Photosynthetica, 2015 (vol. 53), issue 2

Photosynthetica 2015, 53(2):231-240 | DOI: 10.1007/s11099-015-0089-2

Heliotropic leaf movement of Sophora alopecuroides L.: An efficient strategy to optimise photochemical performance

C. G. Zhu1,*, Y. N. Chen1,*, W. H. Li1, X. L. Chen2, G. Z. He2
1 State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
2 Xinjiang Agricultural University, Urumqi, Xinjiang, China

We studied the survival adaptation strategy of Sophora alopecuroides L. to habitat conditions in an arid desert riparian ecosystem. We examined the responses of heliotropic leaf movement to light conditions and their effects on plant photochemical performance. S. alopecuroides leaves did not show any observable nyctinastic movement but they presented sensitive diaheliotropic and paraheliotropic leaf movement in the forenoon and at midday. Solar radiation was a major factor inducing leaf movement, in addition, air temperature and vapour pressure deficit could also influence the heliotropic leaf movement in the afternoon. Both diaheliotropic leaf movement in the forenoon and paraheliotropic leaf movement at midday could help maintain higher photochemical efficiency and capability of light utilisation than fixed leaves. Paraheliotropic leaf movement at midday helped plants maintain a potentially higher photosynthetic capability and relieve a risk of photoinhibition. Our findings indicated the effective adaptation strategy of S. alopecuroides to high light, high temperature, and dry conditions in arid regions. This strategy can optimise the leaf energy balance and photochemical performance and ensure photosystem II function.

Keywords: electron transport rate; energy dissipation; leaf tilt angle; nonphotochemical quenching; petiole angle; photosynthesis; quantum yield; trichome

Received: November 26, 2013; Accepted: June 30, 2014; Published: June 1, 2015Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Zhu, C.G., Chen, Y.N., Li, W.H., Chen, X.L., & He, G.Z. (2015). Heliotropic leaf movement of Sophora alopecuroides L.: An efficient strategy to optimise photochemical performance. Photosynthetica53(2), 231-240. doi: 10.1007/s11099-015-0089-2.
Download citation

References

  1. Arena C., Vitale L., De Santo A.V.: Paraheliotropism in Robinia pseudocacia L.: an efficient strategy to optimise photosynthetic performance under natural environmental conditions. - Plant Biol. 10: 194-201, 2008. Go to original source...
  2. Atta-ur-Rahman A., Choudhary M.I., Parvez K. et al.: Quinolizidine alkaloids from Sophora alopecuroides. - J. Nat. Prod. 63: 190-192, 2000. Go to original source...
  3. Babani F., Lichtenthaler H.K.: Light-induced and age-dependent development of chloroplasts in etiolated barley leaves as visualized by determination of photosynthetic pigments, CO2 assimilation rates and different kinds of chlorophyll fluorescence ratios. - J. Plant Physiol. 148: 555-566, 1996. Go to original source...
  4. Barker D.H., Adams III W.W.: The xanthophyll cycle and energy dissipation in differently oriented faces of the cactus Opuntia macrorhiza. - Oecologia 109: 353-361, 1997. Go to original source...
  5. Berg V.S., Heuchelin S.: Leaf orientation of soybean seedlings. I. Effect of water potential and photosynthetic photon flux density on paraheliotropism. - Crop Sci. 30: 631-638, 1990. Go to original source...
  6. Berg V.S., Hsiao T.C.: Solar tracking light avoidance induced by water stress in leaves of kidney bean seedlings in the field. - Crop Sci. 26: 980-986, 1986. Go to original source...
  7. Bielenberg D.G., Miller J.D., Berg V.S.: Paraheliotropism in two Phaseolus species: combined effects of photon flux density and pulvinus temperature, and consequences for leaf gas exchange. - Environ. Exp. Bot. 49: 95-105, 2003. Go to original source...
  8. Bilger W., Björkman O.: Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. - Photosynth. Res. 25: 173-185, 1990. Go to original source...
  9. Caldas L.S., Lüttge U., Franco A.C., Haridasan M.: Leaf heliotropism in Pterodon pubescens, a woody legume from the brasilian cerrado. - Rev. Bras. Fisiol. Veg. 9: 1-7, 1997.
  10. Demmig-Adams B., Adams, III W.W., Barker D.H. et al.: Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. - Physiol. Plantarum 98: 253-264, 1996. Go to original source...
  11. Ehleringer J.R., Forseth I.N.: Solar tracking by plants. - Science 210: 1094-1098, 1980. Go to original source...
  12. Fu Q.A., Ehleringer J.R.: Heliotropic leaf movements in common beans controlled by air temperature. - Plant Physiol. 91: 1162-1167, 1989. Go to original source...
  13. Fu Q.A., Ehleringer J.R.: Crop physiology and metabolism: Paraheliotropic leaf movements in common bean under different soil nutrient levels. - Crop Sci. 32: 1192-1196, 1992. Go to original source...
  14. Genty B., Briantais J.M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. - Biochim. Biophys. Acta 990: 87-92, 1989. Go to original source...
  15. Greer D.H., Laing W.A., Woolley D.H.: The effect of chloramphenicol on photoinhibition of photosynthesis and its recovery in intact kiwifruit (Actinidia deliciosa) leaves. - Aust. J. Plant Physiol. 20: 33-43, 1993. Go to original source...
  16. Guo Q.L., Feng Q., Li J.L.: Environmental changes after ecological water conveyance in the lower reaches of Heihe River, northwest China. - Environ. Geol. 58: 1387-1396, 2009. Go to original source...
  17. Habermann G., Ellsworth P.F.V., Cazoto J.L. et al.: Leaf paraheliotropism in Styrax camporum confers increased light use efficiency and advantageous photosynthetic responses rather than photoprotection. - Environ. Exp. Bot. 71: 10-17, 2011. Go to original source...
  18. Habermann G., Machado S.R., Guimarães V.F., Rodrigues J.D.: Leaf heliotropism in Styrax camporum Pohl from the Brazilian cerrado - distinct gas exchange and leaf structure, but similar leaf temperature and water relations. - Braz. J. Plant Physiol. 20: 71-83, 2008. Go to original source...
  19. Herbert T.J.: A latitudinal cline in leaf inclination of Dryas octopetala and implications for maximization of whole plant photosynthesis. - Photosynthetica 41: 631-633, 2003. Go to original source...
  20. Ji X.B., Kang E.S., Chen R.S. et al.: The impact of the development of water resources on environment in arid inland river basins of Hexi region, Northwestern China. - Environ. Geol. 50: 793-801, 2006. Go to original source...
  21. Jiang C.D., Gao H.Y., Zou Q. et al.: Leaf orientation, photorespiration and xanthophyll cycle protect young soybean leaves against high irradiance in field. - Environ. Exp. Bot. 55: 87-96, 2006. Go to original source...
  22. Jurik T.W., Akey W.C.: Solar-tracking leaf movements in velvetleaf (Abutilon theophrasti). - Plant Ecol. 112: 93-99, 1994. Go to original source...
  23. Kao W.Y., Forseth I.N.: Diurnal leaf movement, chlorophyll fluorescence and carbon assimilation in soybean grown under different nitrogen and water availabilities. - Plant Cell Environ. 15: 7037-7043, 1992. Go to original source...
  24. Kato E., Nagano H., Yamamura S., Ueda M.: Synthetic inhibitor of leaf-closure that reveals the biological importance of leaf movement for the survival of leguminous plants. - Tetrahedron 59: 5909-5917, 2003. Go to original source...
  25. Koller D.: The control of leaf orientation by light. - Photochem. Photobiol. 44: 819-826, 1986. Go to original source...
  26. Koller D.: Light-driven leaf movements. - Plant Cell Environ. 13: 615-632, 1990. Go to original source...
  27. Liu C.C., Welham C.V.J., Zhang X.Q., Wang R.Q.: Leaflet movement of Robinia pseudoacacia in response to a changing light environment. - J. Integr. Plant Biol. 49: 419-424, 2007. Go to original source...
  28. Liu L.X., Xu S.M., Woo K.C.: Influence of leaf angle on photosynthesis and the xanthophyll cycle in the tropical tree species Acacia crassicarpa. - Tree Physiol. 23: 1255-1261, 2003. Go to original source...
  29. Long S.P., Humphries S., Falkowski P.G.: Photoinhibition of photosynthesis in nature. - Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 633-662, 1994. Go to original source...
  30. Minoru U., Takanori S., Yoshiyuki S., Shosuke Y.: The biological significance of leaf-movement, an approach using a synthetic inhibitor of leaf-closure. - Tetrahedron Lett. 43: 7545-7548, 2002.
  31. Murata N., Takahashi S., Nishiyama Y., Allakhverdiev S.I.: Photoinhibition of photosystem II under environmental stress. - Biochim. Biophys. Acta 1767: 414-421, 2007. Go to original source...
  32. Müller P., Li X.P., Niyogi K.K.: Non-photochemical quenching: A response to excess light energy. - Plant Physiol. 125 1558-1566, 2001. Go to original source...
  33. Oxborough K., Baker N.R.: Resolving chlorophyll fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components - calculation of qP and Fv/Fm without measuring Fo'. - Photosynth. Res. 54: 135-142, 1997. Go to original source...
  34. Pastenes C., Pimentel P., Lillo J.: Leaf movements and photoinhibition in relation to water stress in field-grown beans. - J. Exp. Bot. 56: 425-433, 2005.
  35. Powles S.B., Berry J.A., Björkman O.: Interaction between light and chilling temperature on the inhibition of photosynthesis in chilling sensitive plants. - Plant Cell Environ. 6: 117-23, 1983. Go to original source...
  36. Proietti P., Palliotti A.: Contribution of adaxial and abaxial surfaces of olive leaves to photosynthesis. - Photosynthetica 33: 63-69, 1997. Go to original source...
  37. Pu Q.L., Li Y., Yang J.: [Study on mass spectra of alkaloids from Sophora alopecuroides L.] - Acta Pharm. Sin. 22: 438-44, 1987. [In Chinese]
  38. Richards R.A., Rawson H.M., Johnson D.A.: Glaucousness in wheat: its development and effect on water-use efficiency, gas exchange and photosynthetic tissue temperatures. - Aust. J. Plant Physiol. 13: 465-473, 1986. Go to original source...
  39. Roháček K.: Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. - Photosynthetica 40: 13-29, 2002. Go to original source...
  40. Rosa L.M., Forseth I.N.: Diurnal patterns of soybean leaf inclination angles and azimuthal orientation under different levels of ultraviolet B radiation. - Agr. Forest Meteorol. 78: 107-119, 1995.
  41. Schreiber U.: Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. - In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Pp. 279-319. Springer, Netherlands 2004. Go to original source...
  42. Schreiber U., Schliwa U., Bilger W.: Continuous recording of photochemical and non-photochemical fluorescence quenching with a new type of modulation fluorometer. - Photosynth. Res. 10: 51-62, 1986. Go to original source...
  43. Siam A.M.J., Radoglou K.M., Noitsakis B.: Physiological and growth responses of three Mediterranean oak species to different water availability regimes. - J. Arid Environ. 72: 583-592, 2008. Go to original source...
  44. Smith H.: Plants that track the sun. - Nature 308: 774-774, 1984. Go to original source...
  45. Takahashi S., Murata N.: Glycerate-3-phosphate, produced by CO2 fixation in the Calvin cycle, is critical for the synthesis of the D1 protein of photosystem II. - Biochim. Biophys. Acta 1757:198-205, 2006. Go to original source...
  46. Takahashi S., Murata N.: How do environmental stresses accelerate photoinhibition? - Trends Plant Sci. 13: 178-182, 2008. Go to original source...
  47. Ueda M., Nakamura Y.: Chemical basis of plant leaf movement. - Plant Cell Physiol. 48: 900-907, 2007. Go to original source...
  48. Wang G.X., Cheng G.D.: Water resource development and its influence on the environment in arid areas of China - the case of the Hei River basin. - J. Arid Environ. 43: 121-131, 1999.
  49. Wang H.Y.; Li Y.X.; Dun L.L. et al.: Antinociceptive effects of matrine on neuropathic pain induced by chronic constriction injury. - Pharm. Biol. 51: 844-850, 2013.
  50. Yu F., Berg V.S.: Control of paraheliotropism in two Phaseolus species. - Plant Physiol. 106: 1567-1573, 1994. Go to original source...
  51. Yu T.F., Wang J., Bian L., Zhu H.Z.: [Effect of total alkaloids of kudouzi (Sophora alopecuroides L.) on tolerance to anoxia in mice.] - China J. Chin. Mat. Med. 18: 500-502, 511, 1993. [In Chinese]
  52. Zhang S.R., Gao R.F.: Light induces leaf orientation and chloroplast movements of hybrid poplar clones. - Acta Ecol. Sin. 21: 68-74, 2001.
  53. Zhang S.R., Ma K.P., Chen L.Z.: Photosynthetic gas exchange and leaflet movement of Robinia pseudoacacia in relation to changing light environments. - Acta Bot. Sin. 44: 858-863, 2002.
  54. Zhang Y.C., Yu J.G., Wang P., Fu G.B.: Vegetation responses to integrated water management in the Ejina basin, northwest China. - Hydrol. Process. 25: 3448-3461, 2011. Go to original source...
  55. Zhang Y.J., Feng Y.L., Feng Z.L., Cao K.F.: Morphological and physiological acclimation to growth light intensities in Pometica tomentosa. - J. Plant Physiol. Mol. Biol. 29: 206-214, 2003.
  56. Zhang Y.L., Zhang G.Y., Feng J.S., Zhang W.F.: Leaf diaheliotropic movement can improve carbon gain and water use efficiency and not intensify photoinhibition in upland cotton (Gossypium hirsutum L.). - Photosynthetica 47: 609-615, 2009. Go to original source...