Photosynthetica, 2020 (vol. 58), SPECIAL ISSUE

Photosynthetica 2020, 58(2):646-656 | DOI: 10.32615/ps.2019.180

Special issue in honour of Prof. Reto J. Strasser – Analysis of K- and L-band appearance in OJIPs in Antarctic lichensin low and high temperature

M. BEDNAŘÍKOVÁ1, Y. FOLGAR-CAMEÁN1,2, Z. KUČEROVÁ3, D. LAZÁR3, M. ŠPUNDOVÁ3, J. HÁJEK1, M. BARTÁK1
1 Section of Plant Experimental Biology, Department of Experimental Biology, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
2 Faculty of Biology, University of Santiago de Compostela, c/Lope Gómez de Marzoa s/n, Santiago de Compostela 15782, Spain
3 Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 241/27, 78371 Olomouc, Czech Republic

In this study, we evaluated the effect of temperature on the fast chlorophyll fluorescence (ChlF) transient (OJIP) and OJIP-derived parameters in Antarctic lichens Xanthoria elegans, Usnea antarctica, and Dermatocarpon polyphyllizum. Samples were exposed to a range of temperatures (-5 to +45°C) and measured after 15-min equilibration. High temperature (+45°C) caused a decrease of ChlF, an increased J-step, and shortened time to reach peak ChlF (FP). Temperature below +5°C caused the increase of ChlF and J-step. The K-band was identified in X. elegans (above +20°C), U. antarctica (+35°C), and D. polyphyllizum (+45°C). L-band was well distinguishable in X. elegans (+45°C). As indicated by the OJIP-derived parameters, high temperature inhibited photosystem II function. The inhibition was apparent as less effective energetic connectivity. The OJIP transients and auxiliary measurement of ChlF temperature curves suggested that X. elegans had the lowest termostability among the experimental species.

Keywords: conductivity; photosynthesis; photosystem II; thermal stability; transient.

Received: August 30, 2019; Revised: December 16, 2019; Accepted: December 20, 2019; Prepublished online: April 4, 2020; Published: April 7, 2020Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
BEDNAŘÍKOVÁ, M., FOLGAR-CAMEÁN, Y., KUČEROVÁ, Z., LAZÁR, D., ŠPUNDOVÁ, M., HÁJEK, J., & BARTÁK, M. (2020). Special issue in honour of Prof. Reto J. Strasser – Analysis of K- and L-band appearance in OJIPs in Antarctic lichensin low and high temperature. Photosynthetica58(SPECIAL ISSUE), 646-656. doi: 10.32615/ps.2019.180.
Download citation

References

  1. An Y., Qi L., Wang L.: ALA pretreatment improves waterlogging tolerance of fig plants. - PLoS ONE 11: e0147202, 2016. Go to original source...
  2. Azam F.I., Chang X., Jing R.: Mapping QTL for chlorophyll fluorescence kinetics parameters at seedling stage as indicators of heat tolerance in wheat. - Euphytica 202: 245-258, 2015. Go to original source...
  3. Barták M., Mishra K.B., Marečková M.: Spectral reflectance indices sense desiccation induced changes in the thalli of Antarctic lichen Dermatocarpon polyphyllizum. - Czech Polar Rep. 8: 249-259, 2018. Go to original source...
  4. Bertholdsson N.O., Holefors A., Macaulay M., Crespo-Herrera L.A.: QTL for chlorophyll fluorescence of barley plants grown at low oxygen concentration in hydroponics to simulate waterlogging. - Euphytica 201: 357-365, 2015. Go to original source...
  5. Boisvert S., Joly D., Carpentier R.: Quantitative analysis of the experimental O-J-I-P chlorophyll fluorescence induction kinetics: Apparent activation energy and origin of each kinetic step. - FEBS J. 273: 4770-4777, 2006. Go to original source...
  6. Brestič M., Živčák M.: PSII fluorescence techniques for measurement of drought and high temperature stress signal in crop plants: Protocols and applications. - In: Rout G., Das A. (ed.): Molecular Stress Physiology of Plants. Pp. 87-131. Springer, India 2013. Go to original source...
  7. Brestič M., Živčák M., Olšovská K. et al.: Functional study of PS II and PS I energy use and dissipation mechanisms in barley wild type and chlorina mutants under high light conditions. - In: Allen J.F., Gantt E., Golbeck J.H., Osmond B. (ed.): Photosynthesis. Energy from the Sun. Pp. 1407-1411. Springer, Dordrecht 2008.
  8. Cetner M.D., Kalaji H.M., Goltsev V. et al.: Effects of nitrogen-deficiency on efficiency of light-harvesting apparatus in radish. - Plant Physiol. Bioch. 119: 81-92, 2017. Go to original source...
  9. Chen S., Yang J., Zhang M. et al.: Classification and characteristics of heat tolerance in Ageratina adenophora populations using fast chlorophyll a fluorescence rise O-J-I-P. - Environ. Exp. Bot. 122: 126-140, 2016. Go to original source...
  10. Czyczyło-Mysza I., Marcińska I., Skrzypek E. et al.: Mapping QTLs for yield components and chlorophyll a fluorescence parameters in wheat under three levels of water availability. - Plant Genet. Resour. 9: 291-295, 2011. Go to original source...
  11. Dąbrowski P., Baczewska A.H., Pawluśkiewicz B. et al.: Prompt chlorophyll a fluorescence as a rapid tool for diagnostic changes in PSII structure inhibited by salt stress in perennial rye grass. - J. Photoch. Photobio. B 157: 22-31, 2016. Go to original source...
  12. Delosme R.: [Studies on the induction of fluorescence in green algae and chloroplasts under intense illumination.] - BBA-Bioenergetics 143: 108-128, 1967. [In French with English abstract] Go to original source...
  13. Demetriou G., Neonaki C., Navakoudis E., Kotzabasis K.: Salt stress impact on the molecular structure and function of the photosynthetic apparatus: The protective role of polyamines. - BBA-Bioenergetics 1767: 272-280, 2007. Go to original source...
  14. Folgar-Cameán Y., Barták M.: Limitation of photosynthetic processes in photosystem II in alpine mosses exposed to low temperatures: Response of chlorophyll fluorescence parameters. - Czech Polar Rep. 8: 218-229, 2018. Go to original source...
  15. Fracheboud Y., Haldimann P., Leipner J., Stamp P.: Chlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize (Zea mays L.). - J. Exp. Bot. 50: 1533-1540, 1999. Go to original source...
  16. Franck F., Houyoux P.-A.: The Mehler reaction in Chlamydomonas reinhardtii during photosynthetic induction and steady-state photosynthesis in wild-type and in a mitochondrial mutant. -In: Allen J.F., Gantt E., Golbeck J.H., Osmond B. (ed.): Photosynthesis. Energy from the Sun. Pp. 581-584. Springer, Dordrecht 2008. Go to original source...
  17. Goltsev V., Zaharieva I., Chernev P. et al.: Drought-induced modifications of photosynthetic electron transport in intact leaves: Analysis and use of neural networks as a tool for a rapid non-invasive estimation. - BBA-Bioenergetics 1817: 1490-1498, 2012.
  18. Guéra A., Gasulla F., Barreno E.: Formation of photosystem II reaction centers that work as energy sinks in lichen symbiotic Trebouxiophyceae microalgae. - Photosynth. Res. 128: 15-33, 2016. Go to original source...
  19. Guissé B., Srivastava A., Strasser R.J.: The polyphasic rise of the chlorophyll a fluorescence (O-K-J-I-P) in heat-stressed leaves. - Arch. Sci. Genéve 48: 147-160, 1995.
  20. Gururani M.A., Venkatesh J., Ganesan M. et al.: In vivo assessment of cold tolerance through chlorophyll-a fluorescence in transgenic zoysia grass expressing mutant phytochrome A. - PLoS ONE 10: e0127200, 2015. Go to original source...
  21. Hájek J.: Testing cryoprotective mechanisms in snow algae and lichen symbiotic algae. - Carex Newsletter 2: 2, 2009.
  22. Hájek J., Barták M., Dubová J.: Inhibition of photosynthetic processes in foliose lichens induced by temperature and osmotic stress. - Biol. Plantarum 50: 624-634, 2006. Go to original source...
  23. Hájek J., Barták M., Gloser J.: Effects of thallus temperature and hydration on photosynthetic parameters of Cetraria islandica from contrasting habitats. - Photosynthetica 39: 427-435, 2001. Go to original source...
  24. Haworth M., Marino G., Brunetti C. et al.: The impact of heat stress and water deficit on the photosynthetic and stomatal physiology of olive (Olea europaea L.) - A case study of the 2017 heat wave. - Plants-Basel 7: 76, 2018. Go to original source...
  25. Husičková A., Humplík J.F., Hýbl M. et al.: Analysis of cold-developed vs. cold-acclimated leaves reveals various strategies of cold acclimation of field pea cultivars. - Remote Sens.-Basel 11: 2964, 2019.
  26. Ilík P., Pavlovič A., Kouřil R. et al.: Alternative electron transport mediated by flavodiiron proteins is operational in organisms from cyanobacteria up to gymnosperms. - New Phytol. 214: 967-972, 2017. Go to original source...
  27. Ilík P., Schansker G., Kotabová E. et al.: A dip in the chlorophyll fluorescence induction at 0.2-2s in Trebouxia-possessing lichens reflects a fast reoxidation of photosystem I. A comparison with higher plants. - BBA-Bioenergetics 1757: 12-20, 2006. Go to original source...
  28. Ilík P., Špundová M., Šicner M. et al.: Estimating heat tolerance of plants by ion leakage: a new method based on gradual heating. - New Phytol. 218: 1278-1287, 2018. Go to original source...
  29. Jain N., Singh G.P., Pandey R., Parakkunnel R.: Chlorophyll fluorescence kinetics and response of wheat (Triticum aestivum L.) under high temperature stress. - Indian J. Exp. Biol. 56: 194-201, 2018.
  30. Jedmowski C., Bayramov S., Brüggemann W.: Comparative analysis of drought stress effects on photosynthesis of Eurasian and North African genotypes of wild barley. - Photosynthetica 52: 564-573, 2014. Go to original source...
  31. Kalaji H.M., Dąbrowski P., Cetner M.D. et al.: A comparison between different chlorophyll content meters under nutrient deficiency conditions. - J. Plant Nutr. 40: 1024-1034, 2017. Go to original source...
  32. Kalaji H.M., Goltsev V., Bosa K. et al.: Experimental in vivo measurements of light emission in plants: a perspective dedicated to David Walker. - Photosynth. Res. 114: 69-96, 2012. Go to original source...
  33. Kalaji H.M., Jajoo A., Oukarroum A. et al.: Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. - Acta Physiol. Plant. 38: 102, 2016. Go to original source...
  34. Kiani S.P., Maury P., Sarrafi A., Grieu P.: QTL analysis of chlorophyll fluorescence parameters in sunflower (Helianthus annuus L.) under well-watered and water-stressed conditions. - Plant Sci. 175: 565-573, 2008. Go to original source...
  35. Killi D., Haworth M.: Diffusive and metabolic constraints to photosynthesis in quinoa during drought and salt stress. - Plants-Basel 6: 49, 2017. Go to original source...
  36. Láska K., Barták M., Hájek J. et al.: Climatic and ecological characteristics of deglaciated area of James Ross Island, Antarctica, with a special respect to vegetation cover. - Czech Polar Rep. 1: 49-62, 2011. Go to original source...
  37. Lawlor D.W., Tezara T.: Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. - Ann. Bot.-London 103: 561-579, 2009. Go to original source...
  38. Lazár D.: The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. - Funct. Plant Biol. 33: 9-30, 2006. Go to original source...
  39. Lazár D., Brokeš M., Nauš L., Dvořák L.: Mathematical modelling of 3-(3',4'-dichlorophenyl)-1,1-dimethylurea action in plant leaves. - J. Theor. Biol. 191: 79-86, 1998. Go to original source...
  40. Lazár D., Ilík P.: High-temperature induced chlorophyll fluorescence changes in barley leaves. Comparison of the critical temperatures determined from fluorescence induction and from fluorescence temperature curve. - Plant Sci. 124: 159-164, 1997. Go to original source...
  41. Lazár D., Ilík P., Nauš J.: An appearance of K-peak in fluorescence induction depends on the acclimation of barley leaves to higher temperatures. - J. Lumin. 72-74: 595-596, 1997b. Go to original source...
  42. Lazár D., Nauš J., Matoušková M., Flašarová M.: Mathematical modeling of changes in chlorophyll fluorescence induction caused by herbicides. - Pestic. Biochem. Phys. 57: 200-210, 1997a. Go to original source...
  43. Lazár D., Pospíšil P., Nauš J.: Decrease of fluorescence intensity after the K step in chlorophyll a fluorescence induction is suppressed by electron acceptors and donors to Photosystem II. - Photosynthetica 37: 255-265, 1999. Go to original source...
  44. Li L., Li X.Y., Xu X.W. et al.: Effects of high temperature on the chlorophyll a fluorescence of Alhagi sparsifolia at the southern Taklamakan Desert. - Acta Physiol. Plant. 36: 243-249, 2014. Go to original source...
  45. Lichtenthaler H.K.: In vivo chlorophyll fluorescence as a tool for stress detection in plants. - In: Lichtenthaler H.K. (ed.): Applications of Chlorophyll Fluorescence in Photosynthesis Research, Stress Physiology, Hydrobiology and Remote Sensing. Pp. 129-142. Springer, Dordrecht 1988. Go to original source...
  46. Marečková M., Barták M.: Short-term responses of primary processes in PS II to low temperature are sensitively indicated by fast chlorophyll fluorescence kinetics in Antarctic lichen Dermatocarpon polyphyllizum. - Czech Polar Rep. 7: 74-82, 2017. Go to original source...
  47. Marečková M., Barták M., Hájek J.: Temperature effects on photosynthetic performance of Antarctic lichen Dermatocarpon polyphyllizum: A chlorophyll fluorescence study. - Polar Biol. 42: 685-701, 2019. Go to original source...
  48. Martinazzo E.G., Ramm A., Bacarin M.A.: The chlorophyll a fluorescence as an indicator of the temperature stress in the leaves of Prunus persica. - Braz. J. Plant Physiol. 24: 237-246, 2012.
  49. Medina M.G., Avalos-Chacon R.: Physiological performance of a foliose macrolichen Umbilicaria antarctica as affected by supplemental UV-B treatment. - Czech Polar Rep. 5: 222-229, 2015. Go to original source...
  50. Neubauer C., Schreiber U.: The polyphasic rice of chlorophyll fluorescence upon onset of strong continuous illumination: I. Saturation characteristics and partial control by the photosystem II acceptor side. - Z. Naturforsch. 42: 1246-1254, 1987. Go to original source...
  51. Oukarroum A., El Gharous M., Goltsev V., Strasser R.J.: Delayed fluorescence emission as a probe for the response of photosynthetic organisms to high temperature exposure: A comparative study. - J. Lumin. 180: 321-327, 2016b. Go to original source...
  52. Oukarroum A., El Madidi S., Strasser R.J.: Differential heat sensitivity index in barley cultivars (Hordeum vulgare L.) monitored by chlorophyll a fluorescence OKJIP. - Plant Physiol. Bioch. 105: 102-108, 2016a. Go to original source...
  53. Oukarroum A., Strasser R.J.: Phenotyping of dark and light adapted barley plants by the fast chlorophyll a fluorescence rise OJIP. - S. Afr. J. Bot. 70: 277-283, 2004. Go to original source...
  54. Oukarroum A., Strasser R.J., Schansker G.: Heat stress and the photosynthetic electron transport chain of the lichen Parmelina tiliacea (Hoffm.) Ach. in the dry and the wet state: Differences and similarities with the heat stress response of higher plants. - Photosynth. Res. 111: 303-314, 2012. Go to original source...
  55. Pardow A., Hartard B., Lakatos M.: Morphological, photosynthetic and water relations traits underpin the contrasting success of two tropical lichen groups at the interior and edge of forest fragments. - AoB Plants 2010: plq004, 2010.
  56. Pastenes C., Horton P.: Effect of high temperature on photosynthesis in beans (I. Oxygen evolution and chlorophyll fluorescence). - Plant Physiol. 112: 1245-1251, 1996. Go to original source...
  57. Pospíšil P., Tyystjärvi E.: Molecular mechanism of high-temperature-induced inhibition of acceptor side of Photo-system II. - Photosynth. Res. 62: 55-66, 1999. Go to original source...
  58. Rapacz M., Sasal M., Kalaji H.M., Kościelniak J.: Is the OJIP test a reliable indicator of winter hardiness and freezing tolerance of common wheat and triticale under variable winter environments? - PLoS ONE 10: e0134820, 2015. Go to original source...
  59. Rapacz M., Wójcik-Jagła M., Fiust A. et al.: Genome-wide associations of chlorophyll fluorescence OJIP transient parameters connected with soil drought response in barley. - Front. Plant Sci. 10: 78, 2019. Go to original source...
  60. Samborska I.A., Kalaji H.M., Sieczko L., Goltsev V.: Structural and functional disorder in the photosynthetic apparatus of radish plants under magnesium deficiency. - Funct. Plant Biol. 45: 668-679, 2018. Go to original source...
  61. Soni V., Swarnkar P.I.: Polyphasic chlorophyll fluorescence analysis of photosynthetic adaptation in Commiphora wightii to the harsh natural conditions of arid environment. - Rom. J. Biophys. 26: 185-190, 2016.
  62. Srivastava A., Guissé B., Greppin H., Strasser R.J.: Regulation of antenna structure and transport in photosystem II of Pisum sativum under elevated temperature probed by fast polyphasic chlorophyll a fluorescence transient: OKJIP. - BBA-Bioenergetics 1320: 95-106, 1997. Go to original source...
  63. Stefanov D., Petkova V., Denev I.D.: Screening for heat tolerance in common bean (Phaseolus vulgaris L.) lines and cultivars using JIP-test. - Sci. Hortic.-Amsterdam 128: 1-6, 2011.
  64. Stirbet A., Lazár D., Kromdijk J., Govindjee: Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? - Photosynthetica 56: 86-104, 2018. Go to original source...
  65. Strasser B.J.: Donor side capacity of Photosystem II probed by chlorophyll a fluorescence transients. - Photosynth. Res. 52: 147-155, 1997. Go to original source...
  66. Strasser R.J., Srivastava A., Govindjee: Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. - Photochem. Photobiol. 61: 32-42, 1995. Go to original source...
  67. Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. - In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 321-362. Springer, Dordrecht 2004. Go to original source...
  68. Tsimilli-Michael M., Pêcheux M., Strasser R.J.: Light and heat stress adaptation of the symbionts of temperate and coral reef foraminifers probed in hospite by the chlorophyll a fluorescence kinetics. - Z. Naturforsch. 54: 671-680, 1998.
  69. Tsimilli-Michael M., Strasser R.J.: In vivo assessment of stress impact on plant's vitality: Applications in detecting and evaluating the beneficial role of mycorrhization on host plants. - In: Varma A. (ed.): Mycorrhiza. Pp. 679-703. Springer, Berlin-Heidelberg 2008. Go to original source...
  70. Wang Z.X., Chen L., Ai J. et al.: Photosynthesis and activity of photosystem II in response to drought stress in Amur Grape (Vitis amurensis Rupr.). - Photosynthetica 50: 189-196, 2012. Go to original source...
  71. Yamane Y., Shikanai T., Kashino Y. et al.: Reduction of QA in the dark: Another cause of fluorescence FO increases by high temperatures in higher plants. - Photosynth. Res. 63: 23-34, 2000. Go to original source...
  72. Yusuf M.A., Kumar D., Rajwanshi R. et al.: Overexpression of γ-tocopherol methyltransferase gene in transgenic Brassica juncea plants alleviates abiotic stress: Physiological and chlorophyll a fluorescence measurements. - BBA-Bioenergetics 1797: 1428-1438, 2010. Go to original source...
  73. Żurek G., Rybka K., Pogrzeba M. et al.: Chlorophyll a fluorescence in evaluation of the effect of heavy metal soil contamination on perennial grasses. - PLoS ONE 9: e91475, 2014.