Photosynthetica, 2017 (vol. 55), issue 2

Photosynthetica 2017, 55(2):378-385 | DOI: 10.1007/s11099-017-0662-y

Arbuscular mycorrhizal fungi enhanced the growth, photosynthesis, and calorific value of black locust under salt stress

X. Q. Zhu1,2, M. Tang1, H. Q. Zhang1,*
1 College of Forestry, Northwest A&F University, Yangling, China
2 Key Laboratory of Plant-Microbe Interactions, Shangqiu Normal University, Shangqiu, China

Saline soils spread wildly in the world, therefore it is important to develop salt-tolerant crops. We carried out a pot study in order to determine effects of arbuscular mycorrhizal fungi (AMF) (Rhizophagus irregularis and Glomus versiforme) in black locust seedlings under salt (NaCl) stress. The results showed that AMF enhanced in seedlings their growth, photosynthetic ability, carbon content, and calorific value. Under salt stress, the biomass of the seedlings with R. irregularis or G. versiforme were greater by 151 and 100%, respectively, while a leaf area increased by 197 and 151%, respectively. The seedlings colonized by R. irregularis exhibited a higher chlorophyll content, net photosynthetic rate, intercellular CO2 concentration, stomatal conductance, and transpiration rate than that of the nonmycorrhizal seedlings or those colonized by G. versiforme. Both R. irregularis and G. versiforme significantly enhanced a carbon content, calorific value, carbon, and energy accumulations of black locust under conditions of 0 or 1.5 g(NaCl) kg-1(growth substrate). Our results suggested that AMF alleviated salt stress and improved the growth of black locust.

Keywords: arbuscular mycorrhizal colonization; biomass; carbon content; calorific value; saline conditions

Received: October 20, 2015; Accepted: June 29, 2016; Published: June 1, 2017Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Zhu, X.Q., Tang, M., & Zhang, H.Q. (2017). Arbuscular mycorrhizal fungi enhanced the growth, photosynthesis, and calorific value of black locust under salt stress. Photosynthetica55(2), 378-385. doi: 10.1007/s11099-017-0662-y.
Download citation

References

  1. Arafat A.H.A.L., He C.X.: Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. - Sci. Hortic.-Amsterdam 127: 228-233, 2011.
  2. Balat M.: Bio-oil production from pyrolysis of black locust (Robinia pseudoacacia) wood. - Energ. Explor. Exploit. 28: 173-186, 2010. Go to original source...
  3. Bao S.D.: [Soil and agricultural chemistry analysis.] - In: Bao S.D. (ed.): [Soil and Agricultural Chemistry Analysis.] 3rd ed. Pp. 14-114, China Agricult. Press, Beijing 2000. [In Chinese]
  4. Barrett R.P., Mebrahtu T., Hanover J.W.: Black locust: a multipurpose tree species for temperate climates. - In: Janick J., Simon J.E. (ed.): Advances in New Crops. Pp. 278-283. Timber Press, Portland 1990.
  5. Bongarten B.C., Huber D.A., Apsley D.K.: Environmental and genetic influences on short rotation biomass production of black locust (Robinia pseudoacacia L.) in the Geogia Piedmont. - Forest Ecol. Manage. 55: 315-331, 1992. Go to original source...
  6. Bruce R.J., West C.A.: Elicitation of lignin biosynthesis and isoperoxidase activity by pectic fragments in suspension cultures of castor bean. - Plant Physiol. 91: 889-897, 1989. Go to original source...
  7. Carpenter S.B., Eigel R.A.: Reclaiming southern Appalachian surface mines with black locust fuel plantations. - In: Carpenter S.B. (ed.): Symposium on Surface Mining Hydrology, Sedimentology, and Reclamation. Pp. 221-227. University of Kentucky, Lexington 1979.
  8. Chaves M.M., Flexas J., Pinheiro C.: Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. - Ann. Bot.-London 103: 551-560, 2009. Go to original source...
  9. Demirbas A.: Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. - Prog. Energ. Combust. 31: 171-192, 2005. Go to original source...
  10. Estrada B., Aroca R., Maathuis F.J.M. et al.: Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis. - Plant Cell Environ. 36: 1771-1782, 2013. Go to original source...
  11. Evelin H., Giri B., Kapoor R.: Ultrastructural evidence for AMF mediated salt stress mitigation in Trigonella foenum-graecum. - Mycorrhiza 23: 71-86, 2013. Go to original source...
  12. Evelin H., Kapoor R.: Arbuscular mycorrhizal symbiosis modulates antioxidant response in salt-stressed Trigonella foenum-graecum plants. - Mycorrhiza 24: 197-208, 2014. Go to original source...
  13. Evelin H., Kapoor R., Giri B.: Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. - Ann. Bot.-London 104: 1263-1280, 2009. Go to original source...
  14. Fang S.Z., Zhai X.C., Wan J., Tang L.Z.: Clonal variation in growth, chemistry and calorific value of new poplar hybrids at nursery stage. - Biomass Bioenerg. 54: 303-311, 2013. Go to original source...
  15. Gao J.F.: [Leaf area measurement method.] - In: Gao J.F. (ed.): [Experimental Guidance for Plant Physiology.] Pp. 88. High Educ. Press, Beijing 2006. [In Chinese]
  16. Gasol C.M., Brun F., Mosso A. et al.: Economic assessment and comparison of acacia energy crop with annual traditional crops in Southern Europe. - Energ. Policy 38: 592-597, 2010. Go to original source...
  17. Geyer W.A., Walawender W.P.: Biomass properties and gasification behavior of young black locust. - Wood Fiber Sci. 26: 354-359, 1994.
  18. González-García S., Gasol C.M., Moreira M.T. et al.: Environmental assessment of black locust (Robinia pseudoacacia L.)-based ethanol as potential transport fuel. - Int. J. Life Cycle Assess. 16: 465-477, 2011. Go to original source...
  19. González-García S., Moreira M.T., Feijoo G., Murphy R.J.: Comparative life cycle assessment of ethanol production from fast-growing wood crops (black locust, eucalyptus and poplar). - Biomass Bioenerg. 39: 378-388, 2012. Go to original source...
  20. Grünewald H., Brandt B.K.V., Schneider B.U. et al.: Agroforestry systems for the production of woody biomass for energy transformation purposes. - Ecol. Eng. 29: 319-328, 2007. Go to original source...
  21. Grünewald H., Böhm C., Quinkenstein A. et al.: Robinia pseudoacacia L.: a lesser known tree species for biomass production. - Bioenerg. Res. 2: 123-133, 2009. Go to original source...
  22. Hajiboland R., Aliasgharzadeh N., Laiegh S.F., Poschenrieder C.: Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. - Plant Soil 331: 313-327, 2010. Go to original source...
  23. Hameed A., Dilfuza E., Abd-Allah E.F. et al.: Salinity stress and arbuscular mycorrhizal symbiosis in plants. - In: Miransari M. (ed.): Use of Microbes for the Alleviation of Soil Stresses, Vol. 1. Pp. 139-159. Springer, New York 2014. Go to original source...
  24. Huang C.Y. (ed.): [Soil Science.] Pp. 267-300. China Agricult. Press, Beijing 2000. [In Chinese]
  25. Jongen M., Fay P., Jones M.B.: Effects of elevated carbon dioxide and arbuscular mycorrhizal infection on Trifolium repens. - New Phytol. 132: 413-423, 1996. Go to original source...
  26. Kaschuk G., Kuyper T.W., Leffelaar P.A. et al.: Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? - Soil Biol. Biochem. 41: 1233-1244, 2009. Go to original source...
  27. Krüger M., Krüger C., Walker C. et al.: Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. - New Phytol. 193: 970-984, 2012. Go to original source...
  28. Kumar R., Pandey K.K., Chandrashekar N., Mohan S.: Study of age and height wise variability on calorific value and other fuel properties of Eucalyptus hybrid, Acacia auriculaeformis and Casuarina equisetifolia. - Biomass Bioenerg. 35: 1339-1344, 2011. Go to original source...
  29. Lamlom S.H., Savidge R.A.: A reassessment of carbon content in wood: variation within and between 41 North American species. - Biomass Bioenerg. 25: 381-388, 2003. Go to original source...
  30. Luo Z.B., Polle A.: Wood composition and energy content in a poplar short rotation plantation on fertilized agricultural land in a future CO2 atmosphere. - Glob. Change Biol. 15: 38-47, 2009. Go to original source...
  31. Peng J., Li Y., Shi P. et al.: The differential behavior of arbuscular mycorrhizal fungi in interaction with Astragalus sinicus L. under salt stress. - Mycorrhiza 21: 27-33, 2011. Go to original source...
  32. Phillips J.M., Hayman D.S.: Improved procedure for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. - T. Brit. Mycol. Soc. 55: 158-161, 1970. Go to original source...
  33. Porcel R., Aroca A., Ruiz-Lozano J.M.: Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. - Agron. Sustain. Dev. 32: 181-200, 2012. Go to original source...
  34. Prakash C.B., Murray F.E.: A review on wood waste burning. - Pulp Pap.-Canada 73: 70-75, 1972.
  35. Rewald B., Holzer L., Göransson H.: Arbuscular mycorrhiza inoculum reduces root respiration and improves biomass accumulation of salt-stressed Ulmus glabra seedlings. - Urban For. Urban Gree. 14: 432-437, 2015. Go to original source...
  36. Ruiz-Lozano J.M., Porcel R., Azcón C., Aroca R.: Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. - J. Exp. Bot. 63: 4033-4044, 2012. Go to original source...
  37. Selvakumar G., Kim K., Hu S., Sa T.: Effect of salinity on plants and the role of arbuscular mycorrhizal fungi and plant growthpromoting rhizobacteria in alleviation of salt stress. - In: Ahmad P., Wani M.R. (ed.): Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment. Pp. 115-144. Springer, New York 2014. Go to original source...
  38. Sheng M., Tang M., Zhang F., Huang Y.H.: Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress. - Mycorrhiza 21: 423-430, 2011. Go to original source...
  39. Sheng M., Tang M., Chen H. et al.: Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. - Mycorrhiza 18: 287-296, 2008. Go to original source...
  40. Smith S.E., Read D.J.: Arbuscular mycorrhizas. - In: Smith S.E., Read D.J. (ed.): Mycorrhizal Symbiosis. 3rd ed. Pp. 31-134. Academic Press, New York 2008. Go to original source...
  41. Sun X.G., Tang M.: Comparison of four routinely used methods for assessing root colonization by arbuscular mycorrhizal fungi. - Botany 90: 1073-1083, 2012. Go to original source...
  42. Takai T., Kondo M., Yano M., Yamamoto T.: A quantitative trait locus for chlorophyll content and its association with leaf photosynthesis in rice. - Rice 3: 172-180, 2010. Go to original source...
  43. Wicke B., Smeets E., Dornburg V. et al.: The global technical and economic potential of bioenergy from salt-affected soils. - Energ. Environ. Sci. 4: 2669-2681, 2011.
  44. Wu Q.S., Zou Y.N., He X.H.: Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. - Acta Physiol. Plant. 32: 297-304, 2010. Go to original source...
  45. Yang C.W., Xu H.H., Wang L.L. et al.: Comparative effects of salt-stress and alkali-stress on the growth, photosynthesis, solute accumulation, and ion balance of barley plants. - Photosynthetica 47: 79-86, 2009. Go to original source...
  46. Zai X.M., Zhu S.N., Qin P. et al.: Effect of Glomus mosseae on chlorophyll content, chlorophyll fluorescence parameters, and chloroplast ultrastructure of beach plum (Prunus maritima) under NaCl stress. - Photosynthetica 50: 323-328, 2012. Go to original source...
  47. Zhang J.F.: Coastal Saline Soil Rehabilitation and Utilization Based on Forestry Approaches in China. Pp. 145-164. Springer, Berlin-Heidelberg 2014. Go to original source...
  48. Zhang J.F., Chen G.C., Xing S. et al.: Carbon sequestration of black locust forests in the Yellow River Delta region, China. - Int. J. Sust. Dev. World 17: 475-480, 2010. Go to original source...
  49. Zhang J.F., Song Y.M., Xing S.J. et al.: [Saline soil amelioration and forestation techniques.] - J. Northeast Forest. Univ. 30: 124-129, 2002a. [In Chinese]
  50. Zhang S.Z., Li Y., Jiang G.B. et al.: [Studies on genetic variation, correlation and selection of salinity tolerance traits of Robinia pseudoacacia families.] - J. Beijing Forest. Univ. 24: 12-17, 2002b. [In Chinese]
  51. Zhu X.Q., Wang C.Y., Chen H., Tang M.: Effects of arbuscular mycorrhizal fungi on photosynthesis, carbon content, and calorific value of black locust seedlings. - Photosynthetica 52: 247-252, 2014. Go to original source...