Photosynthetica, 2020 (vol. 58), SPECIAL ISSUE
Photosynthetica 2020, 58(2):595-607 | DOI: 10.32615/ps.2020.008
Special issue in honour of Prof. Reto J. Strasser – Additive main effect and digenic epistatic quantitative trait loci for chlorophyll fluorescence traits influencing salt tolerance at seedling stage in rice
- 1 ICAR - National Rice Research Institute, 753006 Cuttack, India
- 2 ICAR - Central Island Agricultural Research Institute, 744105 Port Blair, India
In this investigation, an attempt was made to identify quantitative trait locus (QTL)/gene associated with JIP-test parameters in rice. Thirty main effect additive QTLs (M-QTLs) along with more than 500 digenic epistatic QTLs were detected using a backcross-derived population from tolerant genotype Pokkali (AC41585) and the susceptible counterpart IR64. These M-QTLs were located in almost all the chromosomes except chromosome number 6 and 8. Most of the M-QTLs showed pleiotropic effects. Positional similarity of all these overlapping additive and additive × additive interaction, QTLs indicated the substantial resemblance of the genetic basis of many JIP-test parameters which imparted salinity tolerance in rice at the seedling stage. Twenty-three potential functional genes were also delineated inside these additive QTLs regions. The identified putative QTLs for JIP-test parameters and probable functional genes lying therein are useful for imparting greater photosynthetic potential in rice under salt stress.
Keywords: Oryza sativa L; photosystem II; recombinant inbred lines.
Received: August 31, 2019; Revised: December 17, 2019; Accepted: January 17, 2020; Prepublished online: March 29, 2020; Published: April 7, 2020Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
Supplementary files
Download file | Chattopadhyay 2388 supplement.docx File size: 170.64 kB |
References
- Asano T., Hayashi N., Kobayashi M. et al.: A rice calcium-dependent protein kinase OsCPK12 oppositely modulates salt-stress tolerance and blast disease resistance. - Plant J. 69: 26-36, 2012. Go to original source...
- Azam F., Chang X., Jing R.: Mapping QTL for chlorophyll fluorescence kinetics parameters at seedling stage as indicators of heat tolerance in wheat. - Euphytica 202: 245-258, 2015. Go to original source...
- Baba W., Kompala-Baba A., Zabochnicka-Światek et al.: Discovering trends in photosynthesis using modern analytical tools: More than 100 reasons to use chlorophyll fluorescence. -Photosynthetica 57: 668-679, 2019. Go to original source...
- Bertholdsson N-O., Holefors A., Macaulay M., Crespo-Herrera L.A.: QTL for chlorophyll fluorescence of barley plants grown at low oxygen concentration in hydroponics to simulate waterlogging. - Euphytica 201: 357-365, 2015. Go to original source...
- Bhusal N., Sharma P., Sareen S., Sarial A.K.: Mapping QTLs for chlorophyll content and chlorophyll fluorescence in wheat under heat stress. - Biol. Plantarum 62: 721-731, 2018. Go to original source...
- Bocianowski J.: Epistasis interaction of QTL effects as a genetic parameter influencing estimation of the genetic additive effect. - Genet. Mol. Biol. 36: 93-100, 2013. Go to original source...
- Campbell M.T., Knecht N.C., Berger B. et al.: Integrating image-based phenomics and association analysis to dissect the genetic architecture of temporal salinity responses in rice. - Plant Physiol. 168: 1476-1489, 2015. Go to original source...
- Chakraborty K., Chattaopadhyay K., Nayak L. et al.: Ionic selectivity and coordinated transport of Na+ and K+ in flag leaves render differential salt tolerance in rice at the reproductive stage. - Planta 250: 1637-1653, 2019. Go to original source...
- Chattopadhyay K., Gayan S., Mondal I. et al.: Stress tolerant rice and on-farm seed production ensure food security and livelihood to small and marginal farmers of Sunderbans (Indian site). - SAARC J. Agric. 17: 127-139, 2019.
- Chattopadhyay K., Nath D., Mohanta R.L. et al.: Morpho-physiological and molecular variability in salt-tolerant and susceptible popular cultivars and their derivatives at seedling stage and potential parental combinations in breeding for salt-tolerance in rice. - Cereal Res. Commun. 43: 236-248, 2014.
- Chibon P-Y., Schoof H., Visser R.G., Finkers R.: Marker2 sequence, mine your QTL regions for candidate genes. - Bioinformatics 28: 1921-1922, 2012.
- Czyczyło-Mysza I., Tyrka M., Marcin´ska I. et al.: Quantitative trait loci for leaf chlorophyll fluorescence parameters, chlorophyll and carotenoid contents in relation to biomass and yield in bread wheat and their chromosome deletion bin assignments. - Mol. Breeding 32:189-210, 2013. Go to original source...
- De Leon T.B., Linscombe S., Subudhi P.K.: Molecular dissection of seedling salinity tolerance in rice (Oryza sativa L.) using a high-density GBS-based SNP linkage map. - Rice 9: 52, 2016. Go to original source...
- Doerge R.W., Rebaï A.: Significance thresholds for QTL interval mapping tests. - Heredity 76: 459-464, 1996. Go to original source...
- Du H., Liu L., You L. et al.: Characterization of an inositol 1,3,4-trisphosphate 5/6-kinase gene that is essential for drought and salt stress responses in rice. - Plant Mol. Biol. 77: 547-563, 2011. Go to original source...
- Gao P., Bai X., Yang L. et al.: Osa-MIR393: a salinity- and alkaline stress-related micro RNA gene. - Mol. Biol. Rep. 38: 237-242, 2011. Go to original source...
- Goh L., Yap V.B.: Effects of normalization on quantitative traits in association test. - BMC Bioinformatics 10: 415, 2009 Go to original source...
- Govindaraj P., Vinod K.K., Arumugachamy A., Maheswaran M.: Analysing genetic control of cooked grain traits and gelatinization temperature in a double haploid population of rice by quantitative trait loci mapping. - Euphytica 166: 165-176, 2009. Go to original source...
- Gregorio G.B., Senadhira D., Mendoza R.D.: Screening Rice for Salinity Tolerance. IRRI Discussion Paper Series No. 22. Pp. 30. International Rice Research Institute, Manila 1997.
- Guo P., Baum M., Varshney R.K. et al.: QTLs for chlorophyll and chlorophyll fluorescence parameters in barley under post-flowering drought. - Euphytica 163: 203-214, 2008. Go to original source...
- Herritt M., Dhanapal A.P., Purcell L.C., Fritschi F.B.: Identification of genomic loci associated with 21chlorophyll fluorescence phenotypes by genome-wide association analysis in soybean. - BMC Plant Biol. 18: 312, 2018. Go to original source...
- Kalaji H.M., Jajoo A., Oukarroum A. et al.: Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. - Acta Physiol. Plant. 38: 102, 2016. Go to original source...
- Kalaji H.M., Pietkiewicz S.: Salinity effects on plant growth and other physiological processes. - Acta Physiol. Plant. 15: 89-124, 1993.
- Ke Y.-G., Yang Z.-J., Yu S.-W. et al.: Characterization of OsDREB6 responsive to osmotic and cold stresses in rice. - J. Plant Biol. 57: 150-161, 2014. Go to original source...
- Lazár D., Nauš J.: Statistical properties of chlorophyll fluores-cence induction parameters. - Photosynthetica 35: 121-127, 1998. Go to original source...
- Liu J., Liu Y., Liu X. Deng H.W.: Bayesian mapping of quanti-tative trait loci for multiple complex traits with the use of vari-ance components. - Am. J. Hum. Genet. 81: 304-320, 2007. Go to original source...
- Mackill D.J., Khush G.S.: IR64: a high-quality and high-yielding mega variety. - Rice 11: 18, 2018. Go to original source...
- Matsuda S., Nagasawa H., Yamashiro N. et al.: Rice RCN1/OsABCG5 mutation alters accumulation of essential and nonessential minerals and causes a high Na/K ratio, resulting in a salt-sensitive phenotype. - Plant Sci. 224: 103-111, 2014. Go to original source...
- Meng L., Li H., Zhang L., Wang J.: QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. - Crop J. 3: 269-283, 2015. Go to original source...
- Molla K.A., Debnath A.B., Ganie S.A., Mondal T.K.: Identification and analysis of novel salt responsive candidate gene based SSRs (cgSSRs) from rice (Oryza sativa L.). - BMC Plant Biol. 15: 122, 2015. Go to original source...
- Murray M.G., Thompson W.F.: Rapid isolation of high molecular weight plant DNA. - Nucleic Acids Res. 8: 4321-4325, 1980. Go to original source...
- Pradhan B., Chakraborty K., Prusty N. et al.: Distinction and characterization of rice genotypes tolerant to combined stresses of salinity and partial submergence, proved by a high-resolution chlorophyll fluorescence imaging system. - Func. Plant Biol. 46: 248-261, 2019.
- Rahman M.A., Bimpong I.K., Bizimana J.B. et al.: Mapping QTLs using a novel source of salinity tolerance from Hasawi and their interaction with environments in rice. - Rice 10: 47, 2017. Go to original source...
- Reddy I.N.B.L, Kim B.K, Yoon I.S. et al.: Salt tolerance in rice: Focus on mechanisms and approaches. - Rice Sci. 24: 123-144, 2017. Go to original source...
- Rieseberg L.H., Archer M.A., Wayne R.K.: Transgressive segregation, adaptation, and speciation. - Heredity 83: 363-372, 1999. Go to original source...
- Rieseberg L.H., Widmer A., Arntz A.M., Burke J.M.: The genetic architecture necessary for transgressive segregation is common in both natural and domesticated populations. - Philos. T. Roy. Soc. B 358: 1141-1147, 2003. Go to original source...
- Saijo Y., Hata S., Kyozuka J. et al.: Over-expression of a single Ca+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. - Plant J. 23: 319-327, 2000. Go to original source...
- Sakai H., Lee S.S., Tanaka T. et al.: Rice Annotation Project Database (RAP-DB): an integrative and interactive database for rice genomics. - Plant Cell Physiol. 54: e6, 2013. Go to original source...
- Sarkar R.K., Mahata K.R., Singh D.P.: Differential responses of antioxidant system and photosynthetic characteristics in four rice cultivars differing in sensitivity to sodium chloride stress. - Acta Physiol. Plant. 35: 2915-2926, 2013. Go to original source...
- Sarkar R.K., Ray A.: Submergence-tolerant rice withstands complete submergence even in saline water: Probing through chlorophyll a fluorescence induction O-J-I-P transients. - Photosynthetica 54: 275-287, 2016. Go to original source...
- Sharma D.K., Singh A.: Salinity Research in India - Achievements, challenges and future prospects. - Water Energy Int. 58: 35-45, 2015.
- Sharma R., Priya P., Jain M.: Modified expression of an auxin-responsive rice CC-type glutaredoxin gene affects multiple abiotic stress responses. - Planta 238: 871-884, 2013. Go to original source...
- Singh D.P., Sarkar R.K.: Distinction and characterization of salinity tolerant and sensitive rice cultivars as probed by the chlorophyll fluorescence characteristics and growth parameters. - Funct. Plant Biol. 41: 727-736, 2014. Go to original source...
- Singh H., Deshmukh R.K., Singh A. et al.: Highly variable SSR markers suitable for rice genotyping using agarose gels. - Mol. Breeding 25: 359-364, 2009.
- Stirbet A., Lazár D., Kromdijk J., Govindjee: Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? - Photosynthetica 56: 86-104, 2018. Go to original source...
- Strasser R.J., Srivastava A.: Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. - Photochem. Photobiol. 61: 32-42, 1995. Go to original source...
- Thomson M.J., de Ocampo M., Egdane J. et al.: Characterizing the Saltol quantitative trait locus for salinity tolerance in rice. - Rice 3: 148-160, 2010. Go to original source...
- Tseng Y.-C., Tillman B.L., Peng Z., Wang J.P.: Identification of major QTLs underlying tomato spotted wilt virus resistance in peanut cultivar Florida-EPTM '113'. - BMC Genet. 17: 128, 2016. Go to original source...
- Tuinstra M.R., Ejeta G., Goldsbrough P.B.: Heterogeneous inbred family (HIF) analysis: aA method for developing near-isogenic lines that differ at quantitative trait loci. - Theor. Appl. Genet. 95: 1005-1011, 1997. Go to original source...
- van Bezouw R.F.H.M., Keurentjes J.J.B., Harbinson J., Aarts M.G.M.: Converging phenomics and genomics to study natural variation in plant photosynthetic efficiency. - Plant J. 97: 112-133, 2019.
- Vesztrocy A.W., Dessimoz C., Redestig H. et al.: Prioritising candidate genes causing QTL using hierarchical orthologous groups. - Bioinformatics 34: i612-i619, 2018. Go to original source...
- Wang Z., Cheng J., Chen Z. et al.: Identification of QTLs with main, epistatic and QTL × environment interaction effects for salt tolerance in rice seedlings under different salinity conditions. - Theor. Appl. Genet. 125: 807-815, 2012. Go to original source...
- Yamamoto E., Yonemaru J.I., Yamamoto T., Yano M.: OGRO: The overview of functionally characterized genes in rice online database. - Rice 5: 26, 2012. Go to original source...
- Yang R., Wang X., Li J., Deng H.: Bayesian robust analysis for genetic architecture of quantitative traits. - Bioinformatics 25: 1033-1039, 2009. Go to original source...
- Ye H., Du H., Tang N. et al.: Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice. - Plant Mol. Biol. 71: 291-305, 2009. Go to original source...
- Zeng L., Shannon M.C., Lesch S.M.: Timing of salinity stress effects rice growth and yield components. - Agr. Water Manage. 48: 191-206, 2001. Go to original source...
- Zhang Z.B., Xu P., Jia J.Z., Zhou R.H.: Quantitative trait loci for leaf chlorophyll fluorescence traits in wheat. - Aust. J. Crop Sci. 4: 571-579, 2010.
- Zhou M., Johnson P., Zhou G. et al.: Quantitative trait loci for waterlogging tolerance in a barley cross of Franklin × YuYaoXiangTian Erleng and the relationship between waterlogging and salinity tolerance. ̶ Crop Sci. 52: 2082-2088, 2012. Go to original source...