Photosynthetica, 2020 (vol. 58), SPECIAL ISSUE

Photosynthetica 2020, 58(2):468-478 | DOI: 10.32615/ps.2019.151

Special issue in honour of Prof. Reto J. Strasser – Probing the photosynthetic efficiency of some European and Anatolian Scots pine populations under UV-B radiation using polyphasic chlorophyll a fluorescence transient

N. ÇIÇEK1, H.M. KALAJI2, Y. EKMEKÇİ1
1 Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey
2 Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland

The study was carried out to examine the photosynthetic efficiency of Scot pine populations, originated from various European countries and Anatolia in Turkey, exposed to UV-B radiation. Seeds were germinated and grown in the nursery; three-year-old seedlings were exposed to UV-B for two days, eight hours per day. The photosynthetic efficiency was probed by chlorophyll a fluorescence at 24 h after UV-B treatment and analysed by JIP-test. UV-B caused reduction in quantum yields and electron transport at both donor and acceptor sides of photosystems. The performance indexes of seedlings were also negatively affected by the treatment. Populations from France, England, and three provenances of Turkey showed sensitive responses, while the populations from Spain, Romania, and Ilgaz performed their photosynthesis better. We found that UV-B affected at different levels the photosynthetic functionality of populations. Chlorophyll a fluorescence technique is very useful to identify the UV-B tolerance of different Scots pine populations, however, further studies based on molecular analyses should be applied to explain their evolutionary history.

Keywords: photochemistry; photosynthetic performance; Pinus sylvestris L.; ultraviolet-B.

Received: July 28, 2019; Accepted: November 13, 2019; Prepublished online: February 14, 2020; Published: April 7, 2020Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
ÇIÇEK, N., KALAJI, H.M., & EKMEKÇİ, Y. (2020). Special issue in honour of Prof. Reto J. Strasser – Probing the photosynthetic efficiency of some European and Anatolian Scots pine populations under UV-B radiation using polyphasic chlorophyll a fluorescence transient. Photosynthetica58(SPECIAL ISSUE), 468-478. doi: 10.32615/ps.2019.151.
Download citation

References

  1. Annan J.N.: Physiological, spectroscopic and biochemical analyses of effect of solar visible and UV radiation on the cyanobacterium, Lyngbya majuscula. - Int. J. Curr. Microbiol. App. Sci. 3: 249-264, 2014.
  2. Baba W., Kompala-Baba A., Zabochnicka-Swiatek M. et al.: Discovering trends in photosynthesis using modern analytical tools: More than 100 reasons to use chlorophyll fluorescence. -Photosynthetica 57: 668-679, 2019. Go to original source...
  3. Bais A.F., Lucas R.M., Bornman J.F. et al.: Environmental effects of ozone depletion, UV radiation and interactions with climate change: UNEP Environmental Effects Assessment Panel, update 2017. - Photochem. Photobiol. Sci. 17: 127-179, 2018. Go to original source...
  4. Baker N.R., Rosenqvist E.: Applications of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities. - J. Exp. Bot. 55: 1607-1621, 2004. Go to original source...
  5. Björn L.O.: Ultraviolet-A, B, and C. - UV4Plants Bull. 1: 17-18, 2015. https://doi.org/10.19232/uv4pb.2015.1.12. Go to original source...
  6. Brestič M., Živčák M.: PSII fluorescence techniques for measure-ment of drought and high temperature stress signal in crop plants: protocols and applications. - In: Rout G.R., Das A.B. (ed.): Molecular Stress Physiology of Plants. Pp. 87-131. Springer, Dordrecht 2013. Go to original source...
  7. Çakirlar H., Çiçek N., Fedina I. et al.: NaCl induced cross-acclimation to UV-B radiation in four barley (Hordeum vulgare L.) cultivars. - Acta Physiol. Plant. 30: 561-567, 2008. Go to original source...
  8. Caldwell M.M., Bjorn L.O., Bornman J.F. et al.: Effect of increased solar ultraviolet radiation on terrestrial ecosys- tems. - J. Photoch. Photobio. B 46: 40-52, 1998. Go to original source...
  9. Ceppi M.G., Oukarroum A., Çiçek N. et al.: The IP amplitude of the fluorescence rise OJIP is sensitive to changes in the photosystem I content of leaves: A study on plants exposed to magnesium and sulphate deficiencies, drought stress and salt stress. - Physiol. Plantarum 144: 277-288, 2012. Go to original source...
  10. Choudhary K.K., Agrawal S.B.: Effect of elevated ultraviolet-B on four tropical soybean cultivars: Quantitative and qualitative aspects with special emphasis on gas exchange, chlorophyll fluorescence, biomass and yield. - Acta Physiol. Plant. 37: 31-43, 2015. Go to original source...
  11. Çiçek N., Fedina I., Çakirlar H. et al.: The role of short-term high temperature pretreatment on the UV-B tolerance of barley cultivars. - Turk. J. Agric. For. 36: 153-165, 2012.
  12. Çiçek N., Oukarroum A., Strasser R.J., Schansker G.: Salt stress effects on the photosynthetic electron transport chain in two chickpea lines differing in their salt stress tolerance. - Photosynth. Res. 136: 291-301, 2018.
  13. Coffey A., Jansen M.A.K.: Effects of natural solar UV-B radiation on three Arabidopsis accessions are strongly affected by seasonal weather conditions. - Plant Physiol. Bioch. 134: 64-72, 2019. Go to original source...
  14. Dabrowski P., Baczewska A.H., Pawluśkiewicz B. et al.: Prompt chlorophyll a fluorescence as a rapid tool for diagnostic changes in PSII structure inhibited by salt stress in Perennial ryegrass. - J. Photoch. Photobio. B 157: 22-31, 2016. Go to original source...
  15. Dobrikova A.G., Krasteva V., Apostolova E.L.: Damage and protection of the photosynthetic apparatus from UV-B radiation. I. Effect of ascorbate. - J. Plant Physiol. 170: 251-257, 2013. Go to original source...
  16. Doupis G., Bosabalidis A.M., Patakas A.: Comparative effects of water deficit and enhanced UV-B radiation on photosynthetic capacity and leaf anatomy traits of two grapevine (Vitis vinifera L.) cultivars. - Theor. Exp. Plant Phys. 28: 131-141, 2016. Go to original source...
  17. Duarte B., Pedro S., Marques J.C. et al.: Zostera noltii develop-ment probing using chlorophyll a transient analysis (JIP-test) under field conditions: Integrating physiological insights into a photochemical stress index. - Ecol. Indic. 76: 219-229, 2017. Go to original source...
  18. Faseela P., Puthur J.T.: The imprints of the high light and UV-B stresses in Oryza sativa L. 'Kanchana' seedlings are differentially modulated. - J. Photoch. Photobio. B 178: 551-559, 2018. Go to original source...
  19. Fiscus E.L., Booker F.L.: Is increased UV-B a threat to crop photosynthesis and productivity? - Photosynth. Res. 43: 81-92, 1995. Go to original source...
  20. Glerum C.: Frost hardiness of coniferous seedlings: principles and applications. - In: Duryea F.M.L. (ed.): Proceedings: Evaluating Seedling Quality: Principles, Procedures, and Predictive Abilities of Major Tests. Pp. 107-123. Workshop held October 16-18, 1984. Forest Research Laboratory, Oregon State University, Corvallis 1985.
  21. Goltsev V.N., Kalaji H.M., Paunov M. et al.: Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. - Russ. J. Plant Physl+ 63: 869-893, 2016.
  22. González-Villagra J., Marjorie R.D., Alberdi M. et al.: Solar UV irradiation effects on photosynthetic performance, biochemical markers, and gene expression in highbush blueberry (Vaccinium corymbosum L.) cultivars. - Sci. Hortic.-Amsterdam 259: 108816, 2020.
  23. Hideg E., Rosenqvist E., Varadi G. et al.: A comparison of UV-B induced stress responses in three barley cultivars. - Funct. Plant Biol. 33: 77-90, 2006. Go to original source...
  24. Houston Durrant T., de Rigo D., Caudullo G.: Pinus sylvestris in Europe: distribution, habitat, usage and threats. - In: San-Miguel-Ayanz J., de Rigo D., Caudullo G. et al. (ed.): European Atlas of Forest Tree Species. Pp. e016b94+. Publ. Off. EU, Luxembourg 2016.
  25. Huarancca Reyes T., Scartazza A., Castagna A. et al.: Physiological effects of short acute UVB treatments in Chenopodium quinoa Willd. - Sci. Rep.-UK 8: 371, 2018. doi:10.1038/s41598-017-18710-2 Go to original source...
  26. Jansen M.A.K., Elfstrand M., Heggie L. et al.: Over-expression of phenol-oxidising peroxidases alters the UV-susceptibility of transgenic Nicotiana tabacum. - New Phytol. 163: 585-594, 2004. Go to original source...
  27. Jansen M.A.K., Gaba V., Greenberg B.M.: Higher plants and UV-B radiation: Balancing damage, repair and acclimation. - Trends Plant Sci. 3: 131-135, 1998. Go to original source...
  28. Jordan B.R., He J., Chow W.S. et al.: Changes in mRNA levels and polypeptide subunits of ribulose 1,5-bisphophate carboxylase in response to supplementary ultraviolet-B radiation. - Plant Cell Environ. 15: 91-98, 1992. Go to original source...
  29. Juntunen V., Neuvonen S., Norokorpi Y., Tasanen T.: Potential for timberline advance in northern Finland, as revealed by monitoring during 1983-99. - Arctic 55: 348-361, 2002. Go to original source...
  30. Kalaji H.M., Jajoo A., Oukarroum A. et al.: Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. - Acta Physiol. Plant. 38: 102, 2016. Go to original source...
  31. Kalaji H.M., Račková L., Paganová V. et al.: Can chlorophyll-a fluorescence parameters be used as bio-indicators to distin-guish between drought and salinity stress in Tilia cordata Mill? - Environ. Exp. Bot. 152: 149-157, 2018. Go to original source...
  32. Kalaji H.M., Schansker G., Ladle R.J. et al.: Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. - Photosynth. Res. 122: 121-158, 2014. Go to original source...
  33. Kataria S., Jajoo A., Guruprasad K.N.: Impact of increasing Ultraviolet-B (UV-B) radiation on photosynthetic processes. -J. Photoch. Photobio. B 137: 55-66, 2014. Go to original source...
  34. Khudyakova A.Y., Kreslavski V.D., Shmarev A.N. et al.: Impact of UV-B radiation on the photosystem II activity, pro-/antioxidant balance and expression of light-activated genes in Arabidopsis thaliana hy4 mutants grown under light of different spectral composition. - J. Photoch. Photobio. B 194: 14-20, 2019. Go to original source...
  35. Kim S., Lee J., Baek S. et al.: Identification of DNA molecular markers by comparison of Pinus densiflora and Pinus sylvestris chloroplast genomes. - PeerJ Preprints 6: e26506v1, 2018. https://doi.org/10.7287/peerj.preprints.26506v1. Go to original source...
  36. Kulandaivelu G., Noorudeen A.M.: Comparative study of the action of ultraviolet-C and ultraviolet-B on photosynthetic electron transport. - Physiol. Plantarum 58: 389-394, 1983. Go to original source...
  37. Lazár D.: The polyphasic chlorophyll a fluorescence rise mea-sured under high intensity of exciting light. - Funct. Plant Biol. 33: 9-30, 2006. Go to original source...
  38. Lazár D.: Parameters of photosynthetic energy partitioning. - J. Plant Physiol. 175: 131-147, 2015. Go to original source...
  39. Murchie E.H., Lawson T.: Chlorophyll fluorescence analysis: A guide to good practice and understanding some new appli-cations. - J. Exp. Bot. 64: 3983-3998, 2013. Go to original source...
  40. Oukarroum A., Bussotti F., Goltsev V., Kalaji H.M.: Corre-lation between reactive oxygen species production and photochemistry of photosystems I and II in Lemna gibba L. plants under salt stress. - Environ. Exp. Bot. 109: 80-88, 2015. Go to original source...
  41. Oukarroum A., El Madidi S., Schansker G., Strasser R.J.: Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. - Environ. Exp. Bot. 60: 438-446, 2007. Go to original source...
  42. Oukarroum A., Lebrihi A., El Gharous M. et al.: Desiccation-induced changes of photosynthetic transport in Parmelina tiliacea (Hoffm.) Ach. analysed by simultaneous measure-ments of the kinetics of prompt fluorescence, delayed fluorescence and modulated 820 nm reflection. - J. Lumin. 198: 302-308, 2018. Go to original source...
  43. Oukarroum A., Schansker G., Strasser R.J.: Drought stress effects on photosystem Icontent and photosystem II thermotolerance analysed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance. - Physiol. Plantarum 137: 188-199, 2009. Go to original source...
  44. Rahimzadeh Karvansara P., Razavi S.M.: Physiological and biochemical responses of sugar beet (Beta vulgaris L.) to ultraviolet-B radiation. - PeerJ 7: e6790, 2019. Go to original source...
  45. Ripoll J., Bertin N., Bidel L.P.R., Urban L.: A user's view of the parameters derived from the induction curves of maximal chlorophyll a fluorescence: Perspectives for analyzing stress. -Front. Plant Sci. 7: 1679, 2016. Go to original source...
  46. Schansker G., Tóth S.Z., Strasser R.J.: Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. - BBA-Bioenergetics 1706: 250-261, 2005. Go to original source...
  47. Schansker G., Tóth S.Z., Strasser R.J.: Dark recovery of the Chl a fluorescence transient (OJIP) after light adaptation: The qT-component of non-photochemical quenching is related to an activated photosystem I acceptor side. - BBA-Bioenergetics 1757: 787-797, 2006. Go to original source...
  48. Schultze M., Bilger W.: Acclimation of Arabidopsis thaliana to low temperature protects against damage of photosystem II caused by exposure to UV-B radiation at 9°C. - Plant Physiol. Bioch. 134: 73-80, 2019. Go to original source...
  49. Sinclair W.T., Morman J.D., Ennos R.A.: The postglacial history of Scots pine (Pinus sylvestris L.) in western Europe: evidence from mitochondrial DNA variation. - Mol. Ecol. 8: 83-88, 1999. Go to original source...
  50. Singh S.K., Surabhi G.K., Gao W., Reddy K.R.: Assessing genotypic variability of cowpea (Vigna unguiculata [L.] Walp.) to current and projected ultraviolet-B radiation. - J. Photoch. Photobio. B 93: 71-81, 2008. Go to original source...
  51. Sitko K., Rusinowski S., Kalaji H.M. et al.: Photosynthetic efficiency as bioindicator of environmental pressure in A. halleri. - Plant Physiol. 175: 290-302, 2017. Go to original source...
  52. Stirbet A., Lazár D., Kromdijk J., Govindjee: Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? - Photosynthetica 56: 86-104, 2018. Go to original source...
  53. Strasser B.J., Strasser R.J.: Measuring fast fluorescence transients to address environmental questions: The JIP test. - In: Mathis P. (ed.): Photosynthesis: From Light to Biosphere. Vol. 5. Pp. 977-980. Kluwer Academic Publishers, Dordrecht 1995. Go to original source...
  54. Strasser R.J., Srivastava A., Govindjee: Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. - Photochem. Photobiol. 61: 32-42, 1995. Go to original source...
  55. Strasser R.J., Srivastava A., Tsimilli-Michael M.: The fluores-cence transient as a tool to characterize and screen photosyn-thetic samples. - In: Yunus M., Pathre U., Mohanty P. (ed.): Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Pp. 445-483. Taylor & Francis, London 2000.
  56. Strasser R.J., Tsimilli-Michael M., Qiang S., Goltsev V.: Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. - BBA-Bioenergetics 1797: 1313-1326, 2010. Go to original source...
  57. Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. - In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 321-362. Springer, Dordrecht 2004. Go to original source...
  58. Takahashi S., Milward S.E., Yamori W. et al.: The solar action spectrum of photosystem II damage. - Plant Physiol. 153: 988-993, 2010. Go to original source...
  59. Teramura A.H., Sullivan J.H.: Effects of UV-B radiation on photosynthesis and growth of terrestrial plants. - Photosynth. Res. 39: 463-473, 1994. Go to original source...
  60. Vass I.: Adverse effects of UV-B light on the structure and function of the photosynthetic apparatus. - In: Pessarakli M. (ed.): Handbook of Photosynthesis. Pp. 931-949. Marcel Dekker, New York 1997.
  61. Vass I.: Molecular mechanisms of photodamage in the photo-system II complex. - BBA-Bioenergetics 1817: 209-217, 2012. Go to original source...
  62. Wang Q.W., Nagano S., Ozaki H. et al.: Functional differentiation in UV-B-induced DNA damage and growth inhibition between highland and lowland ecotypes of two Arabidopsis species. - Environ. Exp. Bot. 131: 110-119, 2016. Go to original source...
  63. Wijewardana C., Henry W.B., Gao W., Reddy K.R.: Interactive effects on CO2, drought, and ultraviolet-B radiation on maize growth and development. - J. Photoch. Photobio. B 160: 198-209, 2016. Go to original source...
  64. Yusuf M.D., Kumar D., Rajwanshi R. et al.: Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: Physiological and chlorophyll a fluorescence measurements. - BBA-Bioenergetics 1797: 1428-1438, 2010. Go to original source...