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Abstract

Our photometric observations of 18 main-belt binary systems in more than one
apparition revealed a strikingly high number of 15 having positively re-observed
mutual events in the return apparitions. Our simulations of the survey showed that
it cannot be due to an observational selection effect and that the data strongly
suggest that poles of mutual orbits between components of binary asteroids in the
primary size range 3-8 km are not distributed randomly: The null hypothesis of an
isotropic distribution of the orbit poles is rejected at a confidence level greater than
99.99%. Binary orbit poles concentrate at high ecliptic latitudes, within 30° of the
poles of the ecliptic. We propose that the binary orbit poles oriented preferentially
up/down-right are due to either of the two processes: (i) the YORP tilt of spin axes
of their parent bodies toward the asymptotic states near obliquities 0 and 180° (pre-
formation mechanism), or (ii) the YORP tilt of spin axes of the primary components
of already formed binary systems toward the asymptotic states near obliquities 0
and 180° (post-formation mechanism). The alternative process of elimination of
binaries with poles closer to the ecliptic by the Kozai dynamics of gravitational
perturbations from the sun does not explain the observed orbit pole concentration
as in the close asteroid binary systems the Jo perturbation due to the primary
dominates the solar-tide effect.

Key words: Asteroids, binary;




1 Introduction

An orientation of the orbit of components of a binary asteroid around their
common center of mass can be estimated from photometric observations of
their mutual events — occultations/eclipses. It requires observations taken
over a range of geometries of the system with respect to Earth and Sun.
Scheirich and Pravec (2009) derived or constrained orbit poles of 5 near-Earth
asteroid binaries, taking advantage of rapid changes of viewing geometries of
the near-Earth binaries during their approaches to Earth. Binary systems in
the main belt of asteroids show a limited change of observing geometry during
one apparition! and observations over 2-3 apparitions are typically needed
to estimate the orientation (ecliptic longitude and latitude of the pole) of the
mutual orbit for a main-belt asteroid (MBA) binary.

We observed 18 MBA binaries in 2-3 apparitions. With our modeling tech-
nique that we used for the five NEA binaries two years ago, we estimated or
constrained their mutual orbits (see Sect. 5). An interpretation of the sample
of derived binary parameters must take into account existing observational
biases, see a theory of the selection effects of the photometric technique of bi-
nary detection presented in Sect. 2. A direct estimation of the biases present
in the discovered sample of binaries is complicated by a limited probability
of covering the mutual event in a binary with a priori unknown orbit period
with a given set of survey observations. This complication is overcome with
analysis of the statistics of re-detections of mutual events in the binaries in
their return apparitions. The key advantage is that a time distribution of the
planned follow-up observations of the binaries in the return apparitions was
matched to the orbit periods determined in the discovery apparition, which
made our simulations of the observational selection effects feasible and easy.

2 Probability of photometric detection of a binary asteroid

The probability of the photometric detection of a binary asteroid is formulated
as follows:

Pdet = Pme Pcov Pres (1)

where ppe is a probability of occurence of a mutual event (occultation or
eclipse) between the components of the system, p.oy is a probability of covering
the mutual event with a given set of observations, and p,e is a probability of
resolving the mutual event with the given photometric observations.

1 An asteroid’s photometric apparition is a time interval, usually a few weeks to
a few months long, when the asteroid is in favorable conditions (brightness, solar
elongation) allowing photometric observations of required accuracy and duration
during night. For main belt asteroids, it occurs around opposition with the Sun.



The probability of occurence of a mutual event depends on the parameters of
the system:

Pme = Pme (€, Gorb, €, D1, D2, component shapes, phase effect), (2)

where € is an obliquity of the mutual orbit of the binary components, aq,
and e are its semimajor axis and eccentricity, D; is a mean diameter of the
i-th component (D, < Dy), and the probability also depends on shapes of the
components and their phase effect. While a dependence of the probability on
the component shapes and phase effect is complex and can be described with
a numerical model, it is illustrative to use the following analytical formula for
a case of spherical components, zero eccentricity of the mutual orbit, and zero
solar phase:

1, if € <i.ore>(m—i.),
Pme = 5 L o ] (3)
Zarcsin 5 if i < € < (7 — i),

sine ?
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The mean probability of occurence of mutual events is
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where f(€) is a number density of binary orbit poles. In the case of the isotropic
distribution of binary orbits, f(€) = sine, we get

w/2
P,.=1—cosi.+ /pme(e) sin € de. (6)
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These formulas show that the probability of occurence of mutual events reaches
a minimum at obliquity € = 7/2 and that the mean probability decreases with
increasing relative distance aqm,/D1 between the components. This describes
an existing observational selection effect favoring detections of close systems
and those with mutual orbit poles oriented up/down-right.

The probability of covering the mutual event with a given set of observations:

Peov = Peov(Porp, time distribution of observations), (7)

where P, is a period of the mutual orbit of the binary components. For a
given distribution of observations, the probability has to be computed with



a numerical model. Nevertheless, a general trend is that this probability de-
creases with increasing orbit period, further strengthening the selection effect
towards close systems. This probability is usually less than 1 for observations
of a previously unknown binary where the orbit period is not known a priori
and thus a distribution of the observations cannot be matched to the orbit
period. In a case of planned re-observations of a known binary with deter-
mined orbit period, however, the probability can be effectively set to 1 with
scheduling the observations so that to cover the full orbit. This highly sim-
plifies simulations of planned observations of known binaries in their return
apparitions and allows us to constrain a distribution of their orbit poles with
analysis of the re-observations in the post-discovery apparitions.

The probability of resolving mutual event, p.., depends on a depth of the
mutual event (F') and photometric quality of the observations. The depth of
(relative brightness attenuation in) a total secondary event at zero solar phase
is Fyee = Io/(I1 + I3), where I; is a light flux from the i-th component. For
components with the same albedo observed at zero phase angle, it converts to
Fie = [1 4+ (D1/D2)?]7!, and the depth of the primary event is Foim = Fiec.
At non-zero phase angles and for non-central events, the depth of the mutual
event is computed with a numerical model, assuming a specific scattering law.
The photometric quality of the observations affects the probability of resolving
the mutual event substantially. Generally, events with depth much greater
than photometric errors of the observations are resolved with a probability
approaching 1, while events with depth lower than the photometric errors are
usually burried in the noise and the probability of resolving them is close to 0.
For observations producing controlled and homogeneous data, the probability
of resolving mutual event is approximated with a step function:

07 if I/ < Eima
Pres = (8)
]-7 it I/ Z Eima

where Fjy, is a minimum detectable relative brightness attenuation.

Being equipped with the theory of photometric detection of a binary asteroid,
we will intrepret our observations of binary asteroids presented in Section 3
with simulations of the survey observations given in Section 4.

3 Observations

We run a long-term project of photometric observations of binary systems
among small asteroids called “Photometric Survey for Asynchronous Binary
Asteroids” since 2005. The collaborating station Palmer Divide Observatory
runs a parallel survey project aimed at describing rotations and binary sys-
tems in the Hungaria asteroids group (Warner et al. 2009a,b). Both surveys
used similar observing techniques and strategies, and they actually cooperated



and coordinated their observations; there was a major overlap of the lists of
stations participating in the two surveys. We joined observations of binaries
made within the two cooperating surveys and analysed them together as they
effectively worked as one joint binary asteroids survey.

Of 45 MBA binaries that we detected within the surveys by May 2011, we re-
observed 18 of them in their return apparitions. Their list and selected param-
eters are given in Table 1. The listed parameters are following: the mean diam-
eter of the primary at the equatorial aspect (D), the ratio between the mean
diameters of the components of the binary (Ds/D;), the rotation period of
the primary (P;), the orbit period (Pyy,), the rotation period of the secondary
(P,), the relative size of the mutual orbit’s semi-major axis (aqm/D1), ranges
of admissible values of the mutual orbit pole’s ecliptic longitude, latitude, and
obliquity to the current heliocentric orbit (L, By, €), the semi-major axis (ay)
and inclination (i) of the system’s heliocentric orbit (epoch 2011 Aug.27.0
TT). These parameters were estimated from our observations using methods
described in Pravec et al. (2006), Pravec and Harris (2007), and Scheirich and
Pravec (2009). The results for 9 systems for which we got a unique orbit solu-
tion are presented in Section 5; their observations as well as additional results
are given in the electronic Supplementary Information. The table with the es-
timated parameters, including their uncertainties and references, is available
on web page http://www.asu.cas.cz/~asteroid /binastdata.htm. The original
photometric data will be stored in ALCDEF archive (Stephens et al. 2010).

Of the 18 binaries observed in more than one apparition, we detected mutual
events in 15 also upon their return. In the three cases of negative event detec-
tion in the return apparition, there were observed no apparent attenuations
with relative depth of 4% or greater. We cannot rule out possible occurence
of very shallow events with depths below the 4%-event depth detection limit
of our survey, due to grazing eclipses or occultations; an occurence of such
near-boundary events producing attenuations below the detection limit are
accounted for in the model of the survey that we present in the next section.

In Table 2, we list epochs and asteroid’s ecliptic longitudes and latitudes with
respect to Earth (L, B) and Sun (Ly, By) of the first positive event detection in
both the discovery and the return apparitions for each of the 18 binaries. For
the three systems that did not show mutual events in the return apparition, we
list an epoch of the observing session closest to the middle of the observational
run (that lasted from 3 to 17 days in the three cases).

The rate of positive re-detections is strikingly high. We simulated the survey,
tested the null hypothesis of anisotropic distribution of binary orbit poles
and found that it is rejected at a high confidence level. We found that poles of
mutual orbits of small binaries concentrate at high ecliptic latitudes around the
poles of the ecliptic. We present the simulations and findings in the following
section.



4 Simulations of the survey

We constructed a numerical model of the survey to simulate the observed
re-detections of mutual events in the 18 binaries observed in more than one
apparition. The model is analogous to that we used for simulations of our
survey for near-Earth asteroids in Pravec et al. (2006), except that in the
present work we allowed for non-isotropic orbit pole distribution. We used the
following assumptions and approximations:

e Uniform distribution of orbit poles in L, and in (a) |sin B,| = sin By to 1, or

(b) |cose| = cose, to 1, where B, and ¢ is a lower and upper limit cutoff of

the distribution in ecliptic latitude and obliquity, respectively. For By = 0

and e, = 90°, it is the isotropic distribution.

Zero eccentricity of the mutual orbit.

Spherical shapes of both components.

Same albedos for both components.

Lommel-Seeliger scattering law for the distribution of apparent surface bright-

ness over the disc (see Kaasalainen et al. 2002).

e Bulk density of 2.0 g/cm?3. The same bulk density is assumed for both
components, i.e., the mass ratio is estimated as (Dy/D;)3.

e The probability of resolving mutual event is approximated with the step
function given by eq. 8: pyes = 0 and 1 for the relative brightness attenuation
depth F' < 4% and > 4% of total light, respectively.

Except for the assumed distribution of binary orbit poles, which is actually
the characteristic that we were testing in this work, the assumptions and
approximations given above are supported by the observational data for the
binaries, or plausible ranges of deviations from them could not have significant
effects in the simulations. For a discussion of a few effects that might not be
entirely negligible see in Pravec et al. (2006).

As given in the first item above, we run the simulations for two variant distri-
butions of binary orbit poles: (a) orbit poles concentrated towards the poles
of the ecliptic and (b) orbit poles concentrated towards the poles of current
osculating heliocentric orbits of binary systems. The case (a) may be more
relevant, for following reasons: While being spun up by the YORP effect, the
asteroid’s pole moves towards the Cassini state 2 or 3, which both shift towards
the poles of the ecliptic with the precession constant decreasing with increas-
ing spin frequency. For non-zero inclination of the heliocentric orbit (i), the
asteroid’s pole oscillates around the obliquity equal to iy, or (180° —1y,), though
YORP alone would work towards more extreme obliquity values. See Sect. 6
for details and further discussion.

In each simulation, we randomly generated 30000 orbit poles with a chosen
distribution in [sin B,| or |cose|. For each pole and each of the 18 binaries,
we computed whether there occured mutual events (with relative attenuation
depth > 4%) for the first, discovery apparition epoch. If there occured an
observable mutual event at the first apparition epoch, which is a requirement



for binary detection with our technique, then this case represents a positive
detection of the binary in the first apparition.? For the positive detection, we
then computed whether there occured an observable event also at the second,
return apparition epoch. A resulted rate of occurence of positive re-detections
in the return apparition for each of the 18 binaries was recorded. A result
of the simulation for the assumed isotropic distribution of binary orbit poles
(the null hypothesis) is shown in Table 3. There, nistapp is a number of positive
detections of the binary for the 30000 random orbit pole generations, nondapp
is a number of positive re-detections of the nigapp binaries detected in the 1st
apparition, and the probability of a positive re-detection is given in the last
column.?® The median probability of positive re-detection for the 18 binaries
is ~ 0.30.

After completing the simulation with the 30000 random generations for a
given test distribution of orbit poles, we then used the resulted probabilities
of positive re-detections and computed a probability density of getting Noapp
of positive re-detections of the 18 studied binaries. The probability density
was computed by random generating positive/negative detections for the 18
binaries with the estimated individual probabilities (nondapp/M1stapp), repeated
10000 times. Relative frequencies of getting Ny, positive re-detections of the
18 cases in the 10000 random generations were plotted in a histogram and the
resulted probability density of positive re-detections was then compared to
the observed number of 15 of the 18 binaries actually showing mutual events
in their return apparitions.

The null hypothesis of the isotropic distribution of binary orbit poles (B, =
0,ex = 90°) is rejected at a high confidence level. The simulation gave that
an expected number of positive re-detections was 6 + 3 (the 95% probability
interval) and a probability of getting 15 positive re-detections among the 18
studied binaries was < 107* (see Fig. 1).

The high observed number of positive re-detections indicates that there is
a lack of binary orbit poles at low ecliptic latitudes (at obliquities around
90°) and that they concentrate at high ecliptic latitudes. To estimate how
large is the concentration of orbit poles towards the poles of the ecliptic or,
alternatively, towards the poles of current binary heliocentric orbits, we run
the simulations for several trial distributions with poles distributed uniformly

2 Here we assume that the probability peov of covering the mutual event with ob-
servations in the discovery apparition is independent of the orbit pole orientation.
In fact it is not exactly so, as for non-central events, the event duration is shorter
than for central ones, thus there may be a slight dependence of p.,, on orbit pole
position. We neglect this minor effect in our simulations.

3 For most of the binaries, the computed probability of a positive re-detection in
the return apparition was in a range from 0.17 to 0.41 for the assumed isotropic
distribution of binary orbit poles. Two of them, (2577) Litva and (5477) Holmes
had, however, a higher probability of positive re-detection (0.74 and 0.80). This
was because the return apparitions of the two binaries happened to be placed ap-
proximately diametrically opposite in their heliocentric orbits with respect to the
discovery apparition, resulting in the enhanced probability of re-detection.
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in the range |sin B,| = sin By to 1, and |cos €| = cos e, to 1.

In Figs. 2 to 7, we present the resulted probability density distributions for
By and (90° — ¢,) = 30°,45°,53°,60°,65°, and 70°. While for both B, and
(90° — €, ) = 30° we still get a probability of getting > 15 positive re-detections
of the 18 binaries to be low, < 1073 (Fig. 2), the probability becomes higher
with increasing cutoff latitute and co-obliquity. For the test distribution con-
centrated towards the ecliptic poles, the probability is estimated to be 1%,
4%, 6% and 9% for the distribution cut at By = 53°,60°, 65° and 70°, respec-
tively. For the alternative distribution of binary poles concentrated towards
the heliocentric orbit poles, the probability is estimated to be 1%, 7%, and
> 15% for the distribution cut at (90° — €,) = 45°,53°, > 60°, respectively.

The simulations suggest that binary orbit poles concentrate within ~ 30°
of the ecliptic poles, or alternatively, within ~ 40° of the heliocentric orbit
poles. They do not distinguish which one of the two hypotheses —binary
poles concentration in ecliptic latitude vs concentration in obliquity— is valid;
a theoretical study of this problem is given in Sect. 6. We point out that the
trial pole distributions with a step function at given ecliptic latitude or co-
obliquity are arbitrary and that an actual distribution of binary orbit poles
may be more gradual.

5 Estimated pole positions of binary asteroids

The available observations allowed us to derive models for the 18 studied bina-
ries. Their estimated orbit poles are in a good agreement with the anisotropic
distribution that we found with the simulations in the previous section. We
point out that this binary asteroids sample is biased because of the discov-
ery selection effects, see the binary detection theory in Sect. 2. We did not
attempt to debias distributions of the estimated parameters of the binary sam-
ple directly, for following reasons: we did not get unique models for all the 18
binaries, and some estimated orbit poles have substantial uncertainties; the
discovery selection effects are affected by limited coverage of surveyed objects
(they had peoy < 1) that makes debiasing of the parameters of the sample of
binaries more complex than the simulations presented in Sect. 4 where for the
planned observations in the return apparitions we effectively set peoy = 1.

The models of the binary systems were derived using the technique of Scheirich
and Pravec (2009). For the modeling, the observational data were reduced
using the standard technique described in Pravec et al. (2006); a rotation
lightcurve of the primary was fitted and subtracted from the data. In three
cases, namely Pogson, Polonskaya and Litva, there was present also a second
rotational lightcurve component with period different from P,,;,. Its character
leads us to suspect that it belongs to a third body in the system, see our
reasoning given in the discussions for the three asteroids below. To account
for presence of the third body, a total light flux scattered towards observer
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was computed as I1 + I» + I3, where I; is the light flux from the i-th body. As
we did not constrain I3 from our observations (as we saw no mutual events
involving the third body), we run our models for the three systems with a few
values of I3 in a range from 0 and I3, i.e., sampling the size range of the suspect
third body from negligible size up to a size equal to that of the primary. This
way we estimated a sensitivity of our results on the size of the third body.

In the orbit model, shapes of the components were represented as ellipsoids —
an oblate spheroid for the primary and a prolate spheroid for the secondary—
orbiting each other on Keplerian orbit. The secondary was assumed to rotate
synchronously and its long axis was aligned with the centers of the two bodies.
Eccentricities of the mutual orbits were found to be small, from 0 up to an
upper limit that reached values from 0.03 (for 1453 Fennia) up to 0.17 for
the case of (4029) Bridges with the least constrained eccentricity. In model-
ing the eccentric orbit, a precession of the line of apsides was computed. A
pericenter drift rate depends on primary’s polar flattening (see Murray and
Dermott 1999, eq. 6.249) that was only poorly estimated from our observa-
tions —the primary’s axial ratio a;/c; was constrained to be in a range from
1 up to a certain upper limit in most cases— we fitted the pericenter drift
rate as an independent parameter. Its initial values were stepped in a range
from zero to 30°/day; this range encompasses all possible values for the flat-
tening and other parameters of the modeled binaries. To reduce a complexity
of the modeling, the upper limit on eccentricity was estimated by fitting data
from the best-covered apparition only. In modeling data from all apparitions
together, zero eccentricity was assumed.

We summarize our results in Table 1. In the following paragraphs, we comment
on the results for the systems where we got a unique solution and for the two
cases of (2006) Polonskaya and (2044) Wirt where we obtained two possible
solutions but which are among the three cases where we did not see mutual
events in the return apparition.

(1338) Duponta

We observed this binary in two apparitions: from 2007-03-06.8 to 2007-04-22.9,
and from 2010-01-04.9 to 2010-03-09.9.

We found a unique solution for both the pole and period of the mutual orbit,
fitting our model to the data for the orbital lightcurve component from both
apparitions simultaneously. The estimated orbit period is Puy, = (17.5680 £
0.0001) h. Limiting values of the ecliptic coordinates for the admissible area
of the orbit pole are given in Table 1 and the area is plotted in Fig. 8. An
upper limit on flattening of the primary modeled as an oblate spheroid is
a;/c; = 3.3. The best-fit value of a;/c; is 1.1, and the quality of the fit
decreases with increasing a;/cp, so the lower values are preferred. An upper
limit on the eccentricity, derived from data of the best covered apparition
2007, is 0.14. All the uncertainties and admissible ranges of the parameters
correspond to 3o confidence level (see Scheirich and Pravec 2009).

12



Examples of the orbital lightcurve component together with the synthetic
lightcurve for the best-fit solution are presented in Fig. 9.

(1453) Fennia

We observed this binary in three apparitions: from 2007-11-04.3 to 2007-12-
02.3, from 2009-08-14.4 to 2009-08-27.8, and from 2011-01-28.9 to 2011-04-
29.9.

We found a unique solution for both the pole and period of the mutual orbit,
fitting our model to the data for the orbital lightcurve component from both
apparitions simultaneously. The estimated orbit period is Py, = (23.00351 £
0.00005) h. Limiting values of the ecliptic coordinates for the admissible area of
the orbit pole are given in Table 1 and the area is plotted in Fig. 10. Lower and
upper limits on flattening of the primary modeled as an oblate spheroid are
a;/c; = 1.4 and 2.4, respectively. An upper limit on the eccentricity, derived
from data of the best covered apparition 2011, is 0.03. All the uncertainties
and admissible ranges of the parameters correspond to 30 confidence level (see
above).

Examples of the orbital lightcurve component together with the synthetic
lightcurve for the best-fit solution are presented in Fig. 11.

(1830) Pogson

We observed this system in three apparitions: from 2007-04-18.4 to 2007-06-
06.6, from 2008-09-02.8 to 2008-11-06.8, and from 2010-02-20.6 to 2010-04-
08.7.

In all the three apparitions, the lighcurve data revealed two rotational compo-
nents with superimposed mutual events. The two rotational components have
periods of (2.57003 + 0.00006) h and (3.2626 4+ 0.0004) h (the uncertainties
are lo) with apparent amplitudes of 0.10-0.12 and 0.03 mag, respectively.
Both rotational components are present at all orbital phases including mutual
events, with unchanged shape in the event. The fact that the second rota-
tional component does not disappear in mutual events indicates that it is not
a rotation of the secondary. We consider that it may rather belong to a third
body in the system. This proposed explanation will have to be confirmed and
a size and distance of the third body will have to be estimated with future
observations.

We found a unique solution for both the pole and period of the mutual orbit,
fitting our model to the data for the orbital lightcurve component, derived
with subtracting both rotational components, from all the three apparitions
simultaneously. The estimated period is P, = (24.24580 4+ 0.00006) h. Limit-
ing values of the ecliptic coordinates for the admissible area of the orbit pole
are given in Table 1 and the area is plotted in Fig. 12. An upper limit on
flattening of the primary modeled as an oblate spheroid is a;/c; = 3.4. The
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best-fit value of a; /¢y is 1.3, and the quality of the fit decreases with increasing
ai/cy1, so the lower values are preferred. An upper limit on the eccentricity,
derived from data of the best covered apparition 2008, is 0.10. All the uncer-
tainties and admissible ranges of the parameters correspond to 30 confidence
level (see above).

We analysed an effect of possible presence of the third body on our modeling
and estimated parameters. The size ratio Dy/D; = 0.30 4+ 0.02 that was es-
timated from the depth of the secondary mutual event becomes a lower limit
if there is a third body contributing to the total light of the system. Thus, in
addition to running our orbit modeling with the size ratio estimate of 0.30 that
corresponds to a zero or negligible size of the third body, we run the model
also for a few cases with the third body having a diameter in the range from
zero up to D;. We found that the presence of the third body had a negligible
effect on the estimated orbit period, but it affected the estimated orbit pole
area. The admissible area of the pole shrinks by up to a factor of three with
the third body’s diameter increasing up to the diameter of the primary (see
Fig. 12).

Examples of the orbital lightcurve component together with the synthetic
lightcurve for the best-fit solution are presented in Fig. 13.

(2006) Polonskaya

We observed this system in three apparitions: from 2005-11-01.0 to 2005-12-
07.1, from 2008-06-04.3 to 06.4, and from 2010-01-10.1 to 2010-02-22.3. Mutual
events were observed in the first and the third apparition only. In the second
apparition, we covered 61% of the orbit and there did not occur mutual events
width depth greater than 0.02 mag.

In all the three apparitions, the lighcurve data revealed two rotational com-
ponents (with superimposed mutual events in the first and the third appari-
tion). The two rotational components have periods of (3.11809 £ 0.00007) h
and (6.6593 £ 0.0004) h (the uncertainties are 1o) with apparent amplitudes
of 0.08-0.10 and 0.07-0.10 mag, respectively. Both rotational components are
present at all orbital phases including mutual events, with unchanged shape in
the event. The fact that the second rotational component does not disappear
in mutual events indicates that it is not a rotation of the secondary. We con-
sider that it may rather belong to a third body in the system. This proposed
explanation will have to be confirmed and a size and distance of the third
body will have to be estimated with future observations.

Combining data from the first and the last apparitions, we found five solutions
for the period and two solutions for the pole of the mutual orbit, fitting our
model to the data for the orbital lightcurve component, derived with subtract-
ing both rotational components. The estimated periods are P, = 19.1407 h,
19.1507 h, 19.1553 h, 19.1607 h and 19.1654 h, with 3-o errors 0.0001-0.0002 h.
Limiting values of the ecliptic latitudes for the admissible areas of the orbit
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pole are B, > +54° and < —60° (for model bulk density > 1.0 g cm™ the
values of B, are constrained to be > +71° and < —72°).

An attempt to join in the data from the 2008 apparition where there occured
no event deeper than 0.02 mag failed; for all the solutions from the 200542010
data, there were predicted observable events to occur during the times of the
2008 observations. This leads us to consider that some assumption of the
model might not hold. In particular, it is possible that the mutual orbit plane
of the components was not constant and that it precessed. If so, then the joint
solution of the 2005 and 2010 observations may be spurious.

(2044) Wirt

We observed this binary in three apparitions: from 2005-11-29.8 to 2006-01-
29.9, from 2008-08-22.3 to 26.3, and from 2010-03-07.3 to 04-19.8. Mutual
events were observed in the first apparition only. In the two return apparitions,
there did not occur mutual events width depth greater than 0.03 mag.

We found two solutions for the pole and period of the mutual orbit, fitting
our model to the data for the orbital lightcurve component from the first
apparition. The estimated orbit periods are P, = (18.976 £+ 0.005) h and
(18.965+0.006) h. Limiting values of the ecliptic coordinates for the admissible
areas of the orbit pole are given in Table 1 and the areas are plotted in Fig. 14.
For both solutions, there occur no mutual events in the two return apparitions,
consistent with the observations.

An upper limit on flattening of the primary modeled as an oblate spheroid is
a;/c; = 1.5. An upper limit on the eccentricity is 0.10. All the uncertainties
and admissible ranges of the parameters correspond to 3¢ confidence level (see
above).

Examples of the orbital lightcurve component together with the synthetic
lightcurves for the two best-fit solutions are presented in Fig. 15.

(2577) Litva

We observed this system in two apparitions: from 2009-02-28.1 to 2009-04-
01.9, and from 2010-07-16.2 to 2010-08-31.3.

In both apparitions, the lighcurve data revealed two rotational components
with superimposed mutual events. In the 2010 apparition, the two rotational
components had periods of 2.8129 h and 5.6818 h with predominating un-
certainties due to the synodic-sidereal effect that were estimated to be about
0.0001 h and 0.0004 h, respectively. In the 2009 apparition when there was a
larger synodic-sidereal effect (about 0.0003 h and 0.002 h, respectively), the
two periods were 2.8126 h and 5.684 h. Apparent amplitudes of the two ro-
tational components were 0.17 and 0.06 mag at solar phases 11°-22°in 2010,
while they were somewhat greater, 0.24 and 0.09 mag at higher solar phases of
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22°-30°1in the 2009 apparition. Inspecting the behavior of the rotational com-
ponents in the 2009 data where the mutual events were covered thoroughly,
we found that both components were present at all orbital phases including
mutual events, with apparently unchanged shape in the event. The fact that
the second rotational component does not disappear in mutual events indi-
cates that it is not a rotation of the secondary. Like in the similar cases of
(1830) Pogson and (2006) Polonskaya, we consider that the second rotational
component may rather belong to a third body in the system. This proposed
explanation will have to be confirmed and a size and distance of the third
body will have to be estimated with future observations.

We found a unique solution for both the pole and period of the mutual orbit,
fitting our model to the data for the orbital lightcurve component, derived
with subtracting both rotational components, from both apparitions simulta-
neously. The estimated period is Py, = (35.8723 £ 0.0008) h. Limiting values
of the ecliptic coordinates for the admissible area of the orbit pole are given
in Table 1 and the area is plotted in Fig. 16. An upper limit on flattening of
the primary modeled as an oblate spheroid is a;/c; = 2.3. An upper limit on
the eccentricity, derived from data of the best covered apparition 2009, is 0.08.
All the uncertainties and admissible ranges of the parameters correspond to
3o confidence level (see above).

We analysed the effect of possible presence of the third body on our modeling
and estimated parameters. From the depth of the mutual events observed in
2009, we estimated the size ratio Dy/ Dy = 0.34 + 0.02. Analogously with the
case of (1830) Pogson, in addition to running our orbit modeling with the
size ratio estimate of 0.34 that corresponds to a zero or negligible size of the
third body, we run the model also for a few cases with the third body having
a diameter in the range from zero up to D;. We found that the presence of
the third body had a negligible effect on the estimated orbit period and only
a small effect on the estimated orbit pole area; the admissible area of the
pole shrinks by ~ 20% with the third body’s diameter increasing up to the
diameter of the primary (see Fig. 16).

Examples of the orbital lightcurve component together with the synthetic
lightcurve for the best-fit solution are presented in Fig. 17.

(2754) Efimov

We observed this binary in three apparitions: from 2006-08-14.1 to 2006-11-
18.1, from 2008-03-09.1 to 2008-03-13.3, and from 2011-01-30.8 to 2011-03-
07.0.

In the 2nd apparition of March 2008 the asteroid was placed almost precisely
(within a few degrees) diametrically opposite in its heliocentric orbit with re-
spect to the discovery apparition. As such, the 2nd apparition’s data would
provide negligible constraints in the simulations presented in Section 4 and
therefore this 2008 apparition was not counted as a fully-fledged return ap-
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parition for the purpose of the survey simulations. Instead, we took the 2011
apparition as the return apparition, see the entry in Table 2. Nonetheless, the
2008 data were useful in the orbit modeling presented here.

We found a unique solution for both the pole and period of the mutual orbit,
fitting our model to the data for the orbital lightcurve component from all
the three apparitions simultaneously. The estimated orbit period is P, =
(14.77578 £ 0.00008) h. Limiting values of the ecliptic coordinates for the
admissible area of the orbit pole are given in Table 1 and the area is plotted
in Fig. 18. An upper limit on flattening of the primary modeled as an oblate
spheroid is a; /¢; = 1.8. The best-fit value of a; /c; is 1.1, and the quality of the
fit decreases with increasing a; /cq, so the lower values are preferred. An upper
limit on the eccentricity, derived from data of the best covered apparition
2006, is 0.08. All the uncertainties and admissible ranges of the parameters
correspond to 3o confidence level (see above).

Examples of the orbital lightcurve component together with the synthetic
lightcurve for the best-fit solution are presented in Fig. 19.

(3309) Brorfelde

We observed this binary in three apparitions: from 2005-10-25.1 to 2005-11-
03.4, from 2009-01-28.1 to 2009-04-02.1, and from 2010-10-07.9 to 2010-12-
26.3.

We found a unique solution for both the pole and period of the mutual
orbit, fitting our model to the data for the orbital lightcurve component
from all the three apparitions simultaneously. The estimated orbit period is
P, = (18.46444 + 0.00003) h. Limiting values of the ecliptic coordinates for
the admissible area of the orbit pole are given in Table 1 and the area is plotted
in Fig. 20. An upper limit on flattening of the primary modeled as an oblate
spheroid is a1 /¢; = 2.1. The best-fit value of a1 /c; is 1.3, and the quality of the
fit decreases with increasing ai/c;, so the lower values are preffered. An up-
per limit on the eccentricity, derived from data of the best covered apparition
2010, is 0.08. All the uncertainties and admissible ranges of the parameters
correspond to 3o confidence level (see above).

Examples of the orbital lightcurve component together with the synthetic
lightcurve for the best-fit solution are presented in Fig. 21.

(4029) Bridges

We observed this binary in three apparitions: from 2006-04-11.4 to 2006-05-
04.8, from 2007-10-05.0 to 2007-11-12.1, and from 2010-05-08.4 to 2010-06-
09.2.

We found a unique solution for both the pole and period of the mutual orbit,
fitting our model to the data for the orbital lightcurve component from all
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the three apparitions simultaneously. The estimated orbit period is P, =
(16.31701 £ 0.00004) h. Limiting values of the ecliptic coordinates for the
admissible area of the orbit pole are given in Table 1 and the area is plotted
in Fig. 22. An upper limit on flattening of the primary modeled as an oblate
spheroid is a; /¢; = 3.5. An upper limit on the eccentricity, derived from data of
the best covered apparition 2006, is 0.17. All the uncertainties and admissible
ranges of the parameters correspond to 30 confidence level (see above).

Examples of the orbital lightcurve component together with the synthetic
lightcurve for the best-fit solution are presented in Fig. 23.

(5477) Holmes

We observed this binary in two apparitions: from 2005-11-02.1 to 2005-12-09.0,
and from 2007-05-26.3 to 2007-07-12.6.

We found a unique solution for both the pole and period of the mutual orbit,
fitting our model to the data for the orbital lightcurve component from both
apparitions simultaneously. The estimated orbit period is Py, = (24.4036 £
0.0002) h. Limiting values of the ecliptic coordinates for the admissible area
of the orbit pole are given in Table 1 and the area is plotted in Fig. 24.
An upper limit on flattening of the primary modeled as an oblate spheroid
is a;/c; = 2.0. The best-fit value of a;/c¢; is 1.2, and the quality of the fit
decreases with increasing a; /¢y, so the lower values are preferred. An upper
limit on the eccentricity, derived from data of the best covered apparition
2005, is 0.05. All the uncertainties and admissible ranges of the parameters
correspond to 3o confidence level (see above).

Examples of the orbital lightcurve component together with the synthetic
lightcurve for the best-fit solution are presented in Fig. 25.

(6084) Bascom

We observed this binary in two apparitions: from 2005-12-29.5 to 2006-02-09.7,
and from 2008-08-24.6 to 2008-09-10.6. In the return apparition, there did not
occur mutual events width depth greater than 0.02 mag.

We found a unique solution for both the pole and period of the mutual orbit,
fitting our model to the data for the orbital lightcurve component from the
first apparition. The lack of mutual events in the return apparition did not
constrain the solution further; for all poles within the area derived from the
first apparitions, there do not occur events for the geometry of the return
apparition. The estimated orbit period is Py, = (43.51 £ 0.02) h. Limiting
values of the ecliptic coordinates for the admissible area of the orbit pole are
given in Table 1 and the area is plotted in Fig. 26. An upper limit on flattening
of the primary modeled as an oblate spheroid is a;/c; = 2.9. An upper limit
on the eccentricity is 0.15. All the uncertainties and admissible ranges of the
parameters correspond to 3o confidence level (see above).
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Examples of the orbital lightcurve component together with the synthetic
lightcurve for the best-fit solution are presented in Fig. 27.

6 Interpretation and Discussion

Binary systems among small asteroids (primary diameters D; < 10 km) ap-
pear to form from parent bodies spinning at a critical rate by some sort of fis-
sion or mass shedding process (Scheeres 2007, Pravec and Harris 2007, Walsh
et al. 2008). A mechanism to spin the parent asteroid up to its critical ro-
tation frequency is provided by the Yarkovsky-O’Keefe-Radzievskii-Paddack
(YORP) effect (e.g., Bottke et al. 2006). While spinning it up, the YORP ef-
fect also changes the asteroid’s spin orientation substantially toward a YORP
end state (see, e.g., Capek and Vokrouhlicky 2004). Thus, by reaching the crit-
ical spin frequency the parent bodies may get an anisotropic distribution of
spin orientations with poles concentrating near the YORP asymptotic states.
After the formation of a binary, the primary component may experience a
further evolution by YORP, again toward a YORP end state. An additional
mechanism affecting orbits of binary asteroids are gravitational perturbations
from Sun.

We consider three hypotheses for origin of the anisotropic distribution of bi-
nary orbit poles:

(1) The preferentially up/down-right orientation of binary orbit poles is set
up upon their formation, i.e., it reflects orientations of spin vectors of
their parent bodies with poles evolved toward the YORP asymptotic
states near 0 and 180°.

(2) Binaries formed with a broader distribution of orbit poles but later they
were YORP-tilted towards the YORP asymptotic states.

(3) Binaries with poles close to the ecliptic plane were eliminated or trans-
ferred to higher ecliptic latitudes by a gravitational dynamical process.

In Section 6.1 below we examine a short-term dynamical evolution of binary
asteroids with a numerical model, showing that it does not support the hy-
pothesis 3 above. In Section 6.2 we then briefly discuss the hypotheses 1 and
2.

6.1 Short-term dynamical evolution: a simple numerical model

At the first sight, the reported situation is reminiscent of irregular satellites of
giant planets, whose inclination relative to the ecliptic plane also avoids values
around the polar orbit. In that case, the solar-tide perturbation has been
found to drive large oscillations of the satellite eccentricity and inclination
in the non-populated inclination region, the process generally known as the
Kozai dynamics (e.g. Kozai 1962, Carruba et al. 2002, Nesvorny et al. 2003).

19



Eventually, the pericenter distance would have been too small and impacts on
regular satellites of the planet would occur.

Here, however, the situation is different and the observed satellites in the bi-
nary systems are analogs of the regular, rather than irregular, satellites of
giant planets. This is because of their close proximity to the primary. Assum-
ing reasonable flattening of the latter, in quantitative terms v = ¢;/a; < 0.97
where ¢; and a; are polar and mean equatorial radii of the dynamically equiv-
alent ellipsoid (i.e., ellipsoid with the same moments of inertia) of the primary
(see Appendix), the Laplace plane of the satellite motion tilts from the ecliptic
to the equatorial plane of the primary for distances smaller than several tens
of primary radii? (e.g., Goldreich 1965, Mignard 1981). This means that the
quadrupole perturbation due to the primary oblateness dominates the solar-
tide effect. In particular, it drives fast pericenter circulation which effectively
inhibits the Kozai mechanism. As a result the whole binary system acts as a
single gyroscope on a heliocentric orbit. The latitude variations of its angular
momentum may still be non-trivial, due to interaction with the precession of
the heliocentric orbit of the binary, but overall no major dynamical instability
at low ecliptic latitudes is expected.

In order to verify the picture outlined in the previous paragraphs, we con-
structed a simple numerical model that tracks orbital evolution of the satellite
and the spin of the primary. The assumptions make the model valid only over
a short timespan of ~ My, but it still provides a basic tool to verify binary
orbital pole stability at low ecliptic latitudes; note that the Kozai instability
timescale is much shorter, several thousands of years only. Formulation and
basic features of the model are given in the Appendix. In what follows we
provide three different examples of a short-term orbital evolution for binaries
from our observed sample.

Low-inclination, main belt binary: (4029) Bridges. First, we choose the
case of (4029) Bridges residing on low-inclination, main belt heliocentric orbit.
Because it is located outside the 3/1 mean motion resonance with Jupiter, the
proper frequency of nodal precession is rather large, s ~ —51.8 arcsec/yr,
while the proper inclination is only moderate ~ 5.9°. Its contribution is well
separated from the forced term at sg ~ —26.3 arcsec/yr frequency and only
~ 1° amplitude in the Fourier spectrum of the non-singular inclination vector
¢ =q+wp=sinl/2exp(:f)) of the heliocentric orbit.

Figure 28 shows a sample of orbit-pole evolutions for various initial latitudes
and longitudes equal to € + 90° (left panel) and Q + 270° (right panel);
is the longitude of ascending node of the heliocentric orbit. Additionally, the
evolution shown by the thick curve on the left panel corresponds to the initial
pole position (L., B,) = (305°, —85°) very close to the osculating pole of

4 The distance from the primary at which solar-tide effects take over the primary
oblateness effect can be estimated by da =~ [2 (C' — A) a /mg]*/°, where A and C are
equatorial and polar moments of inertia of the primary, aj, is the semimajor axis of
the binary’s heliocentric orbit and mg the solar mass.
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the heliocentric orbit and near the center of the uncertainty region of the
solution (Fig. 22). For any initial latitude value the evolution is very stable,
showing only very small oscillations driven by solar torque on the system
and small heliocentric orbit inclination with respect to the ecliptic. This is
because the effective precession constant of the system, see Eq. (10) below, is
~ 20 arcsec/yr, well separated from both s and sg terms in (.

High-inclination, Hungaria binary: (1453) Fennia. Next, we consider
the case of Hungaria-type binary (1453) Fennia, residing on high-inclination
heliocentric orbit. In this case the spectrum of ¢ is dominated by the proper
term with frequency s ~ —20.4 arcsec/yr and proper inclination of ~ 24.4°
but there are more planetary terms with similar frequencies. Of particular
interest may be the s4 ~ —17.8 arcsec/yr with forced inclination ~ 0.4° and
the sg ~ —26.3 arcsec/yr with forced inclination ~ 0.2°.

Figure 29 shows the same numerical experiment as above for (4029) Bridges,
notably a short numerical integration of the Fennia system with different initial
latitude values of its orbit pole. The thick curve on the right panel shows a
possible evolution of the orbit pole for this binary for initial position (L, Bp) =
(95°, —66°) very close to the osculating pole of the heliocentric orbit and near
the center of the uncertainty region of our solution (Table 1 and Fig. 10).
Here we see a much different picture, with individual tracks of the orbit pole
showing large oscillations, especially for positive latitude value (prograde sense
of binary motion). Since these oscillations are significantly larger than the
proper inclination value of the heliocentric orbit, the situation warrants a
closer analysis.

Our results obviously confirm that: (i) the primary’s oblateness efficiently locks
the satellite orbit to its equatorial plane, and (ii) the satellite orbit maintains
to be quasi-circular (with only very small oscillations of the osculating eccen-
tricity value). Henceforth, the Kozai mechanism is inhibited for any initial
value of orbit pole, even if in the ecliptic plane (B, = 0°). Rotation of the pri-
mary and revolution of the satellite thus couple together and act as a single
gyroscope with the angular momentum composed of the two contributions.
In order to understand the general pattern of its ecliptic-latitude evolution
from Fig. 29, one must determine the appropriate precession constant « of
the system.

For a single asteroid, rotating about the principal axis of the inertia tensor we
have

3nfC—A
i =50, 0 ©)

where ny, is the mean motion of the heliocentric revolution, w is the angular
rotation frequency, C' and A are the principal moments of the inertia tensor
about the polar and equatorial axes (e.g., Bertotti et al. 2003). However, the
presence of the satellite modifies the situation. The gravitational torque due to
the Sun now acts both on the primary and the satellite orbit. The precession
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constant of the whole binary system thus reads (e.g., Ward 1975, French et al.
1993)

_3nmihty
2w AN+

(10)

Qeff

where Jo, = (C — A)/(mR2), A = C/(m1R?), ¢ = maa?,/(2m1R?) and
[ = mya?,ny,/(my Riw) (with m; mass of the primary and R; its effective ra-
dius, ms mass of the satellite and a1, semimajor axis of the satellite orbit; see
Appendix for more details). Here, respectively, ¢ is the effective contribution
of the satellite orbit to the dynamical flattening measured by the quadrupole
coefficient Jo, and [ is the orbital angular momentum of the satellite relative to
the rotational angular momentum of the primary. We note that [ is typically
a small contribution to A in the denominator of Eq. (10), meaning most of the
angular momentum is in the rotation of the primary. On the contrary, unless
very large oblateness of the primary, ¢ dominates contribution of J; in the nu-
merator of Eq. (10). In conclusion, the precession constant of the binary system
is larger than that of solitary primary as a result of the satellite presence. For
(1453) Fennia, for instance, we would have apyim =~ 14.9 arcsec/yr for the pri-
mary only (assuming oblateness v = ¢;/a; = 0.89, cf. Appendix), but the true
value according to Eq. (10) with data in Table 1 is aeg ~ 85 arcsec/yr. This
is a much larger frequency, which has subtle implications. For instance, the
primary’s precession constant would imply only two proper-frequency Cassini
states® at high latitudes. However, the true system with larger g value has
four proper-frequency Cassini states, with the Cassini state 2 at only ~ 36°
latitude (Fig. 29, left panel). Also the newly bifurcated Cassini state 1 is at
~ 58° latitude and longitude offset by 270° from the longitude of ascending
node of Fennia’s heliocentric orbit (Fig. 29, right panel). Orbit pole evolu-
tion may oscillate about these states with large amplitude. The solutions for
initially retrograde poles show a much more regular evolution with the ampli-
tude of latitude oscillations basically given by the inclination of the binary’s
heliocentric orbit.

High-inclination, main belt binary: (2044) Wirt. Finally, we consider
the case of (2044) Wirt, residing on high-inclination orbit with semimajor axis
value in the inner part of the main belt. In fact, with its mean perihelion at
~ 1.65 AU only (and osculating value reaching down to ~ 1.42 AU), this
asteroid is on an escaping route to the planet crossing zone. The spectrum
of ¢ is dominated by the proper-frequency term with s ~ —43.3 arcsec/yr
and about ~ 23.5° proper inclination amplitude, but it also contains a large
number of contributions from the forced planetary frequencies and their linear
combinations with s (all having amplitudes of ~ 2.2° and smaller).

Figure 30 shows again a sample of possible pole evolutions with different initial
orientations, including those that start near the middle of our two solutions

5 Detailed discussion of the Colombo top model and Cassini states can be found in
Colombo (1966), Henrard and Murigande (1987) or Vokrouhlicky et al. (2006).
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from Table 1 and Fig. 14 (shown as thick curves). The general behavior of the
solutions can again be understood in terms of a modification of precession con-
stant due to the satellite: assuming a polar oblateness v = ¢;/a; = 0.75 of the
primary, we would have ayim =~ 13.3 arcsec/yr that becomes aeg =~ 33.7 arc-
sec/yr with the satellite (for smaller oblateness values, larger v, both apyim and
o are smaller, but the gross results are not changed unless v > 0.9). The
o value is large enough to significantly displace Cassini state 2, especially
since (2044) Wirt has a high inclination of the heliocentric orbit, to ~ 46° dis-
tance from the heliocentric orbit pole. This puts the Cassini state 2 at ~ 67°
ecliptic latitude, right in the zone of our prograde solution for this system (see
the thick curve on the left panel of Fig. 30). An exact location at the Cassini
state 2 would also require 180° longitude difference between the pole of the he-
liocentric orbit and the binary pole; we find that our prograde solution is only
~ 40° away, implying a small amplitude circulation about the Cassini state 2.
Smaller polar oblateness values for the primary would displace the Cassini
state 2 to slightly higher ecliptic latitude value and would imply larger am-
plitude oscillation of the orbit pole of (2044) Wirt. The high-inclination and
high-eccentricity state of the Wirt heliocentric orbit, with occasional crossing
of the Mars orbit, makes the behavior of ( only quasi-periodic. Its truncated
Fourier representation is only approximate and includes unusual prograde pre-
cessing terms which produce long-period variations in the pole latitude of our
solutions near B, ~ —50°.

We conclude that while the examples of Hungaria-type binary, (1453) Fennia,
and Phocaea-type binary, (2044) Wirt, above show that latitude of the orbit
pole may have non-trivial evolution, they do not provide evidence for larger
stability at high latitudes versus low latitudes. On the contrary: if we were
to run orbit pole evolutions for denser and initially isotropic distribution, we
would obtain a homogeneous occupation of any latitude (in cos B, measure)
over a time. This experiment has been performed by Vokrouhlicky et al. (2006)
for single asteroids, but as we proved that the compact binaries effectively be-
have like single objects with only modified precession constant, it applies also
here. We thus conclude, that for the observed parameters of the binary sys-
tems, their dynamics is stable over a My timescale even for very small ecliptic
latitudes of the orbital pole. Assuming an initially isotropic distribution of
poles, it should remain an isotropic distribution at any moment of time.

While the pole stability at all latitudes is true population-wise, we return to
the issue of possibly complicated latitude tracks of individual objects with
very large oscillations in the prograde zone. This especially applies to binaries
which have large inclination value of their heliocentric orbit with respect to the
ecliptic; notable examples are Hungaria and Phocaea groups (see Vokrouhlicky
et al. 2006). In these cases, the latitude value of the current orbit pole position
of the binary may not directly reflect its initial value. Only a more detailed
information about the system, such as a constraint on the polar flattening of
the primary, would provide more insight in the possible evolutionary tracks of
the pole.
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6.2 Long-term dynamical evolution: hints and guesses

Our numerical model provides an information about the observed binary sys-
tems over a timescale which might be only a snapshot in their lifetime. While,
the observed (tidal) synchronization of the satellite’s rotation implies ages
longer than ~ (1—10) My (e.g., Taylor and Margot 2010, 2011), we have only
a loose handle of the upper age limit. The collisional lifetime of the km-size
satellites suggests that most of the binary systems in our sample are not older
than ~ (200 — 500) My (e.g., Bottke et al. 2005) and a similar, or longer,
timescale is obtained by non-synchronization of the rotation rate of the pri-
mary. This is a long time, over which weak torques like the YORP effect might
act on the systems. For instance, distribution of the spin orientations of sin-
gle asteroids is skewed toward the ecliptic poles in a good agreement with a
steady-state model with the YORP effect (e.g., Hanus et al. 2011). In the same
way, YORP acting on the primary component should slowly tilt the system
toward the asymptotic YORP states, presumably at large ecliptic latitudes.

Using data in Capek and Vokrouhlicky (2004) we find that near-critically
rotating ~ 8 km asteroid in the inner part of the main belt should tilt its pole
position by ~ 10° per 100 My on average. Because of the o 1/D? scaling of
the YORP strength, a smaller body of ~ 4 km size would have an average
polar tilt of ~ 40° per 100 My. Thus, if binary systems are typically old (ages
> 10® yr), their poles might have been further evolved towards the YORP
asymptotic states during their lifetime.

In conclusion, we consider that the concentration of binary orbit poles on high
ecliptic latitudes reflects primarily their preferential formation at these states
(the hypothesis 1 above). As mentioned in the first paragraph of this Section 6,
during the YORP spin up of parent bodies to the critical fission frequency,
their spin orientations should be substantially YORP-tilted toward the YORP
asymptotic states. A possible contribution of the additional process of further
evolution of a primary spin by YORP during the binary’s life will need to be
studied.
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APPENDIX

A Numerical model of binary’s short-term evolution

In order to verify our conclusions from Sec. 6 we constructed a very simple
numerical model to track orbital evolution of the binary system coupled with
the spin evolution of the primary. The major simplifying assumptions are
(i) a point-mass representation of the secondary component (the satellite),
and (ii) an axisymmetric representation of the primary component in the
binary system. Masses of the primary and secondary components are denoted
my and ma; we also define dimensionless factors X; = my/(my + ms) and
Xy = mg/(mq + my), which correspond to their respective contributions to
the total mass of the binary system.® The primary is assumed to be an oblate
spheroid ” with the equatorial and polar axes denoted by a; and ¢;, such
that v = ¢;/a; < 1. Denoting Ry =~ awl/?’ the characteristic radius of the
primary, defined as a radius of a sphere with the same volume, and using R;
as the scaling parameter of the representation of primary’s gravitational field,
we have Jy ~ 0.2 (1 —~%) v~ for its quadrupole parameter. We could also
determine similar formulas for higher-degree zonal coefficients, but we shall not
need them. Description of the evolution of the primary’s spin axis also requires
(C—A)/C ~0.5(1 —~?), where C' and A are polar and equatorial moments
of inertia. Photometric observations of the primary components in binaries,
including those in this paper, all suggest a small amplitude of the lightcurve
from which we may estimate the ratio of the equatorial axis is unity within
~ 10 — 20% accuracy. Radar observations also support this conclusion and
additionally suggest only modest polar flattening with v ~ 0.8—0.9 (e.g., Ostro
et al. 2006, Shepard et al. 2006, Taylor et al. 2008, Benner et al. 2010). The
mutual gravitational interaction of the primary and secondary components is
represented in our model to the quadrupole level of the primary’s zonal field;
while we could have taken higher-degree zonal terms into account, they would
not bring new qualitative features in our analysis.

On the contrary, we need to take into account effects of the solar gravity
for the binary dynamics. We use description in Jacobi coordinates, where r
denotes relative position vector of the secondary with respect to the primary
and R denotes relative position vector of the Sun with respect to the center
of mass of the binary. Since our prime concern is the evolution of r, and the
relative velocity dr/dt, we represent R with a simple elliptic orbit. Because the
secular evolution of the binary orbit plane may be coupled to the corresponding
secular evolution of the heliocentric orbit plane of the binary’s center-of-mass
motion, we only pay some attention in representation of its inclination [ and

6 Masses of both components were computed from the estimated sizes in Table 1
and a bulk density of 2.5 g/cm?.

7 The exact nature of the shape is, however, not a very restrictive assumption. As
mentioned above, the major approximation in our model is the axial symmetry of
the primary.
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longitude of ascending node €). In particular, we use a Fourier representation
of the non-singular inclination vector {( = ¢ + 1 = sin /2 exp(:£2), in which
we retain the two dominant terms: the proper term with frequency s and
the forced terms with frequency sg (see, e.g., Vokrouhlicky et al. 2006). In
the case of binaries on high-inclination heliocentric orbits, such as those in
the Hungaria- or Phocaea-groups, it is necessary to include also additional
forced terms due to the terrestrial planets such as s3 and s4, because they are
more important than the sg term and their frequencies are close to s (e.g.,
Milani et al. 2010). All these harmonic terms were obtained by numerically
integrating the heliocentric orbit of the binary over 10 My time interval, and
Fourier analysing of the osculating ( = ¢ + #p values.

With these assumptions, the relative vector r satisfies

at? r3 A3, A A}, AY,

25t ) (B s e—atcnn)

2
Iy gt GmOK ! L)R_<X1 —|—X2>r]

where myg is the solar mass, A} = R* +2 X, (r- R) + X2r? and A, = R? —
2X; (r-R) + X?r? are mutual distances of the primary and the secondary
components in the binary to the Sun, and s is the direction of the spin vector
of primary. The latter evolves due to gravitational torques exerted by the
satellite and the Sun, and we have

@_BGmQC’—A
dt 1w C

3Gm00—A
e (Res) (Rxs) . (A2)

(r-s)(rxs)+

where w is the angular rotation frequency of the primary (constant in our
model). Here, the first term is the satellite’s torque and the second term is
the Sun’s torque. Because r < R, the satellite’s term “nominally dominates”,
but if the satellite is very close to the primary’s equator the solar term also
contributes. Obviously, for a spherical primary (v = 1 and thus (C—A)/C = 0)
the spin s is fixed and the relative orbit of the binary evolves as in the point-
mass problem.

Equations (A.1) and (A.2) are numerically propagated using a Burlish-Stoer
scheme with variable timestep complying to a chosen accuracy level (e.g., Press
et al. 2007). Therefore, our characteristic timestep is typically a fraction of
hour. The initial data for (r, dr/dt, s) correspond to a near-circular orbit in the
equatorial plane of the primary (thus s || r x dr/dt; for sake of simplicity we did
not explore solutions with the satellite orbit inclined to the primary’s equator).
[ts semimajor axis a, is determined by the observed orbital period P, in
Table 1. The initial orientation of the primary spin axis s is either determined
by the orbital pole from Table 1, or we run a sample of simulations with several
initial latitudes in order to test short-term stability of the solution: B, = 0°,
B, = £20°, B, = +40°, B, = £60° and B, = £80°. We still have to select
the initial ecliptic longitude L, of s: given the possible circulation of s about
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the Cassini states related to the precessing orbit, we choose L, ; = 24+90° and
L,s = Q4+ 270°. Intermediate values of L, would lead to solutions that are
represented as a composition of the chosen cases. For definiteness, we choose
the primary geometrical oblateness v = 0.89, which is the value determined
for the best studied binary case of (66391) 1999 KW4 (Ostro et al. 2006);
however, our results and conclusions are not overly sensitive to this value.
Our model is only adequate to describe the binary evolution over a moderate
timescale, but is fundamentally incomplete to represent a long-term evolution.
For that reason we set the maximum time of integration to 500 ky. Obviously,
we also stop the simulation when the distance r of the primary and secondary
components would become: (i) smaller than sum of their radii (estimated in
Table 1), or (ii) larger than the estimated Hill radius of their gravitational
interaction (typically few hundreds of primary radii).

As demonstrated in Sec. 6, the oblateness of the primary efficiently couples
the evolution of its spin axis s and the binary orbital angular momentum
(my +mg) X1 Xor X (dr/dt) for compact systems (i.e., when r < dy). In this
situation, the orbit pole evolution may be obtained by numerical integration
of a much simpler system

d/
d—i:—[aeg(n-s’)n—i—a] x s, (A.3)

where s’ is the primary and orbit pole referred to the system of axes pre-
cessing with the binary’s heliocentric orbit, such that the z-axis is rotated in
the osculating plane by —(2 from the ascending node and the z-axis is along
the osculating normal n to the heliocentric orbital plane, a.g is the effective
precession constant from Eq. (10) and o = (01, 09, 03)7, with

o1 =cosQ (dl/dt) — sin I sinQ (dQ2/dt) , (A.4)
o9 =sinQ (dI/dt) + sin I cos Q (dQ2/dt) , (A.5)
o3 =sin®1/2 (dQ/dt) . (A.6)

Here, I and €) are the osculating values of inclination and longitude of as-
cending node of the binary heliocentric orbit, and dI/dt and d§}/dt are their
rates induced by planetary perturbations. Not only the system (A.3) is much
simpler than Eqgs. (A.1) and (A.2), but most importantly it eliminates orbital
motion of the binary. As a result, the shortest timescale involved is that of
secular evolution of the binary’s heliocentric orbit and consequently one can
take a much longer integration timestep. Additionally, an efficient Lie-Poisson
integration scheme is available for this system (e.g., Breiter et al. 2005), which
optimizes the integrator speed. Therefore a sample of binary’s orbit-pole evo-
lution can be efficiently obtained by integration of (A.3). The scheme may
even contain a slow, adiabatic, evolution of the binary orbit induced by tides
or BYORP effects (e.g., Taylor and Margot 2010, 2011, Cuk and Burns 2004,
Cuk and Nesvorny 2010, McMahon and Scheeres 2010). In this case the preces-
sion constant ae.g would slowly evolve, reflecting slow changes in the satellite
orbit.
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Table 1
Parameters of 18 binary asteroids observed in more than one apparition

Binary system Di(km) Dy/Dy  Pi(h) Porp(h)  Pa(h)  agn/D1 Lp (°) Bp (°) € (°) an(AU) iy (°)
(1338) Duponta 7.4 0.24 3.85453  17.5680 (17.57) 2.0 0-360 466 - +90 0-21  2.264 4.82
(1453) Fennia 7.0 0.28 4.4121 23.00351 2.6 89 -118 —70- —62 172 -180  1.897  23.68
(1830) Pogson 7.8 (0.30) 2.57003  24.24580 (2.5) 130 - 274 —86 - —74 162 - 180  2.188 3.95
(2006) Polonskaya 5.5 (0.23) 3.1180 19.153 (2.1) 2.325 4.92
(2044) Wirt 5.6 0.25 3.6897 18.976  (18.97) 2.1 349 - 23 —72 - —52 120 - 143  2.380  23.98
(2 pole solutions) 18.965 168 - 203 458 - 472 37 - 53
(2577) Litva 4.0 (0.34) 2.81292  35.8723 (3.2) 253 - 348 —84 - —68 158 - 178  1.904  22.91
(2754) Efimov 4.9 0.22 2.44967  14.77578 1.8 0-360 —90- —66 154 - 180  2.228 5.71
(3309) Brorfelde 4.7 0.26 2.5042 18.46444 18.45 2.0 116 - 154 —74 - —64 168 - 180  1.817  21.14
(3868) Mendoza 8.3 0.17 2.77089  12.195 1.5 2.333 8.10
(4029) Bridges 7.7 0.27 3.5750 16.31701 1.9 0-360 —90- —62 157 - 180  2.525 5.44
(5477) Holmes 2.9 0.39 2.9941 24.4036  (24.41) 2.5 320 - 332 +38 - +64° 5-30°  1.917  22.55
(5905) Johnson 3.6 0.38 3.7823 21.75639 2.3 30 - 58 460 - +76 0-14 1.910 27.52
(2 pole solutions) 21.79699 210 - 254 —56 - —76 167 - 180
(6084) Bascom 5.8 0.37 2.7453  43.51 (43.5) 3.7 267 - 378 —76 - —56 127 - 169  2.313  23.01
(6244) Okamoto 4.4 0.25 2.8957  20.3105 2.2 0-360 +54- +90° 0-33° 2160 5.40
(2 pole solutions) 20.3232 0-360 —90- —58% 151 - 180%
(6265) 1985 TW3 5.2 (0.32) 2.7092 15.86 1.9 2.166 4.11
(9617) Grahamchapman 2.8 (0.27) 2.28561  19.3817 2.1 0-360 +48 - +90° 0-38° 2224 6.14
(2 pole solutions) 19.3915 0-360 —90- —50f 141 - 1807
(17260) 2000 JQ58 3.2 0.26 3.1287 14.7577 14.745 1.8 0-360 —90 - —569 147 - 1809  2.204 5.28
(2 pole solutions) 14.7523 0-360 446 - +90" 0- 43"
(76818) 2000 RG79 2.8 (0.35) 3.1665 14.11960  14.127 1.7 28 - 360 +72 - +90 0-22 1.930  18.13
(2 pole solutions) 14.12998 0-360 —90- —70 158 - 180

Values in parentheses have following meanings: the estimated size ratios Dg/Dj may be only lower limits, as the as-
sumption of that we observed total events or that a possible third component has a negligible size may not hold;
the secondary period (P3) solutions are likely but not entirely unique; and the estimates of the relative semi-major
axis agyp /D1 may be affected by presence of the possible third component. See the electronic files available at
http://www.asu.cas.cz/~asteroid /binastdata.htm for references, comments, additional estimated parameters, and uncer-
tainties.

¢ Quality of the fit decreases with decresing €, so the higher values are preferred.

> Model bulk density increases from 0.8 to 1.9 g cm ™3 with increasing Bp. The most plausible solution is for By ~ +60°
and & ~ 8°

For model bulk density > 1.0 g cm ™3 the values of Bp and € are constrained to be > +64° and < 21°, respectively.

For model bulk density > 1.0 g cm ™3 the values of Bp and € are constrained to be < —66° and > 159°, respectively.

¢ For model bulk density > 1.0 g cm 3 the values of By and € are constrained to be > +62° and < 24°, respectively.

I For model bulk density > 1.0 g cm ™3 the values of Bp and € are constrained to be < —62° and > 156°, respectively.

9 For model bulk density > 1.0 g cm ™3 the values of Bp and € are constrained to be < —62° and > 153°, respectively.

" For model bulk density > 1.0 g cm ™3 the values of Bp and € are constrained to be > +62° and < 27°, respectively.
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Table 2

Epochs of mutual events in return binaries

Binary system Date (UT) L(°) B(°) Ln(°) Bu(°) EventDet
(1338) Duponta 2007-03-06.9  160.1 -2.5 162.7 -1.4 P
(1338) Duponta 2010-01-05.0 82.0 7.2 92.7 3.9 P
(1453) Fennia 2007-11-04.4 76.8 33.9 58.7 18.9 P
(1453) Fennia 2009-08-14.6  293.1 -39.5  309.3 -20.4 P
(1830) Pogson 2007-04-18.6  220.6 6.7 214.8 3.6 P
(1830) Pogson 2010-02-20.7  183.7 2.6 169.3 1.5 P
(2006) Polonskaya 2005-11-01.2 46.9 6.8 42.6 3.3 P
(2006) Polonskaya 2008-06-05.3  294.3 -7.7 278.4 -4.9 N
(2044) Wirt 2005-12-05.9 56.5 13.7 66.8 5.7 P
(2044) Wirt 2008-08-24.3 316.7 -35.5  322.3 -24.0 N
(2577) Litva 2009-03-02.2  132.3 -28.2 149.4 -13.0 P
(2577) Litva 2010-08-11.3  335.4 25.6  327.1 13.8 P
(2754) Efimov 2006-08-14.2 0.9 10.6 339.1 5.1 P
(2754) Efimov 2011-01-31.0  139.2 -6.2 135.8 -3.7 P
(3309) Brorfelde 2005-10-25.2 21.1 -2.5 26.7 -1.2 P
(3309) Brorfelde 2009-01-28.3  147.4 39.6 136.7 20.3 P
(3868) Mendoza 2009-04-25.5 221.4 10.0 218.9 6.0 P
(3868) Mendoza 2010-09-07.0 25.2 -3.6 6.9 -2.1 P
(4029) Bridges 2006-04-11.6  222.3 -0.3 213.0 -0.2 P
(4029) Bridges 2007-10-06.0  356.8 4.6 2.5 2.9 P
(5477) Holmes 2005-11-02.3 47.0 -5.3 43.2 -2.5 P
(5477) Holmes 2007-06-10.5  225.7 -10.7 242.7 -5.6 P
(5905) Johnson 2005-04-01.3 185.4 38.8 188.7 20.9 P
(5905) Johnson 2008-05-13.4  279.3 43.6 2543 25.6 P
(6084) Bascom 2005-12-29.6  139.5 -18.4 120.5 -10.9 P
(6084) Bascom 2008-09-01.6  351.8 -15.2 345.4 -7.5 N
(6244) Okamoto 2006-09-26.2 2.9 6.2 2.9 2.8 P
(6244) Okamoto 2009-08-14.6  320.3 -2.0 321.1 -1.0 P
(6265) 1985 TW3 2007-07-15.5  297.4 -8.8  294.6 -3.9 P
(6265) 1985 TW3 2010-06-13.6  244.8 -4.0  253.7 -2.0 P
(9617) Grahamchapman  2006-01-27.3  139.3 -6.3 133.4 -3.3 P
(9617) Grahamchapman  2008-12-26.2 63.7 -11.3 78.7 -6.1 P
(17260) 2000 JQ58 2006-01-29.6  148.0 -10.0 138.0 -4.7 P
(17260) 2000 JQ58 2009-01-01.3 65.0 -8.8 82.8 -4.7 P
(76818) 2000 RG79 2005-08-07.3  342.2 21.1 327.9 10.8 P
(76818) 2000 RG79 2008-10-03.4 73.3 28.3 41.3 17.2 P

The ecliptic coordinates are in the equinox of J2000. For definition of positive/negative (P/N) event detec-
tion, see text.
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Table 3
Results of the simulation of the binary survey for assumed isotropic distribution of
orbit poles

Binary system Nistapp Mondapp Probability (%)
(1338) Duponta 7617 1286 0.169
(1453) Fennia 9985 2963 0.297
(1830) Pogson 7152 1749 0.245
(2006) Polonskaya 7492 1406 0.188
(2044) Wirt 8913 2212 0.248
(2577) Litva 8988 6620 0.737
(2754) Efimov 10934 4469 0.409
(3309) Brorfelde 8264 2491 0.301
(3868) Mendoza 8983 3494 0.389
(4029) Bridges 9269 2927 0.316
(5477) Holmes 7565 6091 0.805
(5905) Johnson 10208 3826 0.375
(6084) Bascom 7606 1390 0.183
(6244) Okamoto 7073 1567 0.222
(6265) 1985 TW3 9001 2631 0.292
(9617) Grahamchapman 8156 1644 0.202
(17260) 2000 JQ58 10014 2201 0.220
(76818) 2000 RGT9 12519 3814 0.305
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Fig. 1. Estimated probability density of occurence of mutual events in the return
apparition in Naap, of the 18 binary systems, assuming an isotropic distribution of
orbit poles of binary systems. The observed number (15) is much greater than the

prediction for the null hypothesis.
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Fig. 2. Estimated probability densities of occurence of mutual events in the return
apparition in Na,p, of the 18 binary systems, assuming an uniform distribution of
orbit poles of binary systems in [sin Bp| (filled bins) and |cos €| (hatched bins) from

sin 30° to 1.
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Fig. 3. Estimated probability densities of occurence of mutual events in the return
apparition in Na,p, of the 18 binary systems, assuming an uniform distribution of
orbit poles of binary systems in |sin B} (filled bins) and |cos €| (hatched bins) from

sin 45° to 1.
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Fig. 4. Estimated probability densities of occurence of mutual events in the return
apparition in Na,p, of the 18 binary systems, assuming an uniform distribution of
orbit poles of binary systems in |sin B} (filled bins) and |cos €| (hatched bins) from
sin 53° to 1.
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Fig. 5. Estimated probability densities of occurence of mutual events in the return
apparition in Na,p, of the 18 binary systems, assuming an uniform distribution of
orbit poles of binary systems in [sin Bp| (filled bins) and |cos €| (hatched bins) from

sin 60° to 1.
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Fig. 6. Estimated probability densities of occurence of mutual events in the return
apparition in Na,p, of the 18 binary systems, assuming an uniform distribution of
orbit poles of binary systems in [sin Bp| (filled bins) and |cos €| (hatched bins) from
sin 65° to 1.

40



0 2 4 6 8 10 12 14 16 18

| | | | | | | | | | | | | |
Binary orbit pole distribution

03+ . |Bpl > 70° (uniform in [sin By| = 0.94 - 1)

|90° - eps| > 70° (uniform in |cos eps| = 0.94 - 1)

— 0.3

N
N

NN

7,
AR
AN
AN
AN
AN
\/\/\/
Observed| "~
AN
number [0
B ININSNS INSNSN =
LIS
NN
NEENSNNAN
NEENSNRAN
LIS
NN
NEENSNNAN
NEENSNRAN
LIS
NN
NSNS NNAN
> AR /\;\;\; ;\;\;\
-— | PNONSNSNSNSNS SINSNIN L
= 02 LN NNNIANDN 0.2
(7)) AL YL AN
cC ANNNNNNAANAA
0} AN SN
NN NN
(| ANANANNANIANA
ANANANNANPANA
ARA AR VAN
> PO SNINING SONSNIN
IRRARRLDZ AN
- PNINSNSNINSNS SNININ
= LIS AL
] i ARA AR VAN L
NN NN
o) AN
© ANANANNANNPANA
NN NN NN
o) ALY AL AL
(@] ANANANNANPANA
— /\/\/ \/\/\/ /\/\/\
o LIS AL
ARA AR VAN
NN NN
ANANANNANIANA
ANANANNANPANA
0.1 - ARA AR VAN —0.1
ININSNINSNINS SNININ
IRRARXRLRZ VAN
NN NN NNV NN
AN EANNANAN
IARA AR VAN NN
NN NN NN N NN NVNN
CRNNNN NN
RRRNN NN
\/\/\/ /\/\/\ \/\/\/
NAANAANANAN
NAANRANANAN
NANRANANANNAN
, LAY S A
RRZVANA NN
INININS SNSNNNININ
NAANAANANAN
NAANAAANANAN)
RRZVANA NN
INININS SNSNNNININ
NAANAANANAN
PN NN
IRRA XY
NN
AN
NN
R

o
\
o

0 2 4 6 8 10 12 14 16
Number of systems with events in 2nd apparition

—
©

Fig. 7. Estimated probability densities of occurence of mutual events in the return
apparition in Na,p, of the 18 binary systems, assuming an uniform distribution of
orbit poles of binary systems in |sin B} (filled bins) and |cos €| (hatched bins) from
sin 70° to 1.
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(1338) Duponta (2007+2010)
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Fig. 8. Area of admissible poles for the mutual orbit of (1338) Duponta in ecliptic
coordinates. The north pole of the current asteroid’s heliocentric orbit is marked
with the cross.
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(1338) Duponta (2007+2010)
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Fig. 9. Sample of the orbital lightcurve component’s data of (1338) Duponta in
apparitions 2007 and 2010. The observational data (points) are plotted together
with the synthetic lightcurve for the best-fit solution (curve). The data sets from
different dates are vertically offset for clarity, and different symbols are used for
them to avoid confusion. The offsets in date (JDg) are listed in the right column for
each curve. On the first and third curves from the top, the minima are shown in an
order opposite (i.e., first the secondary and then the primary event) to the other
curves.
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(1453) Fennia
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Fig. 10. Area of admissible poles for the mutual orbit of (1453) Fennia in ecliptic
coordinates. The south pole of the current asteroid’s heliocentric orbit is marked

with the cross.
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(1453) Fennia (2007+2009+2011)
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Fig. 11. Sample of the orbital lightcurve component’s data of (1453) Fennia in ap-
paritions 2007, 2009, and 2011. The observational data (points) are plotted together
with the synthetic lightcurve for the best-fit solution (curve). The data sets from
different dates are vertically offset for clarity, and different symbols are used for
them to avoid confusion. The offsets in date (JDg) are listed in the right column
for each curve. On the fifth curve from the top, the minima are shown in an order
opposite (i.e., first the secondary and then the primary event) to the other curves.
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(1830) Pogson (2007+2008+2010)
90 L,

45 135

-~ \
- A \
0 ¥ 180
4’

80 =40 -60 -0 -40

— ~

// / \\

315 225

270

Fig. 12. Area of admissible poles for the mutual orbit of (1830) Pogson in ecliptic
coordinates. The solid curve inside the area bounds the admissible poles constrained
using the effective diameter of the third body set equal to the effective diameter of
the primary. The south pole of the current asteroid’s heliocentric orbit is marked
with the cross.

46
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Fig. 13. Sample of the orbital lightcurve component’s data of (1830) Pogson in ap-
paritions 2007, 2008, and 2010. The observational data (points) are plotted together
with the synthetic lightcurve for the best-fit solution without the third body (solid
curve) and with the third body with diameter equal to D; (dashed curve). The data
sets from different dates are vertically offset for clarity, and different symbols are
used for them to avoid confusion. The offsets in date (JDy) are listed in the right
column for each curve.
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Fig. 14. Area of admissible poles for the mutual orbit of (2044) Wirt in ecliptic
coordinates. The north and the south pole of the current asteroid’s heliocentric
orbit are marked with the crosses.
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(2044) Wirt (2005)
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Fig. 15. Sample of the orbital lightcurve component’s data of (2044) Wirt in appari-
tion 2005. The observational data (points) are plotted together with the synthetic
lightcurves for the two best-fit solutions (retrograde — solid curve, prograde — dashed
curve). The data sets from different dates are vertically offset for clarity, and differ-
ent symbols are used for them to avoid confusion. The offsets in date (JDy) are listed
in the right column for each curve. On the second curve from the top, the minima
are shown in an order opposite (i.e., first the secondary and then the primary event)
to the other curves.
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(2577) Litva (2009+2010)
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Fig. 16. Area of admissible poles for the mutual orbit of (2577) Litva in ecliptic
coordinates. The solid curve inside the area bounds the admissible poles constrained
using the effective diameter of the third body set equal to the effective diameter of
the primary. The south pole of the current asteroid’s heliocentric orbit is marked
with the cross.
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(2577) Litva (2009+2010) D,
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Fig. 17. Sample of the orbital lightcurve component’s data of (2577) Litva in ap-
paritions 2009 and 2010. The observational data (points) are plotted together with
the synthetic lightcurve for the best-fit solution without the third body (solid curve)
and with the third body with diameter equal to D; (dashed curve). The data sets
from different dates are vertically offset for clarity, and different symbols are used
for them to avoid confusion. The offsets in date (JDg) are listed in the right column
for each curve. On the third and the last curves from the top, the minima are shown
in an order opposite (i.e., first the secondary and then the primary event) to the
other curves.
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(2754) Efimov (2006+2008+2011)
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Fig. 18. Area of admissible poles for the mutual orbit of (2754) Efimov in ecliptic
coordinates. The south pole of the current asteroid’s heliocentric orbit is marked
with the cross.
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Fig. 19. Sample of the orbital lightcurve component’s data of (2754) Efimov in ap-
paritions 2006, 2008, and 2011. The observational data (points) are plotted together
with the synthetic lightcurve for the best-fit solution (curve). The data sets from
different dates are vertically offset for clarity, and different symbols are used for
them to avoid confusion. The offsets in date (JDg) are listed in the right column for
each curve.
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(3309) Brorfelde (2005+2009+2010)
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Fig. 20. Area of admissible poles for the mutual orbit of (3309) Brorfelde in ecliptic
coordinates. The south pole of the current asteroid’s heliocentric orbit is marked

with the cross.
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Fig. 21. Sample of the orbital lightcurve component’s data of (3309) Brorfelde in
apparitions 2005, 2009, and 2010. The observational data (points) are plotted to-
gether with the synthetic lightcurve for the best-fit solution (curve). The data sets
from different dates are vertically offset for clarity, and different symbols are used
for them to avoid confusion. The offsets in date (JDg) are listed in the right column
for each curve. On the third curve from the top, the minima are shown in an order
opposite (i.e., first the secondary and then the primary event) to the other curves.
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(4029) Bridges (2006+2007+2010)
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Fig. 22. Area of admissible poles for the mutual orbit of (4029) Bridges in ecliptic
coordinates. The south pole of the current asteroid’s heliocentric orbit is marked

with the cross.
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(4029) Bridges (2006+2007+2010)
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Fig. 23. Sample of the orbital lightcurve component’s data of (4029) Bridges in ap-
paritions 2006, 2007, and 2010. The observational data (points) are plotted together
with the synthetic lightcurve for the best-fit solution (curve). The data sets from
different dates are vertically offset for clarity, and different symbols are used for
them to avoid confusion. The offsets in date (JDg) are listed in the right column
for each curve. On the first curve from the top, the minima are shown in an order
opposite (i.e., first the secondary and then the primary event) to the other curves.
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(5477) Holmes (2005+2007)
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Fig. 24. Area of admissible poles for the mutual orbit of (5477) Holmes in ecliptic
coordinates. The north pole of the current asteroid’s heliocentric orbit is marked
with the cross.
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Fig. 25. Sample of the orbital lightcurve component’s data of (5477) Holmes in
apparitions 2005 a 2007. The observational data (points) are plotted together with
the synthetic lightcurve for the best-fit solution (curve). The data sets from different
dates are vertically offset for clarity, and different symbols are used for them to avoid
confusion. The offsets in date (JDg) are listed in the right column for each curve.
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(6084) Bascom (2006)
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Fig. 26. Area of admissible poles for the mutual orbit of (6084) Bascom in ecliptic
coordinates. The south pole of the current asteroid’s heliocentric orbit is marked
with the cross.
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(6084) Bascom (2006)
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Fig. 27. Sample of the orbital lightcurve component’s data of (6084) Bascom in
apparition 2006. The observational data (points) are plotted together with the syn-
thetic lightcurve for the best-fit solution (curve). The data sets from different dates
are vertically offset for clarity, and different symbols are used for them to avoid
confusion. The offsets in date (JDg) are listed in the right column for each curve.
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Fig. 28. A sample of evolutionary tracks of the ecliptic latitude (ordinate) of the
orbital pole for (4029) Bridges determined by our numerical model; the abscissa
is time in ky. Initial ecliptic latitudes Bj were 0°, £20°, £40°, +60° and £80°.
Results on the left panel had initial orbit pole with ecliptic longitude L 1 = Q2+90°,
while those on the right panel had L,2 = € + 270°, where () is the longitude of
ascending node of the binary’s heliocentric orbit (cf. Appendix). The gray dashed
lines on the left panel show ecliptic latitudes of the Cassini states 2 and 3. The
thick curve on the left panel shows a possible evolution of Bridges’ pole with initial
data (Lp, Bp) = (305°,—85°) very close to the osculating pole of the heliocentric
orbit and near the center of the uncertainty region of the solution (Table 1 and
Fig. 22). All orbits are stable, independently of the latitude value, with only small
oscillations due to small value of the heliocentric orbit inclination to the ecliptic.
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Fig. 29. The same as in Fig. 28, but for the Hungaria-class binary (1453) Fennia.
The gray dashed lines now show ecliptic latitude of the Cassini states 1, 2 and 3.
The thick curve shows a possible evolution of the orbit pole for this binary for initial
position (L, Bp) = (95°, —66°) very close to the osculating pole of the heliocentric
orbit and near the center of the uncertainty region of the solution (Table 1 and
Fig. 10).
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Fig. 30. The same as in Fig. 28, but for the Phocaea-class binary (2044) Wirt. The

gray dashed lines now show ecliptic latitude of the Cassini states 1, 2 and 3. The

thick curves show a possible evolution of the two solutions of the orbit pole for this

binary (see Table 1 and Fig. 14): initial pole position (L, By) = (180°,67°) on the

left panel and (Ly, Bp) = (0°, —65°) on the right panel.
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