Photosynthetica, 2014 (vol. 52), issue 1

Photosynthetica 2014, 52(1):134-147 | DOI: 10.1007/s11099-014-0015-z

Growth, photosynthesis and ion balance of sesame (Sesamum indicum L.) genotypes in response to NaCl concentration in hydroponic solutions

A. H. Bazrafshan1, P. Ehsanzadeh1,*
1 College of Agriculture, Department of Agronomy and Plant Breeding, Isfahan University of Technology, Isfahan, Iran

A hydroponic, greenhouse experiment was conducted to assess the effects of NaCl on growth, gas-exchange parameters, chlorophyll (Chl) content, and ion distribution in seven sesame (Sesamum indicum L.) genotypes (Ardestan, Varamin, Naz-Takshakhe, Naz-Chandshakhe, Oltan, Yekta, Darab). The plants were grown in 4-L containers and subjected to varying levels of salinity (0, 30, and 60 mM NaCl). After 42 days, salt treatments induced decreases of plant fresh and dry mass, total leaf area, and plant height in all genotypes. Increasing NaCl concentration caused significant, genotypedependent decrease in the net photosynthetic rate, stomatal conductance, Chl content, and maximum quantum efficiency of photosystem II, while it increased the intercellular CO2 concentration. Based on the dry matter accumulation under salinity, the genotypes were categorized in two groups, i.e., salt-tolerant and salt-sensitive. The impact of salt on plant ion concentrations differed significantly among the sesame genotypes and between both two groups. The plant Na+ concentrations were significantly lower in Ardestan, Darab, and Varamin genotypes than those found in the remaining genotypes. The highest plant K+ and Ca2+ concentrations together with the lowest Na+/K+ and Na+/Ca2+ ratios were observed in Ardestan, Varamin, and Darab genotypes. Our results indicated the presence of differences in salt response among seven sesame genotypes. It suggested that growth and photosynthesis could depend on ion concentrations and ratios in sesame.

Keywords: chlorophyll fluorescence; gas exchange; potassium; salinity; sodium

Received: February 13, 2013; Accepted: October 18, 2013; Published: March 1, 2014Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Bazrafshan, A.H., & Ehsanzadeh, P. (2014). Growth, photosynthesis and ion balance of sesame (Sesamum indicum L.) genotypes in response to NaCl concentration in hydroponic solutions. Photosynthetica52(1), 134-147. doi: 10.1007/s11099-014-0015-z.
Download citation

References

  1. Anilakumar, K.R., Pal, A., Khanum, F., Bawas, A.S.: Nutritional, medicinal and industrial uses of sesame (Sesamum indicum L.) seeds. - Agric. Conspec. Sci. 75: 159-168, 2010.
  2. Arnon, D.I.: Copper enzymes in isolated chloroplast polyphenoloxidase in Beta vulgaris. - Plant Physiol. 24: 1-15, 1949. Go to original source...
  3. Ashraf, M., Harris, P.J.C.: Potential biochemical indicators of salinity tolerance in plants. - Plant Sci. 166: 3-16, 2004. Go to original source...
  4. Azizpour, K., Shakiba, M.R., Khos Kholgh, S.N.A. et al.: Physiological response of spring durum wheat genotypes to salinity. - J. Plant Nutr. 33: 859-873, 2010. Go to original source...
  5. Bedigian, D.: Evolution of sesame revisited: domestication, diversity and prospects. - Genet. Resour. Crop Ev. 50: 779-787, 2003.
  6. Blum, A.: Plant Breeding for Stress Environments. 223 pp. CRC Press, Boca Raton, Fla, 1988.
  7. Chapman, H.D., Pratt, P.F.: Methods of Analysis for Soils, Plants, and Water. 309 pp. Chapman Press, Riverside, CA, USA, 1961.
  8. Chen, T.H., Murata, N.: Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. - Curr. Opin. Plant Biol. 5: 250-257, 2002. Go to original source...
  9. Debez, A., Ben Hamed, K., Grignon, C., Abdelly, C.: Salinity effects on germination, growth, and seed production of the halophyte Cakile maritima. - Plant Soil 262: 179-189, 2004. Go to original source...
  10. Delgado, I.C., Sánchez-Raya, A.J.: Physiological response of sunflower seedlings to salinity and potassium supply. - Commun. Soil Sci. Plan. 30: 773-783, 1999. Go to original source...
  11. Desingh, R., Kanagaraj, G.: Influence of salinity stress on photosynthesis and antioxidative systems in two cotton varieties. - Gen. Appl. Plant Physiol. 33: 221-234, 2007.
  12. Downton, W.J.S.: Photosynthesis in salt-stressed grapevines. - Aus. J. Plant Physiol 4: 183-192, 1977.
  13. Ehsanzadeh, P., Nekoonam, M.S., Noori-Azhar, J. N., Pourhadian, H., Shaydaee, S.: Growth, chlorophyll, and cation concentration of tetraploid wheat on a solution high in sodium chloride salt: Hulled versus free-threshing genotypes. - J. Plant Nutr. 32: 58-70, 2009. Go to original source...
  14. FAOSTAT.: Major food and agricultural commodities and producers. United Nation's Food and Agriculture Organization, Statistical Information. Available at http://www.fao.org/es/ess/top/country.html, 2010.
  15. García-Legaz, M.F., Ortiz, J.M., García-Lidón, A., Cerdá, A.: Effect of salinity on growth, ion content and CO2 assimilation rate in lemon varieties on different rootstocks. - Physiol. Plantarum 89: 427-432, 1993. Go to original source...
  16. García-Sánchez, F., Jifon, J.L., Carvajal, M., Syvertsen, J.P.: Gas exchange, chlorophyll and nutrient contents in relation to Na+ and Cl- accumulation in 'sunburst' mandarin grafted on different rootstocks. - Plant Sci. 162: 705-712, 2002. Go to original source...
  17. Gehlot, H. S., Purohit, A., Shekhawat, N. S.: Metabolic changes and protein patterns associated with adaptation to salinity in Sesamum indicum cultivars. - J. Cell. Mol. Biol. 4: 31-39, 2005.
  18. Genc, Y., McDonald, G.K., Tester, M.: Reassessment of tissue Na+ concentration as a criterion for salinity tolerance in bread wheat. - Plant Cell Environ. 30: 1486-1498, 2007. Go to original source...
  19. Greenway, H., Munns, R.: Mechanisms of salt tolerance in nonhalophytes. - Annu. Rev. Plant Phys. 31: 149-190, 1980. Go to original source...
  20. Gucci, R., Tattini, M.: Salinity tolerance in olive. - Hortic. Rev. 21: 177-214, 2010.
  21. Hoagland, D.R., Arnon, D.S.: The water culture method for growing plants without soil. - Calif. Agric. Exp. Stat. Circ. 347: 1-32, 1950.
  22. Kaymakanova, M., Stoeva, N.: Physiological reaction of bean plants (Phaseolus vulgaris. L.) to salt stress. - Gen. Appl. Plant Physiol. 34: 3-4, 2008.
  23. Koca, H., Bor, M., Ozdemir, F., Turkan, I.: The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. - Env. Exp. Bot. 60: 344-351, 2007. Go to original source...
  24. Li, G., Wan, S., Zhou, J., Yang, Z., Qin, P.: Leaf chlorophyll fluorescence, hyperspectral reflectance, pigments content, malondialdehyde and proline accumulation responses of castor bean (Ricinus communis L.) seedlings to salt stress levels. - Ind. Crop Prod. 31: 13-19, 2010. Go to original source...
  25. Lloyd, J., Kriedemann, P.E., Aspinall, D.: Contrasts between citrus species in response to salinisation: An analysis of photosynthesis and water relations for different rootstock-scion combinations. - Physiol. Plantarum 78: 236-246, 1990. Go to original source...
  26. Masojidek, J., Hall, D.O.: Salinity and drought stresses are amplified by high irradiance in sorghum. - Photosynthetica 27: 159-171, 1992.
  27. Misra, N., Dwivedi, U.N.: Genotypic difference in salinity tolerance of green gram cultivars. - Plant Sci. 166: 1135-1142, 2004. Go to original source...
  28. Morales, S.G., Trejo-Téllez, L.I., Gómez Merino, F. C., Caldana, C., Espinosa-Victoria, D., Herrera Cabrera, B. E.: Growth, photosynthetic activity, and potassium and sodium concentration in rice plants under salt stress. - Acta Sci-Agron. 34: 317-324, 2012 Go to original source...
  29. Munns, R.: Comparative physiology of salt and water stress. - Plant Cell Environ. 25: 239-250, 2002. Go to original source...
  30. Munns, R.: Genes and salt tolerance: bringing them together. - New Phytol. 167: 645-663, 2005. Go to original source...
  31. Munns, R., Termaat, A.: Whole-plant responses to salinity. - Aust. J. Plant Physiol. 13:143-160, 1986. Go to original source...
  32. Munns, R., Tester, M.: Mechanisms of salinity tolerance. - Annu. Rev. Plant Biol. 59: 651-681, 2008. Go to original source...
  33. Netondo, G.W., Onyango, J.C., Beck, E.: Sorghum and salinity. - Crop Sci. 44: 797-805, 2004 Go to original source...
  34. Parvaiz, A., Satyawati, S.: Salt stress and phyto-biochemical responses of plants - a review. - Plant Soil Environ. 54: 89-99, 2008. Go to original source...
  35. Rao, G.G., Rao, G.R.: Pigment composition and chlorophyllase activity in pigeon pea (Cajanus indicus Spreng) and Gingelley Sesamum indicum L.) under NaCl salinity. - Indian J. Exp. Biol. 19: 768-770, 1981.
  36. Rivelli, A.R., De Maria, S., Pizza, S., Gherbin, P.: Growth and physiological response of hydroponically-grown sunflower as affected by salinity and magnesium levels. - J. Plant Nutr. 33: 1307-1323, 2010. Go to original source...
  37. Sairam, R.K., Rao, K.V., Srivastava, G.C.: Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. - Plant Sci. 163: 1037-1046, 2002. Go to original source...
  38. Sankar, D., Rao, M.R., Sambandam, G., Pugalendi, K. V.: Effect of sesame oil on diuretics or beta-blockers in the modulation of blood pressure, anthropometry, lipid profile, and redox status. - Yale. J. Biol. Med. 79: 19-26, 2006.
  39. Santos, C.V.: Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. - Sci. Hortic. 103: 93-99, 2004. Go to original source...
  40. Sayed, O.H.: Chlorophyll fluorescence as a tool in cereal crop research. - Photosynthetica 41: 321-330, 2003. Go to original source...
  41. Seemann, J. R., Critchley, C.: Effects of salt stress on the growth, ion content, stomatal behaviour and photosynthetic capacity of a salt-sensitive species, Phaseolus vulgaris L. - Planta 164: 151-162, 1985. Go to original source...
  42. Singh, A.K, Dubey, R.S.: Changes in chlorophyll a and b contents and activities of photosystems I and II in rice seedlings induced by NaCl. - Photosynthetica 31: 489-499, 1995.
  43. Soussi, M., Ocana, A., Lluch, C.: Growth, nitrogen fixation and ion accumulation in two chickpea cultivars under salt stress. - Agricolt. Mediterr. 130: 1-8, 2001.
  44. Tejera, N.A, Soussi, M., Lluch, C.: Physiological and nutritional indicators of tolerance to salinity in chickpea plants growing under symbiotic conditions. - Environ. Exp. Bot. 58: 17-24, 2006. Go to original source...
  45. Turan, M.A., Elkarim, A.H.A., Taban, N., Taban, S.: Effect of salt stress on growth, stomatal resistance, proline and chlorophyll concentrations on maize plant. - Afr. J. Agr. Res. 4: 893-897, 2009.
  46. Turkan, I., Demiral, T.: Recent developments in understanding salinity tolerance. - Env. Exp. Bot. 67: 2-9, 2009. Go to original source...
  47. Uzun, B., Ulger, S., Cagirgan, M.I.: Comparison of determinate and indeterminate types of sesame for oil content and fatty acid composition. - Turk. J. Agric. For. 26: 269-274, 2002.
  48. Were, B.A., Gudu, S., Onkware, A.O., Carlsson, A.S., Welander, M.: In vitro regeneration of sesame (Sesamum indicum L.) from seedling cotyledon and hypocotyl explants. - Plant Cell Tiss. Org. 85: 235-239, 2006. Go to original source...
  49. Winicov, I.: New molecular approaches to improving salt tolerance in crop plants. - Ann. Bot. 82: 703-710, 1998. Go to original source...
  50. Yahya, A.: Salinity effects on growth and on uptake and distribution of sodium and some essential mineral nutrients in sesame. - J. Plant Nutr. 21: 1439-1451, 1998. Go to original source...
  51. Yahya, A.: Selectivity and partitioning of potassium and sodium in sesame. - J. Plant Nutr. 33: 670-683, 2010. Go to original source...