Photosynthetica, 2012 (vol. 50), issue 4

Photosynthetica 2012, 50(4):602-612 | DOI: 10.1007/s11099-012-0072-0

Ascorbate plays a key role in alleviating low temperature-induced oxidative stress in Arabidopsis

L. Y. Wang1,2, Q. Y. Zhang1, F. Wang1, X. Meng1, Q. W. Meng1,*
1 College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, P.R. China
2 Department of Biology, Dezhou University, Dezhou, Shandong, P.R. China

Low temperature has a negative impact on plant cells and results in the generation of reactive oxygen species (ROS). In order to study the role of ascorbate under chilling stress, the response of an ascorbate-deficient Arabidopsis thaliana mutant vtc2-1 to low temperature (2°C) was investigated. After chilling stress, vtc2-1 mutants exhibited oxidative damage. An increase in the H2O2 generation and the production of thiobarbituric acid reactive substances (TBARS), and a decrease in chlorophyll content, the maximal photochemical efficiency of PSII (Fv/Fm) and oxidizable P700 were also noted. The ratio of ascorbate/dehydroascorbate and reduced glutathione/oxidzed glutathione in the vtc2-1 mutants were reduced, compared with the wild type (WT) plants. The activities of antioxidant enzymes, such as catalase (CAT) and ascorbate peroxidase (APX), and soluble antioxidants were lower in the vtc2-1 mutants than those in WT plants. These results suggested that the ascorbate-deficient mutant vtc2-1 was more sensitive to chilling treatment than WT plants. The low temperature-induced oxidative stress was the major cause of the decrease of PSII and PSI function in the vtc2-1 mutants. Ascorbate plays a critical role of defense without which the rest of the ROS defense network is unable to react effectively.

Keywords: Arabidopsis thaliana; ascorbate; chilling stress; photoinhibition; reactive oxygen species

Received: October 2, 2011; Accepted: August 20, 2012; Published: December 1, 2012Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Wang, L.Y., Zhang, Q.Y., Wang, F., Meng, X., & Meng, Q.W. (2012). Ascorbate plays a key role in alleviating low temperature-induced oxidative stress in Arabidopsis. Photosynthetica50(4), 602-612. doi: 10.1007/s11099-012-0072-0.
Download citation

References

  1. Aebi, H. Catalase in vitro. - Methods Enzymol. 105: 121-126, 1984. Go to original source...
  2. Agius, F., Gonzalez-Lamothe, R., Caballero, J.L. et al.: Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. - Nature Biotechnol. 21: 177-181, 2003. Go to original source...
  3. Anderson, J.V., Chevone, B., Hess, J.L.: Seasonal variation in the antioxidant system of eastern white pine needles. - Plant Physiol. 98: 501-508, 1992. Go to original source...
  4. Arrigoni, O., De, Tullio, M.C.: Ascorbic acid: much more than just an antioxidant. - Biochim. Biophys. Acta. 1569: 1-9, 2002. Go to original source...
  5. Asada, K.: The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. - Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 601-639, 1998.
  6. Barth, C., Moeder, W., Klessig, D.F. Conklin, P.L.: The timing of senescence and response to pathogens is altered in the ascorbate-deficient Arabidopsis mutant vitamin c-1. - Plant Physiol. 134: 1784-1792, 2004. Go to original source...
  7. Barth, C., Tullio, M. D., Conklin, P. L.: The role of ascorbic acid in the control of flowering time and the onset of senescence. - J. Exp. Bot. 57: 1657-1665, 2006. Go to original source...
  8. Chen, Z., Gallie, D.R.: Dehydroascorbate reductase affects leaf growth, development and function. - Plant Physiol. 142: 775-787, 2006. Go to original source...
  9. Conklin, P.L.: Recent advances in the role and biosynthesis of ascorbic acid in plants. - Plant Cell Environ. 24: 383-394, 2001. Go to original source...
  10. Conklin, P.L., Barth, C.: Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence. - Plant Cell Environ. 27: 959-970, 2004. Go to original source...
  11. Conklin, P.L., Saracco, S.A., Norris S.R., Last, R.L.: Identification of ascorbic acid-deficient Arabidopsis thaliana mutants. - Genetics 154: 847-856, 2000.
  12. Conklin, P.L., Williams, E.H., Last, R.L.: Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. - Proc. Nat. Acad. Sci. USA 93: 9970-9974, 1996. Go to original source...
  13. Dowdle, J., Ishikawa, T., Gatzek, S., Rolinski, S., Smirnoff, N.: Two genes in Arabidopsis thaliana encoding GDP-L-galac tose phosphorylase are required for ascorbate biosynthesis and seedling viability. - Plant J. 52: 673-685, 2007. Go to original source...
  14. Eskling, M., Åkerlund, H.E.: Changes in the quantities of violaxanthin de-epoxidase, xanthophylls and ascorbate in spinach upon shift from low to high light. - Photosynth. Res. 57: 41-50, 1998. Go to original source...
  15. Foyer, C.H., Descourvieres, P. Kunert K.J.: Protection against oxygen radicals: an important defence mechanism studied in transgenic plants. - Plant Cell Environ. 17: 507-523, 1994. Go to original source...
  16. Foyer, C.H., Lelandais, M.: A comparison of the relative rates of transport of ascorbate and glucose across the thylakoid, chloroplast and plasma membranes of pea leaf mesophyll cells. - J. Plant Physiol. 148: 391-398, 1996. Go to original source...
  17. Foyer, C.H, Noctor, G.: Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. - Plant Cell 17: 1866-1875, 2005.
  18. Gao, Q., Zhang, L.X.: Ultraviolet-B-induced oxidative stress and antioxidant defense system responses in ascorbatedeficient vtc1 mutants of Arabidopsis thaliana. - J. Plant Physiol. 165: 138-148, 2008. Go to original source...
  19. Giannopolitis, C.N., Ries, S.K.: Superoxide dismutases: I. Occurrence in higher plants. - Plant Physiol. 59: 309-314, 1977. Go to original source...
  20. Grace, S.C., Logan, B.A.: Acclimation of foliar antioxidant systems to growth irradiance in three broad-leaved evergreen species. - Plant Physiol. 112: 1631-1640, 1996. Go to original source...
  21. Huang, C.H., He, W.L., Guo, J.K., Chang, X.X., Su, P.X., Zhang, L.X.: Increased sensitivity to salt stress in an ascorbate-deficient Arabidopsis mutant. - J. Exp. Bot. 56: 3041-3049, 2005. Go to original source...
  22. Hückelhoven, R., Fodor, J., Trujillo, M., Kogel, K.H.: Barley Mla and Rar mutants compromised in the hypersensitive cell death response against Blumeria graminis f. sp Hordei are modified in their ability to accumulate reactive oxygen intermediates at sites of fungal invasion. - Planta 212: 16-24, 2000.
  23. Ishikawa, T., Shigeoka, S.: Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. - Biosci. Biotechnol. Biochem. 72: 1143-1154, 2008. Go to original source...
  24. Jander, G., Norris, S.R., Rounsley, S.D., Bush, D.F., Levin, I.M., Last, R.L.: Arabidopsis map-based cloning in the postgenome era. - Plant Physiol. 129: 440-450, 2002. Go to original source...
  25. Kampfenkel, K., Van M.M., Inzé D.: Extraction and determination of ascorbate and dehydroascorbate from plant tissue. - Anal. Biochem. 225: 165-167, 1995. Go to original source...
  26. Kotchoni, S.O., Larrimore, K.E., Mukherjee, M., Kempinski, C.F., Barth, C.: Alterations in the endogenous ascorbic acid content affect flowering time in Arabidopsis. - Plant Physiol. 149: 803-815, 2008. Go to original source...
  27. Kwon, S.Y., Jeong, Y.J., Lee, H.S. et al.: Enhanced tolerance of transgenic tobacco plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against methyl viologen mediated oxidative stress. - Plant Cell Environ. 25: 873-882, 2002. Go to original source...
  28. Laing, W.A., Wright, M. A., Cooney J., Bulley, S.M.: The missing step of the L-galactose pathway of ascorbate biosynthesis in plants, an L-galactose guanyltransferase, increases leaf ascorbate content. - Proc. Nat. Acad. Sci. USA 104: 9534-9539, 2007. Go to original source...
  29. Li, X.G., Duan, W., Meng, Q.W., Zou, Q., Zhao, S.J.: The function of chloroplastic NAD(P)H dehydrogenase in tobacco during chilling stress under low irradiance. - Plant Cell Physiol. 45: 103-108, 2004. Go to original source...
  30. Linster, C.L., Gomez, T.A., Christensen, K.C., Adler, L.N., Young, B.D., Brenner C., Clarke, S.G.: Arabidopsis VTC2 encodes a GDP-L-galactose phosphorylase, the last unknown enzyme in the Smirnoff-Wheeler pathway to ascorbic acid in plants. - J. Biol. Chem. 282: 18879-18885, 2007. Go to original source...
  31. Li F., Wu Q.Y., Sun Y.L., Wang L.Y., Yang X.H., Meng Q.W.: Overexpression of chloroplastic monodehydroascorbate reductase enhanced tolerance to temperature and methyl viologen-mediated oxidative stresses. - Physiol. Plant. 139: 421-434, 2010. Go to original source...
  32. Lorence, A., Chevone, B.I., Mendes, P. and Nessler, C.L.: Myo Inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. - Plant Physiol. 134: 1200-1205, 2004. Go to original source...
  33. Mano, J., Hideg, E., Asada, K.: Ascorbate in thylakoid lumen functions as an alternative electron donor to photosystem II and photosystem I. - Arch. Biochem. Biophys. 429:71-80, 2004. Go to original source...
  34. Mano, J., Ushimaru, T., Asada, K.: Ascorbate in thylakoid lumen as an endogenous electron donor to photosystem II: Protection of thylakoids from photoinhibition and regeneration of ascorbate in stroma by dehydroascorbate reductase. - Photosynth. Res. 53: 197-204, 1997. Go to original source...
  35. Mittler, R.: Oxidative stress, antioxidants and stress tolerance. - Trends Plant Sci. 9: 405-410, 2002. Go to original source...
  36. Mittler, R., Vanderauwera, S., Gollery, M., Van Breusegem, F.: Reactive oxygen gene network of plants. - Trends Plant Sci. 9: 490-498, 2004. Go to original source...
  37. Mhamdi, A., Hager, J., Chaouch, S. et al.: Arabidopsis GLUTATHIONE REDUCTASE1 plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways. - Plant Physiol. 153: 1144-1160, 2010. Go to original source...
  38. Mou, Z., Fan, W.H., Dong, X.N.: Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. - Cell 113: 935-944, 2003. Go to original source...
  39. Müller-Moulé, P.: An expression analysis of the ascorbate biosynthesis enzyme VTC2. - Plant Mol. Biol. 68:31-41, 2008. Go to original source...
  40. Müller-Moulé, P., Conklin, P.L., Niyogi, K.K.: Ascorbate deficiency can limit violaxanthin de-epoxidase activity in vivo. - Plant Physiol. 128: 970-977, 2002. Go to original source...
  41. Müller-Moulé, P., Havaux, M., Niyogi, K.K.: Zeaxanthin deficiency enhances the high light sensitivity of an ascorbate deficient mutant of Arabidopsis. - Plant Physiol. 133: 748-760, 2003. Go to original source...
  42. Müller-Moulé, P., Talila, G., Niyogi, K.K.: Ascorbate-deficient mutants of Arabidopsis grow in high light despite chronic photooxidative stress. - Plant Physiol. 134: 1163-1172, 2004. Go to original source...
  43. Noctor, G., Foyer, C.H.: Ascorbate and glutathione: keeping active oxygen under control.- Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 249-279, 1998. Go to original source...
  44. Noctor, G., Veljovic-Jovanovic, S., Foyer, C.H.: Peroxide processing in photosynthesis: antioxidant coupling and redox signalling. - Philos. T. Roy. Soc. B 355: 1465-1475, 2000.
  45. Padh, H.: Cellular functions of ascorbic acid. - Biochem. Cell Biol. 68: 1166-73, 1990. Go to original source...
  46. Pignocchi, C., Foyer, C.H.: Apoplastic ascorbate metabolism and its role in the regulation of cell signalling. - Curr. Opin. Plant Biol. 6: 379-389, 2003. Go to original source...
  47. Rao, M.V., Davis, K.R.: Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. - Plant J. 17:603-14, 1998.
  48. Rizhsky, L., Hallak-Herr, E., Van Breusegem, F., Rachmilevitch, S., Barr, J.E., Rodermel, S., Inzé, D., Mittler, R.: Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase. - Plant J. 32: 329-342, 2002. Go to original source...
  49. Sairam, P.K., Srivastava, G.C.: Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. - Plant Sci. 162: 897-904, 2002. Go to original source...
  50. Sano, S., Asada, K.: cDNA cloning of monodehydroascorbate radical reductase from cucumber: a high degree of homology in terms of amino acid sequence between this enzyme and bacterial flavoenzymes. - Plant Cell Physiol. 35: 425-437, 1994.
  51. Schansker, G., Srivastava, A., Govindjee, Strasser, R.J.: Characterization of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. - Funct. Plant Biol. 30: 785-796, 2003. Go to original source...
  52. Shigeoka, S., Ishikawa, T., Tamoi, M., Miyagawa, Y., Takeda, T., Yabuta, Y., Yoshimura, K.: Regulation and function of ascorbate peroxidase isoenzymes. - J. Exp. Bot. 53: 1305-1319, 2002. Go to original source...
  53. Smirnoff, N.: The function and metabolism of ascorbic acid in plants. - Ann. Bot. 78: 661-669, 1996. Go to original source...
  54. Smirnoff, N.: Ascorbate biosynthesis and function in photoprotection. - Philos. T. Roy. Soc. B: 355: 1455-1464, 2000. Go to original source...
  55. Smirnoff, N., Wheeler, G.L.: Ascorbic acid in plants biosynthesis and function. - Crit. Rev. Biochem. Mol. Biol. 35: 291-314, 2000. Go to original source...
  56. Stevens, R., Page, D., Gouble, B., Garchery, C., Zamir, D., Causse, M.: Tomato fruit ascorbic acid content is linked with monodehydroascorbate reductase activity and tolerance to chilling stress. - Plant Cell Environ. 31: 1086-1096, 2008. Go to original source...
  57. Tabata, K., Oba, K., Suzuki, K., Esaka, M.: Generation and properties of ascorbic acid-deficient transgenic tobacco cells expressing antise RNA for L-galactone dehydrogenase. - Plant J. 27:139-148, 2001. Go to original source...
  58. Terashima, I., Funayama, S., Sonoike, K.: The site of photoinhibition in leaves of Cucumis sativus L. at low temperatures is photosystem I, not system II. - Planta 193: 300-306, 1994. Go to original source...
  59. Terashima, I., Noguchi, K., Itoh-Nemoto, T. et al.: The cause of PSI photoinhibition at low temperatures in leaves of Cucumis sativus, a chilling sensitive plant. - Physiol. Plant. 103: 295-303, 1998. Go to original source...
  60. Van Kooten, O., Snel, J.F.H.: The use of chlorophyll fluorescence nomenclature in plant stress physiology. - Photosynth. Res. 25: 147-150, 1990. Go to original source...
  61. Wang, A.G., Luo, G.H.: Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants. - Plant Physiol. 6: 55-7, 1990.
  62. Wheeler, G.L., Jones, M.A., Smirnoff, N.: The biosynthetic pathway of vitamin C in higher plants. - Nature 393: 365-369, 1998. Go to original source...
  63. Wolucka, B.A. Van Montagu, M.: GDP-mannose 3',5'- epimeras forms GDP-L-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants. - J. Biol. Chem. 278: 47483-47490, 2003. Go to original source...
  64. Yang, X.H., Wen, X.G., Gong, H.M., Lu, Q.T., Yang, Z.P., Tang, Y.L., Liang, Z., Lu, C.M.: Genetic engineering of the biosynthesis of glycinebetaine enhances thermotolerance of photosystem II in tobacco plants. - Planta 225: 719-733, 2007. Go to original source...
  65. Yin, L., Wang, S.W., Eltayeb, A.E., Uddin, Md. I., Yamamoto, Y., Tsuji, W., Takeuchi, Y., Tanaka, K.: Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco. - Planta 231: 609-621, 2010. Go to original source...