Photosynthetica, 2020 (vol. 58), SPECIAL ISSUE

Photosynthetica 2020, 58(2):560-572 | DOI: 10.32615/ps.2020.003

Special issue in honour of Prof. Reto J. Strasser – Probing the photosynthetic apparatus noninvasively in the laboratory of Reto Strasser in the countryside of Geneva between 2001 and 2009

S.Z. TÓTH1, A. OUKARROUM2, G. SCHANSKER3,5
1 Biological Research Centre Szeged, Institute for Plant Biology, Hungary
2 AgroBioSciences Division, University Mohammed VI Polytechnic (UM6P), Ben Guerir, Morocco
3 Wesemlinstrasse 58, 6006 Luzern, Switzerland

An overview is given of several studies on the fast chlorophyll (Chl) a fluorescence (OJIP) transient carried out in the laboratory of Reto Strasser between 2001 and 2009. At the beginning of this period the HandyPEA and PEA-Senior instruments were introduced by Reto Strasser and Hansatech Instruments Ltd. (UK) that gave a lot of experimental flexibility compared to the experiments that were feasible in the preceding years. These technical innovations, including the combination of 820-nm transmission measurements (for the determination of the P700 and PC redox states) and Chl a fluorescence [originating from photosystem II (PSII)], enabled us to establish the effects of electron flow through and at the acceptor side of photosystem I during a dark-to-light transition on fluorescence induction in leaves. These instruments further allowed us to show biological variability between various photosynthetic organisms and how several chemical treatments could modify the Chl a fluorescence kinetics. We also obtained new information on the effect of the inhibitor DCMU [3-(3ꞌ,4ꞌ-dichlorophenyl)-1,1-dimethylurea] on Chl a fluorescence induction. In addition, the effects of heat stress on electron flow through PSII and the entire electron transport chain were investigated in detail. The article also reflects how our perception and interpretation of the OJIP kinetics changed over time.

Keywords: conformational changes; drought stress; ionophores; photosynthesis; Photosynthetic Control.

Received: October 7, 2019; Revised: December 18, 2019; Accepted: January 6, 2020; Prepublished online: March 22, 2020; Published: April 7, 2020Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
TÓTH, S.Z., OUKARROUM, A., & SCHANSKER, G. (2020). Special issue in honour of Prof. Reto J. Strasser – Probing the photosynthetic apparatus noninvasively in the laboratory of Reto Strasser in the countryside of Geneva between 2001 and 2009. Photosynthetica58(SPECIAL ISSUE), 560-572. doi: 10.32615/ps.2020.003.
Download citation

References

  1. Allahverdiyeva Y., Isojärvi J., Zhang P., Aro E.-M.: Cyanobacterial oxygenic photosynthesis is protected by flavodiiron proteins. -Life 5: 716-743, 2015. Go to original source...
  2. Allahverdiyeva Y., Mustila H., Ermakova M. et al.: Flavodiiron proteins Flv1 and Flv3 enable cyanobacterial growth and photosynthesis under fluctuating light. - P. Natl. Acad. Sci. USA 110: 4111-4116, 2013. Go to original source...
  3. Araus J.L., Amaro T., Voltas J. et al.: Chlorophyll fluorescence as a selection criterion for grain yield in durum wheat under Mediterranean conditions. - Field Crop. Res. 55: 209-223, 1998. Go to original source...
  4. Baker N.R.: Chlorophyll fluorescence: A probe of photosynthesis in vivo. - Annu. Rev. Plant Biol. 59: 89-113, 2008. Go to original source...
  5. Bennoun P.: Evidence for a respiratory chain in the chloroplast. - P. Natl. Acad. Sci. USA 79: 4352-4356, 1982. Go to original source...
  6. Bennoun P.: Chlororespiration and the process of carotenoid biosynthesis. - BBA-Bioenergetics 1506: 133-142, 2001. Go to original source...
  7. Benz J.P., Lintala M., Soll J. et al.: A new concept for ferredoxin-NADP(H) oxidoreductase binding to plant thylakoids. - Trends Plant Sci. 15: 608-613, 2010. Go to original source...
  8. Bilger W., Schreiber U.: Energy-dependent quenching of dark-level chlorophyll fluorescence in intact leaves. - Photosynth. Res. 10: 303-308, 1986. Go to original source...
  9. Blackman F.F.: Optima and limiting factors. - Ann. Bot.-London 19: 281-296, 1905. Go to original source...
  10. Bolychevtseva Y.V., Kuzminov F.I., Elanskaya I.V. et al.: Photosystem activity and state transitions of the photosyn-thetic apparatus in cyanobacterium Synechocystis PCC 6803 mutants with different redox state of the plastoquinone pool. - Biochemistry-Moscow+ 80: 50-60, 2015. Go to original source...
  11. Borisova-Mubarakshina M.M., Ivanov B.N., Vetoshkina D.V. et al.: Long-term acclimatory response to excess energy: evidence for a role of hydrogen peroxide in the regulation of photosystem II antenna size. - J. Exp. Bot. 66: 7151-7164, 2015. Go to original source...
  12. Boureima S., Oukarroum A., Diouf M. et al.: Screening for drought tolerance in mutant germplasm of sesame (Sesamum indicum) probing by chlorophyll a fluorescence. - Environ. Exp. Bot. 81: 37-43, 2012. Go to original source...
  13. Caffarri S., Tibiletti T., Jennings R.C., Santabarbara S.: A com-parison between plant photosystem I and photosystem II architecture and functioning. - Curr. Protein Pept. Sc. 15: 296-331, 2014. Go to original source...
  14. Carrillo N., Arana J.L., Vallejos R.H.: An essential carboxyl group at the nucleotide binding site of ferredoxin-NADP+ oxidoreductase. - J. Biol. Chem. 256: 6823-6828, 1981.
  15. Carrillo N., Lucero H.A., Vallejos R.H.: Effect of light on chemical modification of chloroplast ferredoxin-NADP reductase. - Plant Physiol. 65: 495-498, 1980. Go to original source...
  16. Chaux F., Peltier G., Johnson X.: A security network in PSI photoprotection: regulation of photosynthetic control, NPQ and O2 photoreduction by cyclic electron electron flow. - Front. Plant Sci. 6: 875, 2015. Go to original source...
  17. Cornic G., Fresneau C.: Photosynthetic carbon reduction and carbon oxidation cycles are the main electron sinks for photosystem II activity during a mild drought. - Ann. Bot.-London 89: 887-894, 2002. Go to original source...
  18. Diner B.A.: Dependence of the deactivation reactions of photosystem II on the redox state of plastoquinone pool A varied under anaerobic conditions. Equilibria on the acceptor side of photosystem II. - BBA-Bioenergetics 460: 247-258, 1977. Go to original source...
  19. Finazzi G., Johnson G.N., Dall'Osto L. et al.: A zeaxanthin-independent nonphotochemical quenching mechanism loca-lized in the photosystem II core complex. - P. Natl. Acad. Sci. USA 101: 12375-12380, 2004. Go to original source...
  20. Foyer C.H., Lelandais M., Harbinson J.: Control of the quantum efficiencies of photosystem I and II, electron flow, and enzyme activation following dark-to-light transitions in pea leaves. Relationship between NADP/NADPH ratios and NADP-malate dehydrogenase activation state. - Plant Physiol. 99: 979-986, 1992. Go to original source...
  21. Golding A.J., Finazzi G., Johnson G.N.: Reduction of the thylakoid electron transport chain by stromal reductants - evidence for activation of cyclic electron transport upon dark adaptation or under drought. - Planta 220: 356-363, 2004. Go to original source...
  22. Golding A.J., Johnson G.N.: Down-regulation of linear and activation of cyclic electron transport during drought. - Planta 218: 107-114, 2003. Go to original source...
  23. Govindjee, Srivastava A., Stirbet A. et al.: Reto Jörg Strasser: An innovator, a wonderful friend and "Professor of the World": Tribute and a perspective. - J. Plant Sci. Res. 35: 147-158, 2019.
  24. Guissé B., Srivastava A., Strasser R.J.: The polyphasic rise of the chlorophyll a fluorescence (O-K-J-I-P) in heat-stressed leaves. - Arch. Sci. Geneve 48: 147-160, 1995.
  25. Haldimann P., Strasser R.J.: Effects of anaerobiosis as probed by the polyphasic chlorophyll a fluorescence rise kinetic in pea (Pisum sativum L.). - Photosynth. Res. 62: 67-83, 1999. Go to original source...
  26. Haldimann P., Tsimilli-Michael M.: Mercury inhibits the non-photochemical reduction of plastoquinone by exogenous NADPH and NADH: evidence from measurements of the polyphasic chlorophyll a fluorescence rise in spinach chloro-plasts. - Photosynth. Res. 74: 37-50, 2002. Go to original source...
  27. Havaux M.: Short-term responses of photosystem I to heat stress. - Photosynth. Res. 47: 85-97, 1996. Go to original source...
  28. Heber U., Walker D.: Concerning a dual function of coupled cyclic electron transport in leaves. - Plant Physiol. 100: 1621-1626, 1992. Go to original source...
  29. Hodges M., Barber J.: The significance of the kinetic analysis of fluorescence induction in DCMU-inhibited chloroplasts in terms of photosystem 2 connectivity and heterogeneity. - FEBS Lett. 160: 177-181, 1983. Go to original source...
  30. Horton P., Ruban A.V.: ΔpH-dependent quenching of the F0 level of chlorophyll fluorescence in spinach. - BBA-Bioenergetics 1142: 203-206, 1993. Go to original source...
  31. Ilík P., Pavlovič A., Kouřil R. et al.: Alternative electron transport mediated by flavodiiron proteins is operational in organisms from cyanobacteria up to gymnosperms. - New Phytol. 214: 967-972, 2017. Go to original source...
  32. Jia H., Oguchi R., Hope A.B. et al.: Differential effects of severe water stress on linear and cyclic electron fluxes through photosystem I in spinach leaf discs in CO2-enriched air. - Planta 228: 803-812, 2008. Go to original source...
  33. Joët T., Genty B., Josse E.-M. et al.: Involvement of a plastid terminal oxidase in plastoquinone oxidation as evidence by expression of the Arabidopsis thaliana enzyme in tobacco. - J. Biol. Chem. 277: 31623-31630, 2002.
  34. Kautsky H., Appel W., Amann H.: [Chlorophyll fluorescence and carbon assimilation. Part XIII. The fluorescence and the photochemistry of plants.] - Biochem. Z. 332: 277-292, 1960. [In German]
  35. Ke B.: Photosynthesis: Photochemistry and Photobiophysics. Advances in Photosynthesis and Respiration, Vol. 10. Pp. 765. Springer, Dordrecht 2001.
  36. Kohzuma K., Cruz J.A., Akashi K. et al.: The long-term responses of the photosynthetic proton circuit to drought. - Plant Cell Environ. 32: 209-219, 2009. Go to original source...
  37. Kramer D.M., Sacksteder C.A., Cruz J.A.: How acidic is the lumen? - Photosynth. Res. 60: 151-163, 1999. Go to original source...
  38. Krause G.H., Weis E.: Chlorophyll fluorescence and photo-synthesis: The basics. - Annu. Rev. Plant Phys. 42: 313-349, 1991. Go to original source...
  39. Kruk J., Karpinski S.: An HPLC-based method of estimation of the total redox state of plastoquinone in chloroplasts, the size of the photochemically active plastoquinone-pool and its redox state in thylakoids of Arabidopsis. - BBA-Bioenergetics 1757: 1669-1675, 2006. Go to original source...
  40. Kurreck J., Schödel R., Renger G.: Investigation of the plasto-quinone pool size and fluorescence quenching in thylakoid membranes and photosystem II (PS II) membrane fragments. -Photosynth. Res. 63: 171-182, 2000. Go to original source...
  41. Lavergne J., Briantais J.-M.: Photosystem II heterogeneity. -In: Ort D.R., Yocum C.F., Heichel I.F. (ed.): Oxygenic Photo-synthesis: The Light Reactions. Advances in Photosynthesis and Respiration. Vol. 4. Pp. 265-287. Springer, Dordrecht 1996. Go to original source...
  42. Levitan O., Dinamarca J., Zelzion E. et al.: An RNA interference knock-down of nitrate reductase enhances lipid biosynthesis in the diatom Phaeodactylum tricornutum. - Plant J. 84: 963-973, 2015. Go to original source...
  43. Lu C., Zhang J.: Effect of water stress on photosystem II photochemistry and its thermostability in wheat plants. - J. Exp. Bot. 336: 1199-1206, 1999. Go to original source...
  44. Matsubara S., Chow W.S.: Populations of photoinactivated photosystem II reaction centers characterized by chlorophyll a fluorescence lifetime in vivo. - P. Natl. Acad. Sci. USA 101: 18234-18239, 2004. Go to original source...
  45. Melis A., Homann P.H.: Kinetic analysis of the fluorescence induction in 3-(3,4-dichlorophenyl)-1,1-dimethylurea poi-soned chloroplasts. - Photochem. Photobiol. 21: 431-437, 1975. Go to original source...
  46. Melis A., Homann P.H.: Heterogeneity of the photochemical centers in system II of chloroplasts. - Photochem. Photobiol. 23: 343-350, 1976. Go to original source...
  47. Munday J.C., Govindjee: Light-induced changes in the fluorescence yield of chlorophyll a in vivo. III. The dip and the peak in the fluorescence transient of Chlorella pyrenoidosa. - Biophys. J. 9: 1-21, 1969. Go to original source...
  48. Nagy V., Vidal-Meireles A., Podmaniczki A. et al.: The mechanism of photosystem-II inactivation during sulphur deprivation-induced H2 production in Chlamydomonas reinhardtii. - Plant J. 94: 548-561, 2018. Go to original source...
  49. Nagy V., Vidal-Meireles A., Tengölics R. et al.: Ascorbate accumulation during sulphur deprivation and its effects on photosystem II activity and H2 production of the green alga Chlamydomonas reinhardtii. - Plant Cell Environ. 39: 1460-1472, 2016. Go to original source...
  50. Neubauer C., Schreiber U.: The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination. I. Saturation characteristics and partial control by the photosystem II acceptor side. - Z. Naturforsch. 42c: 1246-1254, 1987. Go to original source...
  51. Oukarroum A., El Madidi S., Schansker G., Strasser R.J.: Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. - Environ. Exp. Bot. 60: 438-446, 2007. Go to original source...
  52. Oukarroum A., Schansker G., Strasser R.J.: Drought stress effects on photosystem I content and photosystem II thermotolerance analyzed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance. - Physiol. Plantarum 137: 188-199, 2009. Go to original source...
  53. Oukarroum A., Strasser R.J., Schansker G.: Heat stress and the photosynthetic electron transport chain of the lichen Parmelina tiliacea (Hoffm.) Ach. in the dry and the wet state: differences and similarities with the heat stress response of higher plants. - Photosynth. Res. 111: 303-314, 2012. Go to original source...
  54. Panković D., Sakač Z., Kevrešan S., Plesničar M.: Acclimation to long-term water deficit in the leaves of two sunflower hybrids: photosynthesis, electron transport and carbon metabolism. - J. Exp. Biol. 50: 127-138, 1999.
  55. Rees D., Noctor G., Ruban A.V. et al.: pH dependent chlorophyll fluorescence quenching in spinach thylakoids from light treated or dark adapted leaves. - Photosynth. Res. 31: 11-19, 1992. Go to original source...
  56. Ruban A.V.: Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. - Plant Physiol. 170: 1903-1916, 2016.
  57. Rutherford A.W., Crofts A.R., Inoue Y.: Thermoluminescence as a probe of photosystem II photochemistry. The origin of the flash-induced glow peaks. - BBA-Bioenergetics 682: 457-465, 1982. Go to original source...
  58. Saccardy K., Pineau B., Roche O., Cornic G.: Photochemical efficiency of photosystem II and xanthophyll cycle compo-nents in Zea mays leaves exposed to water stress and high light. - Photosynth. Res. 56: 57-66, 1998. Go to original source...
  59. Satoh K.: Fluorescence induction and activity of ferredoxin-NADP+ reductase in Bryopsis chloroplasts. - BBA-Bioenergetics 638: 327-333, 1981. Go to original source...
  60. Satoh K., Katoh S.: Light-induced changes in chlorophyll a fluorescence and cytochrome f in intact spinach chloroplasts: The site of light-dependent regulation of electron transport. - Plant Cell Physiol. 21: 907-916, 1980. Go to original source...
  61. Schansker G., Srivastava A., Govindjee, Strasser R.J.: Charac-terization of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. - Funct. Plant Biol. 30: 785-796, 2003. Go to original source...
  62. Schansker G., Strasser R.J.: Quantification of non-QB-reducing centers in leaves using a far-red pre-illumination. - Photosynth. Res. 84: 145-151, 2005. Go to original source...
  63. Schansker G., Tóth S.Z., Holzwarth A.R., Garab G.: Chloro-phyll a fluorescence: beyond the limits of the QA model. - Photosynth. Res. 120: 43-58, 2014. Go to original source...
  64. Schansker G., Tóth S.Z., Kovács L. et al.: Evidence for a fluorescence yield change driven by a light-induced conformational change within photosystem II during the fast chlorophyll a fluorescence rise. - BBA-Bioenergetics 1807: 1032-1043, 2011.
  65. Schansker G., Tóth S.Z., Strasser R.J.: Dark recovery of the Chl a fluorescence transient (OJIP) after light adaptation: The qT-component of non-photochemical quenching is related to an activated photosystem I acceptor side. - BBA-Bioenergetics 1757: 787-797, 2006. Go to original source...
  66. Schansker G., Tóth S.Z., Strasser R.J.: Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. - BBA-Bioenergetics 1706: 250-261, 2005. Go to original source...
  67. Schansker G., van Rensen J.J.S.: Performance of active photosystem II centers in photoinhibited pea leaves. - Photosynth. Res. 62: 175-184, 1999. Go to original source...
  68. Schansker G., Yuan Y., Strasser R.J.: Chl a fluorescence and 820 nm transmission changes occurring during a dark-to-light transition in pine needles and pea leaves: A comparison. -In: Allen J.F., Gantt E., Golbeck J.H., Osmond B. (ed.): Photosynthesis. Energy from the Sun. Pp. 945-949. Springer, Dordrecht 2008. Go to original source...
  69. Schreiber U., Klughammer C.: New NADPH/9-AA module for the DUAL-PAM-100: Description, operation and examples of application. - PAM Appl. Notes 2: 1-13, 2009.
  70. Strasser R.J., Schansker G., Srivastava A. et al.: Simultaneous measurement of photosystem I and photosystem II probed by modulated transmission at 820 nm and by chlorophyll a fluorescence in the sub ms to second time range. - In: Proceedings of the 12th International Congress on Photosynthesis, Brisbane. S14-003. CSIRO Publishing, 2001.
  71. Strasser R.J., Srivastava A., Tsimilli-Michael M.: Screening the vitality and photosynthetic activity of plants by the fluorescence transient. - In: Behl R.K., Punia M.S., Lather B.P.S. (ed.): Crop Improvement for Food Security. Pp. 72-115. SSARM, Hissar 1999.
  72. Strasser R.J., Stirbet A.D.: Estimation of the energetic connecti-vity of PS II centres in plants using the fluorescence rise O-J-I-P. Fitting of experimental data to three different PS II models. - Math. Comput. Simulat. 56: 451-461, 2001.
  73. Tian L., Dinc E., Croce R.: LHCII populations in different quenching states are present in the thylakoid membranes in a ration that depends on the light conditions. - J. Phys. Chem. Lett. 6: 2339-2344, 2015. Go to original source...
  74. Tikhonov A.N., Khomutov G.B., Ruuge E.K., Blumenfeld L.A.: Electron transport control in chloroplasts. Effects of photosynthetic control monitored by the intrathylakoid pH. - BBA-Bioenergetics 637: 321-333, 1981. Go to original source...
  75. Tikkanen M., Rantala S., Aro E.-M.: Electron flow from PSII to PSI under high light is controlled by PGR5 but not by psbS. - Front Plant Sci. 6: 521, 2015. Go to original source...
  76. Tóth S.Z., Nagy V., Puthur J.T. et al.: The physiological role of ascorbate as photosystem II electron donor: protection against photoinactivation in heat-stressed leaves. - Plant Physiol. 156: 382-392, 2011. Go to original source...
  77. Tóth S.Z., Puthur J.T., Nagy V., Garab G.: Experimental evidence for ascorbate-dependent electron transport in leaves with inactive oxygen-evolving complexes. - Plant Physiol. 149: 1568-1578, 2009. Go to original source...
  78. Tóth S.Z., Schansker G., Garab G., Strasser R.J.: Photosynthetic electron transport activity in heat-treated barley leaves: The role of internal alternative electron donors to photosystem II. -BBA-Bioenergetics 1767: 295-305, 2007a. Go to original source...
  79. Tóth S.Z., Schansker G., Kissimon J. et al.: Biophysical studies of photosystem II-related recovery processes after a heat pulse in barley seedlings (Hordeum vulgare L.). - J. Plant Physiol. 162: 181-194, 2005b. Go to original source...
  80. Tóth S.Z., Schansker G., Strasser R.J.: In intact leaves, the maximum fluorescence level (FM) is independent of the redox state of the plastoquinone pool: A DCMU-inhibition study. - BBA-Bioenergetics 1708: 275-282, 2005a. Go to original source...
  81. Tóth S.Z., Schansker G., Strasser R.J.: A non-invasive assay of the plastoquinone pool redox state based on the OJIP-transient. - Photosynth. Res. 93: 193-203, 2007b. Go to original source...
  82. Tóth S.Z., Strasser R.J.: The specific rate of QA reduction and photosystem II heterogeneity. - In: van der Est A., Bruce D. (ed.): Photosynthesis: Fundamental Aspects to Global Perspectives. Pp. 198-200. Allen Press, Montréal 2005.
  83. Trissl H.-W., Wilhelm C.: Why do thylakoid membranes from higher plants form grana stacks? - Trends Biochem. Sci. 18: 415-419, 1993. Go to original source...
  84. van Gorkom H.J.: Electron transfer in photosystem II. - Photosynth. Res. 6: 97-112, 1985. Go to original source...
  85. van Kooten O., Snel J.F.H.: The use of chlorophyll fluorescence nomenclature in plant stress physiology. - Photosynth. Res. 25: 147-150, 1990. Go to original source...
  86. van Wijk K.J., Krause G.H.: Oxygen dependence of photo-inhibition at low temperature in intact protoplasts of Valerianella locusta L. - Planta 186: 135-142, 1991. Go to original source...
  87. Velthuys B.R.: Electron-dependent competition between plasto-quinone and inhibitors for binding to photosystem II. - FEBS Lett. 126: 277-281, 1981. Go to original source...
  88. Velthuys B.R., Amesz J.: The effect of dithionite on fluorescence and luminescence of chloroplasts. - BBA-Bioenergetics 325: 126-137, 1973. Go to original source...
  89. Vernotte C., Etienne A.L., Briantais J.-M.: Quenching of the system II chlorophyll fluorescence by the plastoquinone pool. - BBA-Bioenergetics 545: 519-527, 1979. Go to original source...
  90. Vredenberg W.J., Bulychev A.: Photoelectric effects on chloro-phyll fluorescence of photosystem II in vivo; Kinetics in the absence and presence of valinomycin. - Bioelectrochemistry 60: 87-95, 2003. Go to original source...
  91. Wagner H., Jakob T., Lavaud J., Wilhelm C.: Photosystem II cycle activity and alternative electron transport in the diatom Phaeodactylum tricornutum under dynamic light conditions and nitrogen limitation. - Photosynth. Res. 128: 151-161, 2016. Go to original source...
  92. Wraight C.A.: Oxidation-reduction physical chemistry of the acceptor quinone complex in bacterial photosynthetic reaction centers: Evidence for a new model of herbicide activity. - Israel J. Chem. 21: 348-354, 1981. Go to original source...
  93. Wunder T., Liu Q., Aseeva E. et al.: Control of STN7 transctipt abundance and transient STN7 dimerisation are involved in the regulation of STN7 activity. - Planta 237: 541-558, 2013. Go to original source...
  94. Yoshida K., Watanabe C., Kato Y. et al.: Influence of chloroplastic photo-oxidative stress on mitochondrial alternative oxidase capacity and respiratory properties: a case study with Arabidopsis yellow variegated 2. - Plant Cell Physiol. 49: 592-603, 2008. Go to original source...