Photosynthetica, 2020 (vol. 58), SPECIAL ISSUE

Photosynthetica 2020, 58(2):585-594 | DOI: 10.32615/ps.2019.143

Special issue in honour of Prof. Reto J. Strasser – Effects of exogenous abscisic acid on the photosynthetic function andreactive oxygen species metabolism of tobacco leaves under drought stress

H.H. ZHANG1,†, N. XU2,†, X. LI1, Y. HAN1, J.W. REN1, M.B. LI1, S. ZHAI1, R.Y. YANG1, Z.Y. TENG3, G.Y. SUN3
1 College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
2 Natural Resources and Ecology Institute, Heilongjiang Sciences Academy, Harbin, Heilongjiang, China
3 Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China

In this study, water solutions with different concentrations of abscisic acid (ABA) (10, 20, and 40 μmol L-1) were sprayed on leaves of drought-stressed tobacco seedlings. The results showed that under drought stress, both water content and photosynthetic carbon assimilation ability were reduced, PSII activity was also inhibited. Drought stress also led to the outbreak of reactive oxygen species in tobacco leaves and increased the degree of membrane peroxidation. However, spraying exogenous ABA significantly alleviated the damage caused by drought stress on the leaves. The potential mechanisms by which drought resistance in tobacco is improved by spraying exogenous ABA include: (1) regulation of the stomatal limitation of leaves, which is beneficial to water retention ability and can enhance photosynthetic function; (2) reduction of the energy pressure of the PSII reaction center by increasing nonphotochemical quenching (NPQ); and (3) effective reduction of the production of reactive oxygen species in the leaves and reducing the degree of membrane peroxidation.

Keywords: chlorophyll fluorescence; oxidative damage; photoinhibition.

Received: May 14, 2019; Accepted: October 23, 2019; Prepublished online: March 29, 2020; Published: April 7, 2020Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
ZHANG, H.H., XU, N., LI, X., HAN, Y., REN, J.W., LI, M.B., ... SUN, G.Y. (2020). Special issue in honour of Prof. Reto J. Strasser – Effects of exogenous abscisic acid on the photosynthetic function andreactive oxygen species metabolism of tobacco leaves under drought stress. Photosynthetica58(SPECIAL ISSUE), 585-594. doi: 10.32615/ps.2019.143.
Download citation

Supplementary files

Download fileZhang 2287 supplement.docx

File size: 161.56 kB

References

  1. Ahmed C.B., Rouina B.B., Sensoy S. et al.: Changes in gas exchange, proline accumulation and antioxidative enzyme activities in three olive cultivars under contrasting water availability regimes. - Environ. Exp. Bot. 67: 345-352, 2009. Go to original source...
  2. Albert K.R., Mikkelsen T.N., Michelsen A. et al.: Interactive effects of drought, elevated CO2 and warming on photosyn-thetic capacity and photosystem performance in temperate heath plants. - J. Plant. Physiol. 168: 1550-1561, 2011. Go to original source...
  3. Allagulova C.R., Gimalov F.R., Shakirova F.M., Vakhitov V.A.: The plant dehydrins: structure and putative functions. - Biochemistry-Moscow+ 68: 945-951, 2003. Go to original source...
  4. Allahverdiyeva Y., Suorsa M., Rossi F. et al.: Arabidopsis plants lacking PsbQ and PsbR subunits of the oxygen-evolving complex show altered PSII super-complex organization and short-term adaptive mechanisms. - Plant J. 75: 671-684, 2013. Go to original source...
  5. Asada K.: Production and scavenging of reactive oxygen species in chloroplasts and their functions. - Plant Physiol. 141: 391-396, 2006. Go to original source...
  6. Boominathan P., Shukla R., Kumar A. et al.: Long term transcript accumulation during the development of dehydration adapta-tion in Cicer arietinum. - Plant Physiol. 135: 1608-1620, 2004. Go to original source...
  7. Bueno P., Piqueras A., Kurepa J. et al.: Expresssion of antioxidant enzymes in response to abscisic acid and high osmoticum in tobacco BY-2 cell cultures. - Plant Sci. 138: 27-34, 1998. Go to original source...
  8. Cai S., Chen G., Wang Y. et al.: Evolutionary conservation of ABA signaling for stomatal closure in ferns. - Plant Physiol. 174: 732-747, 2017. Go to original source...
  9. Chen J., Pan K.W., Gu B.: [Physiological function and mechanism of abscisic acid in plants under stress.] - Plant Physiol. J. 42: 1176-1182, 2006. [In Chinese]
  10. Chen Y.E., Zhang C.M., Su Y.Q. et al.: Responses of photosystem II and antioxidative systems to high light and high temperature co-stress in wheat. - Environ. Exp. Bot. 135: 45-55, 2017. Go to original source...
  11. Chen Z.F., Wang Z., Yang Y.G. et al.: Abscisic acid and brassinolide combined application synergistically enhances drought tolerance and photosynthesis of tall fescue under water stress. - Sci. Hortic.-Amsterdam 228: 1-9, 2018.
  12. Demmig-Adams B., Adams III W.W.: Xanthophyll cycle and light stress in nature: uniform response to excess direct sunlight among higher plant species. - Planta 198: 460-470, 1996. Go to original source...
  13. Duan B.L., Yang Y.Q., Lu Y.W. et al.: Interactions between water deficit, ABA, and provenances in Picea asperata. - J. Exp. Bot. 58: 3025-3036, 2013.
  14. Erinle K.O., Jiang Z., Ma B.B. et al.: Physiological and molecular responses of pearl millet seedling to atrazine stress. - Int. J. Phytoremediat. 20: 343-351, 2018. Go to original source...
  15. Eskling M., Arvidsson P.O., Åkerlund H.E.: The xanthophyll cycle, its regulation and components. - Plant Physiol. 100: 806-816, 1997. Go to original source...
  16. Farquhar G.D., Sharkey T.D.: Stomatal conductance and photo-synthesis. - Annu. Rev. Plant Phys. 33: 317-345, 2003.
  17. Frank H.A., Cua A., Chynwat V. et al.: Photophysics of the carotenoids associated with the xanthophyll cycle in photosynthesis. - Photosynth. Res. 41: 389-395, 1994. Go to original source...
  18. Gill S.S., Tuteja N.: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. - Plant Physiol. Bioch. 48: 909-930, 2010. Go to original source...
  19. Guadagno C.R., Ewers B.E., Speckman H.N. et al.: Dead or alive? Using membrane failure and chlorophyll fluorescence to predict mortality from drought. - Plant Physiol. 175: 223-234, 2017. Go to original source...
  20. Guo G.H., Liu H.Y., Li G.H. et al.: [Analysis of physiological characteristics about ABA alleviating rice booting stage drought stress.] - Sci. Agr. Sin. 47: 4380-4391, 2014. [In Chinese]
  21. Hir R.L., Castelain M., Chakraborti D. et al.: AtbHLH68 transcription factor contributes to the regulation of ABA homeostasis and drought stress tolerance in Arabidopsis thaliana. - Physiol. Plantarum 160: 312-327, 2017. Go to original source...
  22. Huang D., Wu W., Abrams S.R., Cutler A.J.: The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. - J. Exp. Bot. 59: 2991-3007, 2008. Go to original source...
  23. Ijaz R., Ejaz J., Gao S.H. et al.: Overexpression of annexin gene AnnSp2, enhances drought and salt tolerance through modulation of ABA synthesis and scavenging ROS in tomato. - Sci. Rep.-UK 7: e12087, 2017. Go to original source...
  24. Ivanov A.G., Krol M.D., Huner N.P.: Abscisic acid induced protection against photoinhibition of PSII correlates with enhanced activity of the xanthophyll cycle. - FEBS Lett. 371: 61-64, 1995. Go to original source...
  25. Jalakas P., Huang Y.C., Yeh Y.H. et al.: The role of Enhanced Responses to ABA1 (ERA1) in Arabidopsis stomatal responses is beyond ABA signaling. - Plant Physiol. 174: 665-671, 2017. Go to original source...
  26. Jiang M.Y., Zhang J.H.: Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. - Plant Cell Physiol. 42: 1265-1273, 2001. Go to original source...
  27. Jiang M.Y., Zhang J.H.: [Abscisic acid and antioxidant defense in plant cells.] - Acta Bot. Sin. 46: 1-9, 2004. [In Chinese]
  28. Kalaji H.M., Schansker G., Ladle R.J. et al.: Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. - Photosynth. Res. 122: 121-158, 2014. Go to original source...
  29. Kano M., Inukai Y., Kitano H., Yamauchi A.: Root plasticity as the key root trait for adaptation to various intensities of drought stress in rice. - Plant Soil 342: 117-128, 2011. Go to original source...
  30. Krugman T., Chagué V., Peleg Z. et al.: Multilevel regulation and signalling processes associated with adaptation to terminal drought in wild emmer wheat. - Funct. Integr. Genomic. 10: 167-186, 2010. Go to original source...
  31. Li C.N., Srivastava M.K., Nong Q., Li Y.R.: [Mechanism of tolerance to drought in sugarcane plant enhanced by foliage dressing of abscisic acid under water stress.] - Acta Agron. Sin. 36: 863-870, 2010. [In Chinese] Go to original source...
  32. Li J.J., Li Y., Yin Z. et al.: OsASR5 enhances drought tolerance through a stomatal closure pathway associated with ABA and H2O2 signalling in rice. - Plant. Biotechnol. J. 15: 183-196, 2017. Go to original source...
  33. Li X.P., Björkman O., Shih C. et al.: A pigment-binding protein essential for regulation of photosynthetic light harvesting. - Nature 403: 391-395, 2000. Go to original source...
  34. Li Y., Zhao H.X., Duan B.L. et al.: Effect of drought and ABA on growth, photosynthesis and antioxidant system of Cotinus coggygria seedlings under two different light conditions. - Environ. Exp. Bot. 71: 107-113, 2011. Go to original source...
  35. Lin Z.F., Li S.S., Lin G.Z. et al.: [The accumulation of hydrogen peroxide in senescing leaves and chloroplasts in relation to lipid peroxidation.] - Acta Phytophysiol. Sin. 14: 16-22, 1988. [In Chinese]
  36. Liu W.J., Yuan S., Zhang N.H. et al.: Effect of water stress on photosystem 2 in two wheat cultivars. - Biol. Plantarum 50: 597, 2006. Go to original source...
  37. Loik M.E., Nobel P.S.: Exogenous abscisic acid mimics cold acclimation for cacti differing in freezing tolerance. - Plant Physiol. 103: 871-876, 1993. Go to original source...
  38. Lv A.M., Fan N.N., Xie J.P. et al.: Expression of CdDHN4, a novel YSK2-type dehydrin gene from bermudagrass, responses to drought stress through the ABA-dependent signal pathway. - Front. Plant Sci. 8: 748, 2017. Go to original source...
  39. Mayaba N., Beckett R.P., Csintalan Z., Tuba Z.: ABA increases the desiccation tolerance of photosynthesis in the Afromontane understorey moss Atrechum androgynum. - Ann. Bot.-London 88: 1093-1100, 2001. Go to original source...
  40. Milborrow B.V.: The pathway of biosynthesis of abscisic acid in vascular plants: a review of the present state of knowledge of ABA biosynthesis. - J. Exp. Bot. 52: 1145-1164, 2001. Go to original source...
  41. Nayyar H., Kaushal S.K.: Alleviation of negative effects of water stress in two contrasting wheat genotypes by calcium and abscisic acid. - Biol. Plantarum 45: 65-70, 2002. Go to original source...
  42. Nikolaeva M.K., Maevskaya S.N., Shugaev A.G., Bukhov N.G.: Effect of drought on chlorophyll content and antioxidant enzyme activities in leaves of three wheat cultivars varying in productivity. - Russ. J. Plant Physl+ 57: 87-95, 2010.
  43. Pieters A.J., Tezara W., Herrera A.: Operation of the xanthophyll cycle and degradation of D1 protein in the inducible CAM plant, Talinum triangulare, under water deficit. - Ann. Bot.-London 92: 393-399, 2003. Go to original source...
  44. Ramachandra R.A., Chaitanya K.V., Vivekanandan M.: Drought-induced responses of photosynthesis and antioxidant meta-bolism in higher plants. - J. Plant. Physiol. 161: 1189-1202, 2004.
  45. Ruan Y.H., Dong S.K., Liu L.J. et al.: [Effects of exogenous abscisic acid on physiological characteristics in soybean flowering under drought stress.] - Soybean Sci. 31: 385-389, 2012. [In Chinese]
  46. Ruban A.V., Horton P.: The xanthophyll cycle modulates the kinetics of nonphotochemical energy dissipation in isolated light-harvesting complexes, intact chloroplasts, and leaves of spinach. - Plant Physiol. 119: 531-542, 1999. Go to original source...
  47. Saradhi P.P., Suzuki I., Katoh A. et al.: Protection against the photo-induced inactivation of the photosystem II complex by abscisic acid. - Plant Cell Environ. 23: 711-718, 2000. Go to original source...
  48. Souza T.C., Magalhães P.C., Castro E.M. et al.: The influence of ABA on water relation, photosynthesis parameters, and chlorophyll fluorescence under drought conditions in two maize hybrids with contrasting drought resistance. - Acta Physiol. Plant. 35: 515-527, 2013. Go to original source...
  49. Travaglia C., Cohen A.C., Reinoso H. et al.: Exogenous abscisic acid increases carbohydrate accumulation and redistribution to the grains in wheat grown under field conditions of soil water restriction. - J. Plant Growth Regul. 26: 285-289, 2007. Go to original source...
  50. Travaglia C., Reinoso H., Cohen A.C. et al.: Exogenous ABA increases yield in field-grown wheat with moderate water restriction. - J. Plant Growth Regul. 29: 366-374, 2010. Go to original source...
  51. Tsimilli-Michael M., Strasser R.J.: Biophysical phenomics: Evaluation of the impact of mycorrhization with Piriformo-spora indica. - In: Varma A., Kost G., Oelmüller R. (ed.): Piriformospora indica. Sebasinales and their Biotechno-logical Applications. Pp. 173-190. Springer-Verlag, Berlin-Heidelberg 2013. Go to original source...
  52. Wang A.G., Luo G.H.: Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants. - Plant Physiol. Commun. 26: 55-57, 1990.
  53. Wang J.Y, Ao H., Zhang J.: [The Technology and Experiment Principle of Plant Physiology.] Pp. 129-130. Northeast For. University Press, Harbin 2003. [In Chinese]
  54. Wang X.J., Loh C.S., Yeoh H.H., Sun W.Q.: Drying rate and dehydrin synthesis associated with abscisic acid-induced dehydration tolerance in Spathoglottis plicata orchidaceae protocorms. - J. Exp. Bot. 53: 551-558, 2002. Go to original source...
  55. Wang Y.G., Peng C.X., Zhan Y.N. et al.: Comparative proteomic analysis of two sugar beet cultivars with contrasting drought tolerance. - J. Plant Growth Regul. 36: 1-13, 2017. Go to original source...
  56. Wang Y.X., Suo B., Zhao P.F. et al.: [Effect of abscisic acid treatment on psbA gene expression in two wheat cultivars during grain filling stage under drought stress.] - Acta Agron. Sin. 37: 1372-1377, 2011. [In Chinese] Go to original source...
  57. Xu N., Meng X.X.Y., Zhao X.M. et al.: [Responses of photosynthetic characteristics in leaves of Physocarpus amurensis and P. opulifolius to drought stress.] - Chin. J. Appl. Ecol. 28: 1955-1961, 2017. [In Chinese]
  58. Xu N., Zhang H.H., Zhong H.X. et al.: The response of photosynthetic functions of F1 cutting seedlings from Physocarpus amurensis Maxim (♀) × Physocarpus opulifolius "Diabolo" (♂) and the parental leaves to salt stress. - Front. Plant Sci. 9: 714, 2018.
  59. Yu Y.T., Wu Z., Lu K. et al.: Overexpression of the MYB37 transcription factor enhances abscisic acid sensitivity, and improves both drought tolerance and seed productivity in Arabidopsis thaliana. - Plant. Mol. Biol. 90: 267-279, 2016a. Go to original source...
  60. Yu Y.T., Wu Z., Lu K. et al.: Overexpression of the MYB transcription factor MYB28, or MYB99, confers hypersensitivity to abscisic acid in Arabidopsis. - J. Plant Biol. 59: 152-161, 2016b. Go to original source...
  61. Zeevaart J.A.D., Creelman R.A.: Metabolism and physiology of abscisic acid. - Annu. Rev. Plant Phys. 39: 439-454, 1988. Go to original source...
  62. Zhang H.H., Feng P., Yang W. et al.: Effects of flooding stress on the photosynthetic apparatus of leaves of two Physocarpus cultivars. - J. Forestry Res. 29: 1049-1059, 2018b. Go to original source...
  63. Zhang H.H., Li X., Zhang S.B. et al.: Rootstock alleviates salt stress in grafted mulberry seedlings: physiological and PSII function responses. - Front. Plant Sci. 9: 1806, 2018d.
  64. Zhang H.H., Shi G.L., Shao J.Y. et al.: Photochemistry and proteomics of mulberry (Morus alba L.) seedlings under NaCl and NaHCO3 stress. - Ecotox. Environ. Safe. 184: 109624, 2019a.
  65. Zhang H.H., Xu N., Li X. et al.: Overexpression of 2-Cys Prx increased salt tolerance of photosystem II in tobacco. - Int. J. Agric. Biol. 19: 735-745, 2017. Go to original source...
  66. Zhang H.H., Xu N., Sui X. et al.: Photosystem II function response to drought stress in leaves of two alfalfa (Medicago sativa) varieties. - Int. J. Agric. Biol. 20: 1012-1020, 2018a.
  67. Zhang H.H., Xu N., Teng Z.Y. et al.: 2-Cys Prx plays a critical role in scavenging H2O2 and protecting photosynthetic func-tion in leaves of tobacco seedlings under drought stress. - J. Plant Interact. 14: 109624, 2019b. Go to original source...
  68. Zhang H.H., Zhong H.X., Wang J.F. et al.: Adaptive changes in chlorophyll content and photosynthetic features to low light in Physocarpus amurensis Maxim and Physocarpus opulifolius 'Diabolo'. - PeerJ 4: e2125, 2016. Go to original source...
  69. Zhang L.T., Zhang Z.S., Gao H.Y. et al.: Mitochondrial alternative oxidase pathway protects plants against photoinhibition by alleviating inhibition of the repair of photodamaged PSII through preventing formation of reactive oxygen species in Rumex K-1 leaves. - Physiol. Plantarum 143: 396-407, 2011. Go to original source...
  70. Zhang Z.S., Li G., Gao H.Y. et al.: Characterization of photosynthetic performance during senescence in stay-green and quick-leaf-senescence Zea mays L. inbred lines. - PLoS ONE 7: e42936, 2012. Go to original source...