, proved by a high-resolution chlorophyll fluorescence imaging system. - Func. Plant Biol. 46: 248-261, 2019.
  33. Rahman M.A., Bimpong I.K., Bizimana J.B. et al.: Mapping QTLs using a novel source of salinity tolerance from Hasawi and their interaction with environments in rice. - Rice 10: 47, 2017. Go to original source...
  34. Reddy I.N.B.L, Kim B.K, Yoon I.S. et al.: Salt tolerance in rice: Focus on mechanisms and approaches. - Rice Sci. 24: 123-144, 2017. Go to original source...
  35. Rieseberg L.H., Archer M.A., Wayne R.K.: Transgressive segregation, adaptation, and speciation. - Heredity 83: 363-372, 1999. Go to original source...
  36. Rieseberg L.H., Widmer A., Arntz A.M., Burke J.M.: The genetic architecture necessary for transgressive segregation is common in both natural and domesticated populations. - Philos. T. Roy. Soc. B 358: 1141-1147, 2003. Go to original source...
  37. Saijo Y., Hata S., Kyozuka J. et al.: Over-expression of a single Ca+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. - Plant J. 23: 319-327, 2000. Go to original source...
  38. Sakai H., Lee S.S., Tanaka T. et al.: Rice Annotation Project Database (RAP-DB): an integrative and interactive database for rice genomics. - Plant Cell Physiol. 54: e6, 2013. Go to original source...
  39. Sarkar R.K., Mahata K.R., Singh D.P.: Differential responses of antioxidant system and photosynthetic characteristics in four rice cultivars differing in sensitivity to sodium chloride stress. - Acta Physiol. Plant. 35: 2915-2926, 2013. Go to original source...
  40. Sarkar R.K., Ray A.: Submergence-tolerant rice withstands complete submergence even in saline water: Probing through chlorophyll a fluorescence induction O-J-I-P transients. - Photosynthetica 54: 275-287, 2016. Go to original source...
  41. Sharma D.K., Singh A.: Salinity Research in India - Achievements, challenges and future prospects. - Water Energy Int. 58: 35-45, 2015.
  42. Sharma R., Priya P., Jain M.: Modified expression of an auxin-responsive rice CC-type glutaredoxin gene affects multiple abiotic stress responses. - Planta 238: 871-884, 2013. Go to original source...
  43. Singh D.P., Sarkar R.K.: Distinction and characterization of salinity tolerant and sensitive rice cultivars as probed by the chlorophyll fluorescence characteristics and growth parameters. - Funct. Plant Biol. 41: 727-736, 2014. Go to original source...
  44. Singh H., Deshmukh R.K., Singh A. et al.: Highly variable SSR markers suitable for rice genotyping using agarose gels. - Mol. Breeding 25: 359-364, 2009.
  45. Stirbet A., Lazár D., Kromdijk J., Govindjee: Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? - Photosynthetica 56: 86-104, 2018. Go to original source...
  46. Strasser R.J., Srivastava A.: Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. - Photochem. Photobiol. 61: 32-42, 1995. Go to original source...
  47. Thomson M.J., de Ocampo M., Egdane J. et al.: Characterizing the Saltol quantitative trait locus for salinity tolerance in rice. - Rice 3: 148-160, 2010. Go to original source...
  48. Tseng Y.-C., Tillman B.L., Peng Z., Wang J.P.: Identification of major QTLs underlying tomato spotted wilt virus resistance in peanut cultivar Florida-EPTM '113'. - BMC Genet. 17: 128, 2016. Go to original source...
  49. Tuinstra M.R., Ejeta G., Goldsbrough P.B.: Heterogeneous inbred family (HIF) analysis: aA method for developing near-isogenic lines that differ at quantitative trait loci. - Theor. Appl. Genet. 95: 1005-1011, 1997. Go to original source...
  50. van Bezouw R.F.H.M., Keurentjes J.J.B., Harbinson J., Aarts M.G.M.: Converging phenomics and genomics to study natural variation in plant photosynthetic efficiency. - Plant J. 97: 112-133, 2019.
  51. Vesztrocy A.W., Dessimoz C., Redestig H. et al.: Prioritising candidate genes causing QTL using hierarchical orthologous groups. - Bioinformatics 34: i612-i619, 2018. Go to original source...
  52. Wang Z., Cheng J., Chen Z. et al.: Identification of QTLs with main, epistatic and QTL × environment interaction effects for salt tolerance in rice seedlings under different salinity conditions. - Theor. Appl. Genet. 125: 807-815, 2012. Go to original source...
  53. Yamamoto E., Yonemaru J.I., Yamamoto T., Yano M.: OGRO: The overview of functionally characterized genes in rice online database. - Rice 5: 26, 2012. Go to original source...
  54. Yang R., Wang X., Li J., Deng H.: Bayesian robust analysis for genetic architecture of quantitative traits. - Bioinformatics 25: 1033-1039, 2009. Go to original source...
  55. Ye H., Du H., Tang N. et al.: Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice. - Plant Mol. Biol. 71: 291-305, 2009. Go to original source...
  56. Zeng L., Shannon M.C., Lesch S.M.: Timing of salinity stress effects rice growth and yield components. - Agr. Water Manage. 48: 191-206, 2001. Go to original source...
  57. Zhang Z.B., Xu P., Jia J.Z., Zhou R.H.: Quantitative trait loci for leaf chlorophyll fluorescence traits in wheat. - Aust. J. Crop Sci. 4: 571-579, 2010.
  58. Zhou M., Johnson P., Zhou G. et al.: Quantitative trait loci for waterlogging tolerance in a barley cross of Franklin × YuYaoXiangTian Erleng and the relationship between waterlogging and salinity tolerance. ̶ Crop Sci. 52: 2082-2088, 2012. Go to original source...