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ABSTRACT. We find general conditions under which Lipschitz-free
spaces over metric spaces are isomorphic to their infinite direct ¢;-
sum and exhibit several applications. As examples of such appli-
cations we have that Lipschitz-free spaces over balls and spheres of
the same finite dimensions are isomorphic, that the Lipschitz-free
space over Z% is isomorphic to its £;-sum, or that the Lipschitz-free
space over any snowflake of a doubling metric space is isomorphic
to £1. Moreover, following new ideas of Brue et al. from [10] we pro-
vide an elementary self-contained proof that Lipschitz-free spaces
over doubling metric spaces are complemented in Lipschitz-free
spaces over their superspaces and they have BAP. Everything, in-
cluding the results about doubling metric spaces, is explored in the
more comprehensive setting of p-Banach spaces, which allows us
to appreciate the similarities and differences of the theory between
the cases p < 1 and p=1.

1. INTRODUCTION

In recent years, Lipschitz-free spaces over metric spaces have become
one of the most widely investigated class of Banach spaces. They are
intimately connected to the nonlinear geometry of Banach spaces and
have proved a very useful tool in their study, to the extend that they
have become a topic towards which the modern research focus in Ba-
nach space theory is shifting; see, e.g., the seminal paper [19], the
surveys [20,21], or the monograph [38, Chapter 5.
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The universal property of the norm of these spaces relates them to
similar objects from different areas of mathematics such as, notably,
optimal transport, where the set of Radon probability measures with
finite first momentum endowed with the Wasserstein distance, known
as the Wasserstein space (see the monograph by Villani [37]), is canon-
ically isometric to a set whose linear hull is dense in the corresponding
Lipchitz-free space (see [18, Theorem 4.1, Theorem 4.4, Theorem 4.5
and Theorem 6.1]). Another research subject closely connected to the
study of approximation properties of Lipschitz-free spaces which re-
cently attracted a considerable attention of many researchers (see [9]
or [33]) is the topic of finding linear extension operators between Ba-
nach spaces of Lipschitz functions (see, e.g., [29, Section 2.1]).

Even within Banach space theory, these spaces are known under
several different names, like Arens-Eells spaces ([38]) or transporta-
tion cost spaces ([34]) to name a few. Here we will stick to the term
Lipschitz-free space, which was the one used by Godefroy and Kalton
in [19] and which is now prevalent in the theory. For more historical
and terminological remarks we refer the reader to [34, Section 1.6].

There is an analogue of Lipschitz-free spaces in the more general
framework of p-Banach spaces for p € (0, 1], namely, the Lipschitz free
p-spaces over quasimetric spaces, where the case p = 1 corresponds to
the locally convex members of this extended family, i.e., the standard
Lipschitz free Banach spaces over metric spaces. Lipschitz free p-spaces
over quasimetric spaces were introduced in [4] with the purpose to
build examples for each 0 < p < 1 of two p-Banach spaces which are
Lipschitz isomorphic but not linearly isomorphic. More recently, the
authors initiated a systematic study of the structure of this class of
spaces in [2, 3].

A specific feature of nonlocally convex p-Banach spaces that differ-
entiates them from Banach spaces is the lack of a duality theory, which
forces the study of Lipschitz free p-Banach spaces over quasimetric (or
metric) spaces to rely on more geometrical methods. It turns out that
this approach brings fresh wind even to better understand the case
p =1, as it is supported by several new results obtained in [2,3].

In this paper we continue with this line of research. Our motivation
is to generalize several important structural results that have become
a standard toolkit of a Lipschitz-free space theorist. These include
Lee and Naor’s result [33] on the existence of K-random partitions of
unity with respect to any subspace of a doubling metric space, Kalton’s
result from [28] that every Lipschitz-free space embeds into the infinite
direct /1-sum of free spaces over its annuli; Kaufmann’s results from
[29] that for every Banach space X the Lipschitz-free space over X
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is, on one hand, isomorphic to its ¢;-sum and, on the other hand, to
the Lipschitz-free space over its unit ball. We also extend the results
from the paper [12], which are formulated only in terms of the duals of
Lipschitz-free spaces. Not only did we succeed to prove analogues of all
these results for Lipschitz free p-spaces with p € (0, 1] but, revisiting
the topic, we actually found new results and applications which are of
interest even for the classical case p = 1.

We get started with the notion of p-complementably amenable sub-
space with constant K, which for p = 1 is equivalent to the existence of
a K-random projection, a notion suggested by Ambrosio and Puglisi
from [6] and which in turn is motivated by the notion of K-gentle par-
tition of unity by Lee and Naor from [33]. Our main general results,
which are novel even for the case p = 1, are developed in Section 3. The
applications of our methods, some of which are also new even for p = 1,
are explained in Section 4. Let us advance some of the most interesting
practical implementations of our results to the general theory:

e If M is a metric space and there is a point x € M such that every
annulus centered at x contains only finitely many points, then for
every p € (0, 1] the space F,(M) admits a subsymmetric basis if and
only if F,(M) is isomorphic to ¢, (see Proposition 4.7).

e Generalizing [29, Theorem 3.1 and Corollary 3.3], if X is a Banach
space and M C X is closed under multiplication by nonnegative
numbers, for every p € (0, 1] we have

Fp(M) = Fp(Ba) = Fp(M\ Bum) = £,(Fp(M))

(see Theorem 4.15).
e For d € N and p € (0, 1] we have

Fp(RY) ~ F,(Sga+1)

(see Theorem 4.21).

In Section 5 we show that whenever N is a doubling metric space
and M is a metric space containing N then F,(N) is complemented in
Fp(M) for every p € (0, 1], which in particular solves Question 6.7 from
[2]. This is known for the case p = 1, but we show an argument, based
on ideas from [10], which is much simpler (and self-contained) than the
one used by other authors to prove it for p = 1. We provide several
applications to doubling metric spaces, amongst which we highlight the
following ones because of their interest. Note that best-known examples
of doubling metric spaces are, e.g., subsets of R? or, more generally,
subsets of Carnot groups.
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e If (M, d) is a doubling metric space and a € (0,1), then
FM,d*) =1,

(see Corollary 5.7). This improves a result previously known only for
compact doubling metric spaces (see[38, Theorems 4.38 and 8.49]).

e If M is a doubling self-similar metric space (like for instance a finite-
dimensional Banach space or more generally a Carnot group) and
N C M is a net in M, then for every p € (0, 1] we have

Fp(N) 2= £,(Fp(N))
and
Lipg(M) =~ Lipy(N).
Those results are improvements of [24, Theorem 7] and [12, Corollary
. %jr8lvery d € N and p € (0, 1] we have
Fo(Z) == Fp(N)
(see Theorem 5.12).

2. NOTATION AND PRELIMINARIES

We use standard notation in Banach space theory as can be found in
[5]. We refer the reader to [3, Sections 2 and 4] for basic facts and
notation concerning p-metric spaces, p-Banach spaces, and Lipschitz
free p-spaces over them for 0 < p < 1.
We put
N, ={ne€Z:n >0}
If (M,d,0) is an arbitrary pointed p-metric space and A C (0, c0)
(usually A is an interval) we put
My ={r e M:d0,z) € A}
and
W ={0} UMa.
Given A C R and R > 0 we put
R ={R": x € A}.

Given a quasi-Banach space X and A C X, we denote by [A] the
closed linear span of A. Moreover, for m € N we denote by k,,(X) the
smallest constant C' > 1 such that

m m
Yoz <CY llwll, w5 e X
P =1

Note that if X is a p-Banach space then r,,(X) < m!'/P71,
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Given 0 < p < oo and a countable set N, (,,cy Xn)p denotes the
sum in the sense of ¢, (co if p = 0) of the family of quasi-Banach spaces
(Xn)nen. If all the spaces X, are equal to a single space X, we shall
instead denote their p-sum by ¢,(X). If N = {1,2} we will simply
put (X; ® Xs),, and if the index p is irrelevant or clear from context
X1 D X2 will stand for (Xl D XQ)p.

Definition 2.1. Let 0 < p < 1. We say that two p-metric spaces N
and M are K-Lipschitz isomorphic, where K € [1,00), if there are
Lipschitz maps f: N — M and g: M — N such that go f = Idy,
fog=1Idpy and || f|lLipllgllLip < K. If the constant K is irrelevant, we
say that N and M are Lipschitz isomorphic.

Definition 2.2. We say that two quasi-Banach spaces X and Y are
K-isomorphic and write X ~y Y, where K € [1,00), if there are
bounded linear maps S: X — Y andT: Y — X such that ToS = Idy,
ToS =Idy, and ||T| - ||S]| < K. If the constant K is irrelevant, we
say that X and Y are isomorphic and write X ~ Y.

Remark 2.3. If two quasi-Banach spaces X and Y are K-isomorphic,
we can choose S as in Definition 2.2 with ||S|| = 1. Thus, if X and Y
are l-isomorphic, in particular they are isometric. In contrast, two 1-
Lipschitz isomorphic p-metric spaces need not be isometric, as shown,
e.g., by the metric spaces [0, 1] and [0, 2] with the usual distance.

Definition 2.4. Given quasi-Banach spaces X and Y, a constant K > 1,
and a linear map S: X — Y, we say that X is K-complemented in
Y wia S if there exists a bounded linear operator 7: Y — X with
ToS =Idx and [|S||-|T]| < K. We will say that X is K-complemented
in'Y, and write X <y Y, if there exists a linear map S such that X is
K-complemented in Y via S. If the constant K is irrelevant, we will
say that X is complemented in Y and write X <Y. If X is isomorphic
to a (not necessarily complemented) subspace of Y we will put X <Y.

Of course, a quasi-Banach space X is complemented in a quasi-
Banach space Y if and only if there is a quasi-Banach space X such
that Y ~ X @ X,.

2.1. Complementable p-amenability. Suppose M and N are p-
metric spaces, 0 < p < 1. If f: M — N is Lipschitz, there is unique
bounded linear map L;: Fp(M) — F,(N) such that Le(dm(z) =
On(f(z)) for all x € M. The operator Ly is called the canonical
linearization of f. If N is a subset of M and p = 1, the canonical
linearization L,: F(N) — F(M) of the incluison map 3: N' — M is
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an isometric embedding. As this property does not carry out to Lips-
chitz free p-spaces for p < 1 (see [3, Theorem 6.1 and Question 6.2]),
we introduce the following definition.

Definition 2.5. We say that a subset A of a p-metric space M is p-
amenable in M with constant C' < oo if L, is an isomorphism and
|L;*] < C, where L, is the canonical linearization of the inclusion

map 7: N — M.

Note that L,(F,(N)) need not be a complemented subspace of F(M)
even in the case p = 1, when every subset N of a metric space M is
p-amenable with constant 1. Thus, we introduce the complemented
version of the notion of amenability.

Definition 2.6. We say that a subset N of a p-metric space M is
complementably p-amenable in M with constant C' if F,(N) is C-
complemented in F,(M) via the canonical linear map from F,(N)

into F,(M).

If N is complementably p-amenable in M with constant C, then
N is p-amenable in M with constant C. If there is a Lipschitz map
r: M — N with roj = Idy, i.e., r is a Lipschitz retraction of M onto
N, then N is complementably p-amenable in M with constant ||7||Lip
for every 0 < p <1 (see [3, Lemma 4.19]).

If NV is (complementably) p-amenable in M with constant C', then
N is (complementably) p-amenable in M’ with constant C for ev-
ery N € M’ C M. Finally, note that if N is (complementably)
p-amenable in M with constant C, then the same holds for N, which
easily implies that for any N7 C M with N7 = N, N’ is (comple-
mentably) p-amenable in M with constant C' as well.

The following elementary lemma characterizes complementable p-
amenability and will be frequently used.

Lemma 2.7. Let (M, d,0) be a pointed p-metric space. Suppose that N
is a subset of M with 0 € N'. Then N is complementably p-amenable
in M with constant C > 0 if and only if there exists a C-Lipschitz
function f: M — F,(N) such that f(x) = on(x) for every x € N.

Proof. One implication is trivial, so let us assume the existence of a C-
Lipschitz function f: M — F,(N) with f(z) = op(x) for all z € N.
By the universal property of F,(M), there exists a linear operator
Li: Fy(M) — Fo(N) with Ly ooy = f and || Lyl = || fl|lup. We
have Ly o L,(dn(2)) = f(z) = op(x) for all z € N and so Lyo L, =
Id]:p(/\/‘). O
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Note that if " and M are metric spaces, then by [6, Definition 2.9],
N admits K-random projection on M if there exists a K-Lipschitz
function f: M — F(N) such that f(z) = dx(z) for every z € N;
hence, by Lemma 2.7, N is complementably 1-amenable in M with
constant K if and only if N' admits K-random projection on M.

When we are interested in studying the isomorphic structure of a
Lipschitz free p-space over a p-metric space M, by the following result
we may choose to omit finitely many points from M without altering
the resulting Lipschitz free p-space over M. Moreover, when discarding
one point only, we obtain a uniform estimate independent on the p-
metric space (the exact value of the constant will not be important).

Lemma 2.8. Let (M,d) be a p-metric space, 0 < p < 1, and let
r9 € M. For every C > 3P . 52/7 we have:

(i) M\ {zo} is complementably p-amenable in M with constant C.
(i) If xg € M s an isolated point, or M is a metric space, then
Fo(M) =0 R® Fo(M\ {z0}).
(iii) If M is infinite metric space, then Fp(M) ~c Fp(M\ {xo}).
(w) If N C M is complementably p-amenable in M with constant K
then N'U{xo} is complementably p-amenable in M with constant
KC.

Proof. Pick ¢ € (0,27 —1). If 7y € M is an isolated point, we pick
0 € M\ {zo} with d(zg,0) < (1 + &)VPinf{d(zg,z): + € M\ {z0}}.

(i) If zp € M is not an isolated point then M \ {z¢} is comple-
mentably p-amenable in M with constant 1, otherwise it is easy to see
that the map f: M — F,(M\ {0}) given by f(x) = drp (a0} () for
€ M\ {2} and f(x0) = 0 is 2'/P-Lipschitz which, using Lemma 2.7,
gives (i).

(ii) and (iii) If xy € M is isolated then for all x € M\ {0} we have

dP(x0,0) + dP(x,0) < dP(xg,x) + 2dP(x0,0) < (1 4+ 2(1 + &)P)dP(xg, ).

(2.1)
which, by [2, Lemma 2.1], implies that F,(M) ~c R @ F,(M \ {z0})
for " = (1+2(1+4¢)?)¥/7.

If 2y € M is not an isolated point then F, (M) is isometric to F,(M\
{zo}).

In the case when M is a metric space then, by [2, Theorem 3.1],
¢, is D-complemented in F,(M \ {zo}) for every D > 2'/7 and so
Fp(M\ {x0}) is (1 + 2DP)YP-isomorphic to £, & F,(M \ {zo}) which
casily implies that F,(M \ {zo}) ~p R @ F,(M \ {x0}) for every
D' > (1+2Dr)».
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(iv) is easy if 79 € N, so we may assume that this is not the case. By
Lemma 2.7, there is a K-Lipschitz map f: M — F,(N) with f(z) =
on(z) for every x € N. Consider f': M — F,(N U{x}) defined as
f(x) = L,(f(x)) for z € M\ {xo}, where L,: F,(N) — F,(N U{zo})
is the canonical linear map and f'(x0) = daru{ze}(%0). Now, using (2.1)
we readily check that f’ is (K (1 4+ 2(1 4 £)?)'/?)-Lipschitz, and an
application of Lemma 2.7 finishes the proof. 0

2.2. The Approximation Property in quasi-Banach spaces. A
quasi-Banach space X is said to have the approzimation property (AP
for short) if there exists a net (7, )aca of finite-rank operators on X
that converge to the identity map Idx uniformly on compact sets. If
moreover, the net satisfies

liminf |7, || < A, (2.2)

for some constant A € [1,00), then we say that X has the \-bounded
approximation property (A-BAP for short). If, in addition to (2.2)
he operators of the net commute, i.e., T, o Ty = T3 o T, for all «,
£ € A, then X is said to have the commuting A\-bounded approzimation
property (commuting \-BAP for short). In turn, if in addition to (2.2),
the operators are projections, i.e., T2 = T, for all a € A, we say that
X has the my-property. We will refer to X simply as having BAP if it
has the A-BAP for some A > 0, and we will say that X has the metric
approximation property (MAP for short) if it has the 1-BAP. Similarly,
if X has the my-property for some \ we say that X has the m-property,
and we say that X is the metric m-property if it has de w-property.
It is obvious that any finite-dimensional quasi-Banach space has the
commuting MAP and the metric w-property.

A finite dimensional decomposition of a (separable) quasi-Banach
space X is a sequence (X,,)>2; of finite-dimensional subspaces of X
such that every z € X has a unique series expansion x = Y~ | x,, with
r, € X, for all n € N. If X admits afinite dimensional decomposition
we say that it has the finite dimensional decomposition property (FDD
property for short). A quasi-Banach space with the FDD property has
both the MAP and the metric w-property under a suitable renorming.

For background on approximation properties we refer the reader to
[14]. We would like to point out, however, that [14] is written within
the framework of Banach spaces and, since the Hahn-Banach theo-
rem is heavily used, the proofs of some of the results therein do not
carry out automatically to non-locally convex quasi-Banach spaces. In
spite of that initial drawback, it happens that the dependence on the
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local convexity of the space in the proofs of the most accessible char-
acterizations of the above-mentioned approximation properties can be
circumvented, and so they still hold in non-locally convex spaces. As
the definitions that appear in the few papers that touch the subject
([11,26,27]) are not unified, we will state the corresponding charac-
terizations and skip the details in order to not divert too far from the
flow of the article. A quasi-Banach space X has the AP if and only
if for any compact set K C X and every € > 0 there is a finite-rank
operator T: X — X with max,ex ||z — T'(x)|| < e. The space X has
the A-BAP if and only if for any € > 0 such operators exist with the
extra-property that | T|| < A 4+ €. To characterize the my-property we
must also impose each operator 7' to be a projection; and to charac-
terize commuting \-BAP we must impose that the operators belong to
a given commuting set. A subset A of the algebra of bounded linear
operators from X into X is said to be commuting if T oS = SoT for
all S, T € A. These results yield that if a quasi-Banach space X has
the BAP (resp. w-property) there is a smallest constant A such that X
has the A-BAP (resp. my-property).

Approximation properties are inherited by infinite sums and com-
plemented subspaces. For further reference we record these in the next
two propositions.

Proposition 2.9. Let (X,,)32, be a sequence of quasi-Banach spaces
with sup,, ko(X,) < oo. Suppose that each X,, has the AP (resp. A-
BAP, my-property, or commuting \-BAP for some A > 1). Then
(D, Xn)p has the AP (resp. A-BAP, mx-property, or commuting
A-BAP) for all 0 < p < 0.

Proposition 2.10. Let Y be a quasi-Banach space with the AP (resp.
A-BAP for some X\ > 1). Suppose that a quasi-Banach space X is
K -complemented in'Y. Then X has the AP (resp. AK-BAP).

3. GENERAL TECHNIQUES

In [28, §4], Kalton defined an operator T" of norm 72 which maps any
Lipschitz-free space F(M) over a metric space M into the ¢;-sum of
Lipschitz-free spaces over annuli in M. This particular operator has
seen many applications in the theory of Lipschitz-free spaces. Let us
single out the most significant ones.

e If M is a uniformly separated metric space, then F(M) is a Schur
space with the Radon-Nikodym property and the approximation
property ([28, Proposition 4.3]).
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e If M is a countable compact metric space (or even a countable metric
space whose closed balls are compact) then F(M) has the metric
approximation property ([15,16]) and the Schur property ([23]).

e If X is a Banach space then F(X) ~ ¢1(F(X)) ~ F(Bx) ([29]).

This section is geared towards developing an extended version of this

operator that works both for p < 1 and also for the case p = 1. This

is the subject of Lemma 3.3. Our main outcomes will be a couple of
complementability results (namely, Theorem 3.5 and Theorem 3.6) as
well as several general conditions under which Lipschitz free p-spaces
over metric spaces are isomorphic to their £,-sums (Theorem 3.8, The-
orem 3.9, and Theorem 3.10). In subsequent sections we will concen-
trate on new applications to the general theory, some of which were

not known even for the case p = 1.

Let (M, d) be a p-metric space, 0 < p < 1. If (My)aca is a family
of subsets of M with 0 € M, for all & € A, we can define a norm-one
linear operator

P (@ ]:p(Ma)> = Fp(M),  (Ha)acar = Z Lo(pa); (3.3)

aEA p aEA

where L, is the canonical linear embedding from F,(M,) into F,(M).
We aim to relate the Lipschitz free space over a p-metric space M to
direct sums of Lipschitz free p-spaces over subsets of M by means of
such mappings. Our first proposition is inspired by [28, §4].

Proposition 3.1. Let (M,d,0) be a pointed p-metric space, 0 < p <
1. Suppose that N is a countable subset of Z and that (Ap)nen is a
sequence of positive real numbers such that d(0,z) € UnenA, for all
x € M\ {0}, and

K — inf inf A,

m<n sup A,

Then the operator P defined as in (3.3) corresponding to the family
(M Jnen is an isomorphism. In fact,

1P~ < (K7 + )YP(K? — 1),

> 1.

Proof. For n € N put r, = infA, and s, = supA4,. If m < n,
x € May,,and y € My, we have

P
@(0,2) < of, = 2k < K7d(0,).

Hence, if we denote d?(0,y)/d?(0,z) = t,
t+1 K?+1
t—1

dp<0’ 35) + dp(()?y) = (dp(o’ y) - dp(oax))
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Since (Ma, )nen is a partition of M \ {0}, the result follows from
2, Lemma 2.1]. O

Proposition 3.1 leads us to consider maps as in (3.3) corresponding
to families of the form (M? ),ez with A, = [cR*",cR**!] for some
0 <c<ooand R > 1. However, when p < 1 it is unknown whether the
canonical linear map from F,(U,ez M7 ) into F,(M) is an isomorphic
embedding, therefore in order to obtain useful information about this
kind of mappings we need to develop complementary techniques. Our
approach here will consist of building, under suitable conditions on
the p-metric space M, both left and right inverses of operators as
in (3.3) corresponding to families of the form (MY ),ez with A, =
[cR*™, cR*™ ] for some 0 < ¢,s < oo and R > 1.

Definition 3.2. A family U of open sets in a topological space X is said
to be k-overlapping if each x € X belongs at most to & members of
U. We say that U is a point-finite family if it is k-overlapping for some
k e N.

Lemma 3.3. Suppose (M, d,0) is a pointed metric space. Let k € N,
R>1, Ky >0, and Ky > 0 be constants such that:

o (Yn)nen 1s a countable family of Ky-Lipschitz maps from R into
R which are uniformly bounded by Ks; and

o (In)nen = (U (R {O}))neN is k-overlapping.
Then for each 0 < p < 1 there is a bounded linear operator

T: Fy(M) = X = (@fp( Em))

neN
with
T(6m(z)) = (Yn(logr d(0, x))0n(x))nen, « € M\{0},  (3.4)
where 0,1 M — F,(M3,1,) is any extension of the canonical embedding

of M, into the Lipschitz free p-space over M, . Moreover, ||T|| <
C for some C = C(p,k, R, K1, K>).

Proof. For n € N, put a,(x) = ¢,(logrd(0,z)) if x € M\ {0} and
a,(0) = 0. Without loss of generality we assume that §,(z) = 0 if
x ¢ Mgr,. Define f: M — X by

f(@) = (fu@))nen = (an(2) 0n(2))nen-

Let x, y € M and assume without loss of generality that d(0,y) <
d(0,z). We have

£ () = f(@)] < (2K)YPsup || fuly) — ful2)]].

nenN
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The p-subadditivity of the quasi-norm gives
1Y) = fu(@)]I” = [[(an(y) — an(2))dn(y) + an(x)(0n(y) — 6n(2))[|”
< Jan(y) = an(@) P[00 W) + [on (@) P[00 (y) — 0 ()7
< lan(y) — an(2)[Pd"(0, y) + |an ()10, (y) — 0n()][".
Taking into account that logu < u — 1 for every u > 1 we obtain

|y (y) — an(x)] d(0,y) < K1d(0,y) logg % < K, d(0, ml)ogg(o’ y)‘

Since |ay,(2)| < Ko, if © ¢ Mg, or {z,y} € Mg, we have
| (@) 100 (y) = n(@)[| <l ()] d(2,y) < Kad(z,y).
Assume that x € Mpr, and y ¢ Mpr,. If d(0,z) < Rd(0,y) we have

| ()| |00 (y) — 0n(z)|| = |an(z) — an(y)| d(0, z)
< Rlan(z) — an(y)]d(0, y),

and lf d((), ZL’) Z Rd(07 y)a
Rd(0,x) — d(0,x)

| ()] 10 (y) = On(@)[| = |an ()]

R—1
d(0,z) —d(0,y
< Jag () RA%D 90D
K>yR

<

- (d(0,) - d(0,).

R—
Summing up, since d(0,z) — d(0,y) < d(z,y), we get that f is C-
Lipschitz for

K? KYRe KPR? \\'"
— (2k)'7 [ =L 1 : . .
¢ = (2k) (long+maX{long’(R—l)p (3:5)
Thus, by [3, Theorem 4.5], there is a linear map 7': F,(M) — X such
that T oo = f and ||T]| < C. O

We use [a, b] for a closed real interval, and if either a or b are infinity,
we replace the corresponding bracket with a parenthesis.

Lemma 3.4. Let k € N and r > 0. There is a constant C' = C(k,r)
such that whenever (a,, by )nen s a k-overlapping family of open inter-
vals in R with

R = U[an+r,bn—r],

nenN
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then there is a family (Vn)nen of C-Lipschitz functions from R into
0, 1] such that

ZQ%(U) =1, wueR,

nenN

and, forn € N, i, (u) > 0 if and only if u € (a,,by,).

Proof. For each n € N there is a 1-Lipschitz piecewise linear function
¢n: R — [0,7] such that ¢, (u) = rif u € [a, +7,b, —r], and ¢, (u) =0
if and only if u ¢ (a,,b,). The map

Ou) = éu(u), ueR

neN
is 2k-Lipschitz, and ®(u) € [r, kr| for every u € R. Set
UVp = %, n € N.

We have ¢, (u) € [0,1] for all n € N and all u € R. Let n € N and u,
v € R. We have

_ [on(w)2(v) = dn(u)P(2) + Pn(u)P(u) — Pn(v)P(u)]

W}n(u) - wn(vﬂ @(u)@@)
< On(W)[®(v) = (W) + [dn(u) = Pn(v)|P(u)
- O (u)d(v)
< %Z—jkr\u — |
= ¥|u—v|. O

Theorem 3.5. Suppose (M, d,0) is a pointed metric space. For some
constants k € N and r > 0 let (I,)nen be a k-overlapping countable
family of sets in R for which there is ([an, by))nenwith (—r—+ay,, r+b,) C
I, for alln € N. Then if R > 1 we have

Fp(M) <o P Fp (Miin,)
neN
for all 0 < p < 1, where C = C(p, k, R,r) (in particular, the value of
the constant C' does not depend on the metric space M ).

Proof. Let (1,)nen be the family of Lipschitz functions whose existence
is guaranteed by Lemma 3.4 with respect to the intervals (J,)nen,
where J,, = (—r + a,,r + b,). Consider the operator

T: F(M) =Y = (@fp( *Rjn)>

neN



14 F. ALBIAC, J. L. ANSORENA, M. CUTH, AND M. DOUCHA

provided by Lemma 3.3. Let S be the canonical embedding of Y into
@D,y Fr (M%1,). Let P be the operator defined as in (3.3). For
xr € M we have

P(S(T(0(x)))) = (Z n(logpg d(O#C))) o(x) = o(x).

neN
By linearity and continuity, P o SoT = Idz,(u). U

Theorem 3.6. Let (M, d,0) be a pointed metric space. Suppose that

o (I,)nen 1s a countable sequence of subsets of R for which there
is a pairwise disjoint family (J,)nen of open intervals such that
if Jn = (an,by), then I, C [a, +1,b, — 1] for some r > 0;

o There is R > 1 such that MY, is complementably p-amenable
in M, with constant K > 1 for alln € N.

Then via the canonical operator defined in (3.3)we have

(@f Rin ) o Fp(M)

nenN p

for all0 < p <1, where C' = C(p,r, R, K) (in particular, the value of
the constant C does not depend on the metric space M).

Proof. For n € N pick a 1-Lipschitz function 1,,: R — [0, r] such that
Y(u) =1if u € [an +7,b, — ] and ¢, (u) = 0 if u ¢ J,. Let

T: Fpy(M (@f o )p

nez

be the linear map defined as in (3.4). By Lemma 3.3, T" is bounded.
Let P be the operator defined as in (3.3) corresponding to the family
(M1, Jnen. By the assumption, there are linear maps (£, )nen from
Fp(M3,) into Fy(M,,) with ||E,|| < K and E, o L, = Id. Then the

(@ “ RJn ) (@ e Rl’n )
neN P neN p

defined by F = (F,)nez is bounded by K. Denote by d,, the d-function
in M7,;,. Denote by T (h) the sequence (hy)nen defined by hy = h
and h, = 01is n # k. If © € Mg, taking into account that ¢, (u) =1
if u € I, and that v, (u) = 0 if u ¢ J,, we obtain

To(8u()) &5 Saq(2) 5 Zo(L,y(8u(2))) ¥ To(0a())-
Therefore EoT o P =1dy. ]
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Since we are dealing with complementability relations between quasi-
Banach spaces, Pelczyniski’s decomposition method (see, e.g., [5, The-
orem 2.2.3]) will be a key ingredient in our arguments. In particular,
the following lemma will be frequently used.

Lemma 3.7. Let (J,<) be a partially ordered set, let 1 < K < oo be
a constant and let (X;)jes be a family of Banach spaces such that X;
is K-complemented in X; whenever i < j. Fori =1, 2, let N; be a
countable set, and let ¢;: N; — J be such that for every j € J and
F C N; finite there isn € N; \ F with j < ¢;(n). For each p € [0, x|

set
X; = (@ X@(n)) , i=1,2.
p

neN;

(with the convention that £,(X) means co(X) if p=0). Then there is a
constant C' depending only on K and p such that X1 ~¢ Xo ~¢ €,(X7).

Proof. Let O be the set of all sequences ¢: N — J such that for every
j € J and every k € N there is n € N with £ < n and j < ¢(n). For

¢ € O put
Xy = (@ X¢<n>>
n=1 D

We must prove that X, ~¢ X, ~ (,(Xy) for all ¢, ¢ € O and some
C=C(p, K). For j € Jand ¢ € O put

N(¢,5) = [{n € N: ¢(n) = j}|.
The symmetry of the norm of £, yields that:
(i) X4 ~ X, isometrically if N(¢,j) = N(¢,7) for all j € J; and
(i) Xy is 1-complemented in Xy if N(¢,7) < N(¢,j) for all j € J.
Using (i) and the fact that an iteration of an /,-norm is an ¢,-norm we
have:

(iii) ¢,(Xy) ~ Xy isometrically if N (¢, j) = oo for all j € J.
From our assumption we readily infer:

(iv) X, is K-complemented in X, if ¢(n) < ¢(n) for all n € N.
Pick ¢ € O such that |[N(¢,j)| = oo for all j € J. Let ¢ € O. By
(iii), €,(Xy) ~ Xy isometrically. By (ii), X, is l-complemented in
Xy. The definition of O yields the existence of an increasing sequence
(kn)e, and a map a: N — N such that ¥(n) < p(n) = ¢(k,) for
all n € N. By (ii) and (iv), X, is K-complemented in X,, which in
turn is 1-complemented in X,. By Petczynski’s decomposition method,
X4 ~c Xy for some constant C' depending on K and p. 0
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Next we see a few instances of situations where we may combine the
results from this subsection.

Theorem 3.8. Suppose M is an infinite metric space. Let 0 < p <1,
R>1, A\ u, Ky, Ko, K3>1 and o > 0. There is a constant C' such
that, if A, = (1 R", coR"] for n € Ny, then Fp(M) ~¢ £,(F,(M)) and

FolM) =c (@pr <MZ¢<n>>> =c (6%;” <MA¢<n>>) ’

P P
whenever N is a countable set, p: N — N, is unbounded, 0 < ¢; < c3 <
ey < 00 satisfies logg(ca/c1) > A and logg(cs/c1) > a, and (M, d,0) is
an infinite pointed metric space such that
e d(0,x) > ¢y for all x € M\ {0};
o F,(Ma,) is Kyi-complemented in F,(May,,) for all n,m € Z
with 0 < n < m;
o Fp(Mcyeq) is Ko-complemented in F,(May,); and
o If B, = (i 'R", couR"], then, for n large enough, My, is
complementably p-amenable in Mp, with constant K.

Theorem 3.9. Suppose M is an infinite metric space. Let 0 < p <1,
R>1,\ pu, Ky, Ko, K3 >1 and o > 0. There is a constant C such
that Fp(M) ~c l,(F,(M)) and, if A, = (1R, caR™™] for n € Ny,
then

Fp(M) ~c (@ F, (Mz¢(n))>p ~c (@ 7 (MA¢<n>>>p,

neN neN

whenever N is a countable set, ¢: N — N, is unbounded, 0 < ¢; < c3 <
ey < 00 satisfy logp(ca/c1) > A, and logg(cs/c1) > a, and (M, d,0) is
an infinite pointed metric space such that
e d(0,2) < ¢y for all z € M\ {0};
o F,(Ma,) is Kyi-complemented in F,(Ma,,) for all n,m € Z
with 0 <n < m;
o Fp(Mieyes)) is Ko-complemented in F,(May,); and
o If B, = (cip™*R™", couR™"], then M, is complementably p-
amenable in Mpg, with constant K3 for n large enough.

Theorem 3.10. Let (M,d,0) be an infinite pointed metric space. Let
0 <p<1. Gwen constants R>1, A>1, u>1, Ky > 1, and Ky > 1
there is a constant C'= C(p, R, A\, p, K1, Ks) such that

Fp(M) =c £,(Fp(M)) ¢ £(Fy( Ekcl,CQ})) o Lp(Fp(Merea)))

whenever ¢; > 0 and c3 > 0 satisfy logg(ca/c1) > A, and
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o if A, = (c1R", coR"|, then F,(Ma,) ~k, Fp(May,) for alln €
Z; and

o if B, = (cip™'R™ copuR™), then My, is complementably p-
amenable in Mg, with constant Ky for alln € 7Z.

Proof of Theorems 3.8, 3.9 and 3.10. As the proofs of Theorem 3.10
and 3.9 are similar, we shall only take care of the proof of Theorem 3.8.

By Lemma 2.8 we have (for possibly larger constants K7, Ky and K3)
that (M) is Ki-complemented in F,(M7 ), that Fp(M{, 1) is
Ky-complemented if F,(M ), and that M7 is complementably p-
amenable in M7 with constant K.

For N countable and ¢: N — N, unbounded, put

Xy = (69 fp<Mz¢<n>>> .

neN

Let Ny = {n € Z: n > —1} and ¢1: N; — N, be defined ¢;(n) =
max{n,0}. Applying Theorem 3.5 with the family of intervals

{(—00,cs]} U{(loggr(c1) + n,logr(ca) + n]: n € N, }

we obtain F,(M) J¢, Xy, for some constant Cy depending on p, A, «,
R and KQ.
For s € N large enough the intervals

(— log(1) + logg(cr) + sn, log (1) + logp(cs) + sm), n €N,

are mutually disjoint. Set No = {n € Z: n > no} for a suitable nop € N
and define ¢o: Ny — N, by ¢2(n) = sn. Applying Theorem 3.6 with
the family of intervals

I, = (logg(c1) + sn,logg(c2) +sn], n €N, n>ny,
we obtain X4, ¢, F,(M) for some constant Cy depending on p, i R,
K; and K;.

An appeal to Lemma 3.7, Lemma 2.8 and [2, Theorem 3.2] completes
the proof. O

Remark 3.11. Analogous results to Theorems 3.8, 3.9, and 3.10 hold re-
placing left-open and right-closed intervals with open, closed, or right-
open and left-closed intervals.

4. APPLICATIONS

This section is devoted to applications of the techniques we developed
in the preceding section to advance the state of art of the general theory
even in the case p = 1.
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4.1. Applications to metric spaces with few limit points. Here
we gather our first applications. Even though some of these appli-
cations were not explicitly stated for p = 1, they follow from known
results (see, e.g., Proposition 4.7).

Proposition 4.1. Suppose that M is a complete metric space with
finitely many accumulation points. Then there is a countable family
(M)nen of closed bounded subsets of M with no accumulation points

such that
Fp(M) < (@nwm) ,

P
forall0O<p<1.

Proof. Let k be the number of accumulation points of M. We proceed
by induction on k. We prove the case k = 0 and the general case
simultaneously. In the case when k > 1 we choose as base point of
M an accumulation point of M. In the case when k£ = 0 we choose
as base point an arbitrary point of M. Let ¢ > 0 and R > 1 be such
that all the accumulation points except 0 are in M .pgr2). Applying
Theorem 3.5 with I,, = [n +logp ¢,n + 2 + logy ¢| for n € Z, yields

Fp(M) < (@ fpwn)) :

neL

where M., is bounded and closed for every n € Z, M, has no ac-
cumulation points if n ¢ {0,1}, and M,, has at most max{k — 1,0}
accumulation points if n € {0,1}. The case k = 0 is finished. In the
general case, we may now apply the induction hypothesis for k —1. [

Corollary 4.2. Let M be a uniformly separated metric space. Then for
each 0 < p <1 there are p-Banach spaces (X,)52, such that F,(M) <

(@2, X,)p and X,, = €,(I) for all n € N, where I = | M|.
Proof. By Proposition 4.1, F,(M) < (B, fp(/\/ln))p, where each
metric space M,, is bounded and uniformly separated. Then, by |3,

Theorem 4.14], F,(M,,) ~ €,(|M,| — 1) (non necessarily uniformly).
U

Corollary 4.3. Let M be a uniformly separated metric space. Then
Fp(M) has the AP for each 0 < p < 1.

Proof. The statement follows from Corollary 4.2 taking into account
that ¢, has the AP, and that AP is preserved by ¢,-sums and by com-
plemented subspaces (see Propositions 2.9 and 2.10). 0
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Proposition 4.4. Let M be a metric space. Suppose that there is a
point x € M such that every annulus centered at x has only finitely
many points. Then for each 0 < p < 1 there is a countable fam-
ily (Xn)nen of finite-dimensional p-Banach spaces such that F,(M) <
(@nGNXn)p‘

Proof. Just apply Theorem 3.5 with I,, = [n,n + 2] for n € Z. O

Since finite-dimensional spaces have the MAP, it follows from Propo-
sition 4.4 that if M is a metric space with finite annuli, then F,(M)
has BAP. We can improve this result by squeezing a bit more our tech-
niques.

Proposition 4.5. Suppose M is a metric space with a point v € M
such that every annulus centered at x contains only finitely many points.
Then for each 0 < p < 1, the space F,(M) has the C-commuting BAP
for every C > 4'/7.

Proof. The proof relies on an enhancement of the proof of Theorem 3.5.
Pick R > 1 and let (1,,),ez be the family of 1/R-Lipschitz maps given
by
|z — Rn|
w(@) = max 31—
Yn(z) = max { 7

For n € 7Z consider the intervals I, = [Rn — R, Rn + R] and J,, =
(Rn— R, Rn+ R). Define T and S as in the proof of Theorem 3.5 and
set

P (@fp( Em)) = Fp(M), (ttn)nez = Y La(ptn), m € N.

0}, r e R.

nez n=—m

The sequence of operators (S,,)%_, defined by S,,, = Py, 0507 satisfies
sup,, [|Sm|| < ||T||. Since Y, ., ¥n = 1, it follows that lim,, S, = S
in the strong topology of operators. Each S, has finite rank, and by
construction,

Su(6(2) = S Yillogr d(0,2))3(x), =€ M.
We infer that Sy, 0 Sy = Spy © Sy = Smingmmy for all m, m’ € N.
Finally, note that ||T|| < C, where C is as in (3.5) with k¥ = 2 and
Ky =1/R and K, = 1. Letting R tend to co we obtain the desired
estimate for the commuting BAP constant. 0

A basic sequence ()32, in a quasi-Banach space X is said to be sub-
symmetric if it is unconditional and equivalent to all its subsequences.
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Every subsymmetric basic sequence is semi-normalized, i.e.,

inf ||z;]| > 0 and sup||z;|| < oo.
jEN jeN

For some more details concerning subsymmetric bases we refer the
reader to [36, Chapter II, §21] and [7]. We would like to point out
that, although the paper [7] is written within the framework of Ba-
nach spaces, it can be re-written verbatim for p-Banach spaces without
altering the validity of the results.

Lemma 4.6. Let (X)), be a sequence of finite dimensional quasi-
Banach spaces . FEvery subsymmetric basic sequence X = (xj)j-‘;l of
X = (D, Xn)p, 0 < p < o0, is equivalent to the unit vector system
of U, (with the convention that £y means co).

Proof. For x € X, write x = (x(n)), and define

n=1

supp(z) = {n € N: z(n) # 0}.

We also define, for N € N, Sy(z) € X by Sy(x)(n) = z(n) for n < N
and Sy(z)(n) = 0 for n > N. Note that limy Sy(z) = z. Since X
is semi-normalized, sup, [|z;(n)|| < oo for all n € N. Since By, is
compact, a diagonal argument yields ¢: N — N increasing such that
(z4(y(n))32, converges for every n € N. Then, if

Yi = To(25—1) — To(24)s

lim; y;(n) = 0 for alln € N. By subsymmetry, J = (y;)32, is equivalent
to X and so it is subsymmetric. In particular, ) is semi-normalized.
By the gliding-hump technique and the principle of small perturba-
tions (see, e.g., the proof of [5, Theorem 1.3.10]), there is ¥»: N — N
such that (yy(;))52, is equivalent to a sequence Z = (z;)52, with
(supp(z;))32, pairwise disjoint. As before, we infer that Z is semi-
normalized. Now, it is easy to see that Z is equivalent to the unit
vector system of £,. By subsymmetry so is X. O

The following proposition applies in particular to the spaces F,(N9)
and F,(Z%).

Proposition 4.7. Let M be a metric space. Suppose that there is a
point x € M such that every annulus centered at x contains only finitely
many points. Then every subsymmetric basic sequence in F,(M), 0 <
p < 1, is equivalent to the unit vector system of ¢,. Consequently,
Fp(M) admits a subsymmetric basis if and only if Fp(M) >~ £,,.

Proof. Just combine Proposition 4.4 with Lemma 4.6. U
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4.2. Applications to Banach spaces. Recall that a metric space
(M, d) is self-similar with constant R > 1 if there is a bijection f: M —
M with

d(f(z), f(y) = Rd(z,y), =ye M. (4.6)

By Banach’s contraction principle, if M is complete there is always a
fixed point of f, and such a fixed point is unique. So, when dealing
with self-similar pointed metric spaces we will always assume that the
base point 0 satisfies f(0) = 0 for the bijection f fulfilling (4.6).

Obvious examples of self-similar spaces are, of course, quasi-Banach
spaces and their subsets closed under multiplication by R and 1/R for
some R € R\ {0,4£1}. Other examples are Carnot groups (see e.g.
[31]).

Given a pointed metric space (M, d,0) and ¢ > 0, By(c) will denote
the ball centered at the base point 0 of radius c, i.e.,

Bum(c) = {z € M: d(0,z) < c}.
The unit ball By(1) will be denoted by By.

Theorem 4.8. Let (M, d,0) be a pointed self-similar metric space with
constant R > 1. Let 0 < ¢; < ¢g < 0o with c3/¢c; > R. Suppose that
there is p > 1 such that M, ., 1s complementably p-amenable in
M —1¢1 pes) for some 0 < p < 1. Then

Fp(M) = 0, (Fy(Meyea))) -

Moreover, if there is ¢y < cg < cg such that F,(Mc, c,)) (respectively
Fp(Mes,e) @5 complemented in Fp(Mc, ), then

Fp(M) = Fpy(MA\ Bu(er))  (resp. Fp(M) = Fy(Ba(ca) )-

Proof. Since M is self-similar with constant R, we easily obtain that
Mgnre) is 1-Lipschitz isomorphic to M, for every ¢ > 0 and ev-
ery n € Z. Thus, all the spaces F (M, gnc,rn) are isometric to
Fp(Me1,e0)) for n € Z.

We also infer from self-similarity and our assumption that there is
a constant K such that M, rn c,rn is complementably p-amenable
in M ,-1¢, rn pesrry With constant K for all n € Z. Hence, applying
Theorems 3.8, 3.9 and 3.10 gives the desired results. 0

Remark 4.9. Analogous results to Theorem 4.8 hold replacing closed
intervals with open, or closed, or left-open and right-closed intervals.
We leave the details to the reader.

Given a metric space (M, d) and « € (0, 1], its snow-flaking (M, d*)
is also a metric space. Obviously a function f: M — N is C-Lipschitz
when regarded from the metric space (M, dy) into the metric space
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(N, dy) if and only if it is C*-Lipschitz when regarded from (M, d%,)
into (N, d%y).

Given a Banach space (X, || - ||), the assumptions of Theorem 4.8
are satisfied for the metric space (X, || - ||%), where (X, - ||*) is the
snow-flaking of (X, || - ||). This will be generalized in the following
two slightly more general results, Lemmas 4.11 and 4.12. Those will
be applied below only to Banach spaces and their subsets, in which
case the mapping o from the assumptions is given by o(z,t) := tx. We
refer to Remark 4.13 below where possible applications to more general
structures are mentioned.

Definition 4.10. Let (M, d,0) be a pointed metric space and set A =
0, 1] (respectively A = {0} U [1,00)). A map

o: MxA—->M

is said to be a self-similar contraction (resp. dilation) if it satisfies the
following conditions:

(G1l) Ve M: 0,(0)=0and o,(1) =z,

(G2) Ve e MVt,se A: d(o.(t),0.(s)) <|s—t|d(z,0),

(G3) Ve,ye MVt e A:  d(o,(t),0,(t)) < td(z,y),
where for every © € M we denote by o, the mapping t — o(z,1).

Recall that a metric space (M, d,0) is said to be geodesic if for all
z, y € M there is o: [0,1] — M such that ¢(0) = z, o(1) = y and
d(o(t),o(s)) =d(z,y)|t — s| for all s, t € [0,1].

Lemma 4.11. Let (M,d,0) be a geodesic pointed metric space with
a self-similar contraction o. Let S > 0 and N C M be such that
for every x € N\ Bm(S) we have O'I(ﬁ) € N. Then Njyg is

a 2-Lipschitz retract of N'. More precisely, the 2-Lipschitz retraction
r: N — N5 is giwen by r(0) =0 and

r(z) = o, (min {1, %}) , z e N\ {0}. (4.7)

Proof. 1t suffices to show that the mapping r given by (4.7) is 2-
Lipschitz. Pick z,y € N and assume without loss of generality that
d(z,0) < d(y,0). If d(y,0) < S then obviously d(r(z),r(y)) = d(z,y).
If d(z,0) > S then we have

(), 7)) < d (0a (25) 0 (155) ) + (0 () o (i)

(d(z,y) + |d(y, 0) — d(z,0)|)
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where in the second inequality we used the conditions (G.1), (G.2) and
(G.3) from Definition 4.10. Finally, if d(z,0) < S < d(y, ) since
M is geodesic we find z € M such that d(z,0) = S and d(x,y) =
d(z,z) + d(z,y), which implies that

d(r(z),r(y)) < d(r(z),r(2)) + d(r(z),7(y))
< 2(d(z, 2) + d(z,y))
= 2d(x,y). O
Lemma 4.12. Let (M,d,0) be a geodesic pointed metric space with a

self-similar dilation o. Let S > 0 and N C M be such that 0 ¢ N
and for every x € N N Bap(S) we have Jr(d(%o)) € N. Then, for

every o € (0,1] and each 0 < p < 1, (Njg00),d*) is complementably
p-amenable in (N, d*) with constant 3'/P.

Proof. Consider the mapping 7: (N, d*) = F,(Ns,), d*) defined by

| 5(x) d(z,0) > S
r(z) =< d ;xa, 0) 5 (036 (%)) d(z,0) < S.

It suffices to show that r is 3'/P-Lipschitz. Pick z,y € N and assume
without loss of generality that d(x,0) < d(y,0). If d(z,0) > S then
obviously ||r(z) — r(y)|| = d*(x, y).

If d(y,0) < S we have

lr(z) =P < A + As + A3,

where

T 5 (ox () = (o (st
2= S5 o o () - (%(dfo))

o

If d(z,0) < S < d(y,0) we have
[r(x) —r@)|]” < A1+ As + As,

A= 26 (o (25)) — o]

e (Fe ]

Alz

0)

Q.

@

O
\_/
N———

where

and
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Applying (G.1), (G.2), (G.3) in Definition 4.10 yields
Ay < d™(z,y),
max{A}", AY"} < d*(y,0) — d*(z,0), and

max{A}", AY"} < B := %a@’o)d“(y,()).

Moreover, if S < d(y,0),
d*(z,0)d*(y,0)
Sa
Summing up, whenever d(z,0) < S we have

Ir(z) = r@)|I” < d*(z,y) +2(d*(y,0) — d*(2,0))" < 3d*(z,y). O

Remark 4.13. Even though we will apply Lemmas 4.11 and 4.12 only to
Banach spaces and their subsets, it is worth it mentioning that there are
more general situations to which they might be applied. The assump-
tions of Lemma 4.11 are satisfied for metric spaces with conical geodesic
bicombing (such convex sets in Banach spaces, C AT(0) spaces, or Buse-
mann spaces), see [17]. Actually the assumptions of Lemma 4.11 are
motivated by the notion of conical geodesic bicombing.

Moreover, there is also a class of self-similar spaces satisfying both
Lemma 4.11 and Lemma 4.12 which extend their applicability beyond
the class of Banach spaces. Those are first layers Vi(G) of metric
scalable groups G (in particular, first layers of Carnot groups); see [32]
for the corresponding definitions. The fact that any Vi(G) as above
satisfies Lemma 4.11 and Lemma 4.12 easily follows from [32, Lemma
3.1]. Thus, Lipschitz-free p-spaces over Vi(G) are isomorphic to their
{,-sum for every p € (0, 1].

B = dOt(y’()) -

< da(yvo) - da(l‘,O).

Lemma 4.11, Lemma 4.12 and Lemma 2.8 easily yield the following.

Corollary 4.14. Let X be a Banach space and let o, p € (0, 1].
(i) If M C X has non-empty interior, then
Fp(Bax, [ 1) Do Fp(M || - [|7).
(11) If M C X is a bounded set, then
Fp(X N\ By, |- 11%) D Fp(XANM, - ]).

i11) For every 0 < s < S < 00, X, is complementably p-amenable
[s,5]
in X \ {0} with constant 2 - 31/7.
(iv) Moreover, there is a constant C = C(p,a) > 0 (depending on p, «
but not on X ) such that if 0 < s < S < 0o and M C X is closed

under multiplication by ﬁ for every x € M\ B(0,S), closed
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under multiplication by ﬁ for every x € M N B(0,s), and we

consider M endowed with the snow-flaking || - ||, then for every
0<s <8 <00, Mg is complementably p-amenable in M with
constant C'.

Our following theorem improves two results of P. Kaufmann from
29], namely [29, Theorem 3.1 and Corollary 3.3].

Theorem 4.15. Let X be a Banach space, 0 <p <1 and 0 < a < 1.
Then for any R > 1 and any subset M of X closed under multiplication
by nonnegative numbers (that is, | J,so AM C M), if we consider M
endowed with the snow-flaking || - ||, we have

Fp(M) = Fp(Bpm) = Fp(M\ Byp) = £y(Fy (M(I,R]))-

Proof. Let 0 < ¢; < ¢; < oo and p > 1. By Corollary 4.14, M|, c,]
is complementably p-amenable in M -1, uc,). Since M., ,) is dense
in Mie, ], Mc,,e5) also is complementably p-amenable in M ,-1¢; icy)-
Then, the result follows from Theorem 4.8.

Remark 4.16. Note that since lim; ,; tx = x for every x € X, the type
of intervals we deal with in Theorem 4.15 is irrelevant.

Corollary 4.17. Let X be a Banach space, 0 < a <1 and 0 <p < 1.
Then

Fp(X - 11%) = 6p(Fp(Sx @ [0, 1], [} - [[%))-

Proof. By Theorem 4.15 we have F,(X, || - [|*) ~ {p(Fp(Xpa, || - [|%))-
Moreover, it is easy to see that the “polar” map

- ( aay H)
X r— X
ER

defines a Lipschitz isomorphism from X7, o onto Sx @ [1,2]. Since the
intervals [1,2] and [0, 1] are isometric we are done. O

Corollary 4.18. Let X be a Banach space. Suppose M is a subset of
X with nonempty interior. Then for 0 < a <1 and 0 < p <1 we have
Fp(X [ 1%) @ Fp (M- []2)-

Proof. Just combine Corollary 4.14 with Theorem 4.15. 0
Corollary 4.19. Let d € N and 0 < p < 1. Then F,(R?) ~ F,(R%).

Proof. The result follows from Theorem 4.15 in combination with the
fact that [—1,1]? and [0, 1] are Lipschitz isomorphic. O

The following result will be further improved in Corollary 5.7.
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Corollary 4.20. Let X be a finite-dimensional Banach space. Then
forO<a <1, F(X,|-]|*) ~¢.

Proof. 1t follows from Theorem 4.15 and the fact that F(K, |- ||*) ~ ¢,
whenever K C X is an infinite compact set (see [38, Theorems 4.38
and 8.49] ). O

Given d € N, S% ! and B denote, respectively, the Euclidean sphere
and the Euclidean ball of R?.

Theorem 4.21. Forde N, 0 <p <1 and 0 < a <1, we have
Fpo(S4 1) = Fp(RE ] - [%).
Proof. Consider S? equipped with the Euclidean distance and choose
the “north” v = (0,...,0,1) as base point of S¢. If we denote
Sis,t] = {x = (2)] € 8% s <wg1 <1}, —1<s<t<l,
and define

2
n(s) —max{l — %,—1} ,0 < s < o0,
we have (S%);s 4 = S4n(t),n(s)] for all 0 < s < t < co. Hence, applying
Theorem 3.5 and Lemma 2.8 with
(]n)nEN - {(—OO, 1/2)7 (Oa OO)}
and R = 2% yields
Fo(S41-1%) 2 F(8700,1], ] - |*) @ R @ Fp(S[~1,1/2],] - ).

The stereographic projection M, from the north point, given by

d
(z)H) s [ —2—
1)1=
=1 1 _ xd+1 i:17

is a diffeomorphism from S¢\ {v} onto R?. Moreover, for every —1 <
h<l,

M,({z € 8% mpi1 = h}) = {y e R?: |ly|| =&(h)},

where £(h) = /(1 + h)/(1 — h). Consequently, M, is a Lipschitz iso-
morphism from S%[—1,1/2] onto v/3B? which maps S¢[—1,0] onto By.
We infer that S%[—1,1/2] and S¢[—1,0] are Lipschitz isomorphic to
B? and that S¢[—1,0] is a Lipschitz retract of S¢[—1,1/2]. Therefore
S4—1,0] is complementably p-amenable in S%—1,1/2]. Applying The-
orem 3.6 with the singleton (I,,)nen = {(1/2,00)} and R = 2%, and
taking into account Lemma 2.8 we obtain

Fp(‘sd[_170]7 | ’ |a) g ‘FP(Sd’| ’ |a>'
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Since S¢[—1,0] and S%0, 1] are isometric,
]:p(Sd[—l,O], | ) |a> = Fp(Sd[O’ 1}7 | ’ |a)'

Combining and applying Theorem 4.15 together with Pelczynski’s de-
composition method yields F,(S% |-|*) ~ F,(B%|-|*). Invoking The-
orem 4.15 completes the proof. 0

5. APPLICATIONS TO DOUBLING METRIC SPACES

In this section we first provide a proof of the fact that for p € (0, 1],
every doubling metric space N is complementably p-amenable in any
metric space containing it , which answers in the positive Question
6.7 from [2]. This is known for p = 1, but our proof seems to be
interesting even for this case because usually the authors refer to several
several deep results from [33], while here we give a brief self-contained
argument. Further, we collect applications of this fact together with
methods developed in preceding sections.

5.1. Doubling metric spaces are complementably p-amenable.
Let us recall that a metric space M is doubling if there exists a constant
D(M) € N, called the doubling constant of M, such that every ball
of radius » > 0 in M can be covered by at most D(M)-many balls
of radius r/2. It is not very difficult to see that every subspace of
a doubling metric space M is again doubling with doubling constant
bounded by D(M)?2. Euclidean spaces are typical examples of doubling
spaces. Doubling metric spaces are precisely the metric spaces of finite
Assouad dimension. The purpose of this subsection is to prove the
following result.

Theorem 5.1. Let (M, d) be a metric space and N be a closed subset
of M with finite doubling constant D > 2. For each 0 < p < 1, N
is complementably p-amenable in M with constant at most C(p) D*/P.
To be precise, C(p) = 112 - 157,

The proof for p = 1 was given in [30], where the authors observed
that it follows from deep results of Lee and Naor [33]. Recently, an
easier proof of the essential ingredient by Lee and Naor was given in
[10] and this approach actually admits generalization to the case p < 1,
which is what we indicate in this subsection. Moreover, we present a
self-contained and easier argument even for the case p = 1 at the cost
of getting a worse estimate (D* instead of log D which is the estimate
for p =1 from [30]). Let us give some more details.
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First we need the following preliminary result which is more-or-less
the content of [10, Lemma 2.4]. For the convenience of the reader we
include the proof here.

Proposition 5.2. Let (M,d) be a metric space and N C M be a
closed subset with finite doubling constant D > 2. Then there exists a
countable family (V;, ¢;, x;)icr such that:

(H.1) z; € N and d(x;,x) < 7d(x,N) for alli € I and all x € V;;

(H.2) (V;)icr is a 3D*-overlapping open cover of M\ N’;

(H.3) for each i € I the mapping ¢;: M\ N — [0,1] is 1-Lipschitz
with {x € M\ N: ¢;(z) >0} C V;; and

(H.4) for every x € M\N there exists i € I with ¢;(x) > d(z,N)/4.

Proof. For n € Z, let N,, be a maximal 2"-separated subset of N, i.e.,
d(y,z) > 2" for all y, z € N,, with y # z and d(z,N,,) < 2" for all
x € N. Since N, intersects finitely many elements of any ball of M,
infyen;, d(z,y) is attained for all x € M, so that the annulus

W,={r e M\N:2"<d(z,N) < 2"}
is covered by the family
Wiy = {2z € Wy d(z,y) < d(x,2) for all ze€ N, }, yeN,.

In turn, (W,,)nez is a partition of M \ N. Therefore, if we put I =
{(y,n):n€Z,ye N,}, (Wy)ier is a cover of M\ N. For each (y,n) €
I, put z(,) =y and

V(y’n) = {.CE e M \N d(z, W(y,n)) < Zn_l}.
Since W; CV; for all i € I, (V});e; is an open cover of M \ N. Define
¢i(z) =dx, M\ Vi), ze M\N, €l,

so that (H.3) trivially holds. We claim that (V;, ¢;, x;)ics is the desired
family. We start by proving that if (y,n) € I and = € V|, then

2"t < d(z,N)<5-2""" and (5.8)
d(y,z) <7-2"% (5.9)

which easily yields (H.1). Indeed, there is 2’ € Wy, with d(z,2") <
2"=1. Since 2/ € W, thereis z € N with d(2/, z) < 2""!. The properties
of N}, yield ¥ € N,, with d(z,y) < 2". Since d(2,y) < d(z',v/),

d(z,N) < d(z',N) +d(x,2') < 2" + 2"t =5.2""1
d(x, N) > d(2',N) —d(z,2') > 2" —2"1 =21 and
d(z,y) < d(z,2") +d(2’,y) < d(z,2) +d(z",y)
< d(z,2) +d(2', z) + d(z,Y)
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< 2n71 + 2n+1 + 2n — 7 . anl

(H.2): Given z € M\ N, put K,, = {y € N,,: & € V[ )} for each
n € Z. Suppose that K, # () and pick y € K,,. If z € K,, inequality
(5.9) yields

d(y,2) < d(y,z) +d(x,z) <14.2"1 =7.2",

Therefore K, is contained in the ball B(y,7 - 2"). In turn, by the
doubling property, B(y, 7-2") is covered by D* balls of radius 7-2"4. If
one of these balls contains two different points 21, 29 € K,, we reach the
absurdity d(z;, 29) < 14-2"% < 2" s0 |K,,| < D*. Moreover, if j € Z is
such that d(z, N') € [27,271) inequality (5.8) yieldsn € {j—1, 5, j+1}.
We infer that |{i € I: z € V;}| < 3D*.

(H4): Let x € M\ N and pick i = (y,n) € I with z € W,.
If z € M\ V; by definition we have d(z,z) > d(z,W;) > 2"7! so
¢i(r) > 2771 Since, by definition, d(z,N) < 4-2"7! we are done. [
Proof of Theorem 5.1. Let V = (V;, ¢, x;)ics be as in Proposition 5.2,
and set K = 3D*, so that (V;);c; is K-overlapping. Hence, by prop-
erty (H.2), of V, we candefine ®: M\ N — [0,00) by & = 3. ; ¢;.
Moreover, since for each x, y € M \ N the cardinality of the set

Ly ={i€l: ¢i(x) # 0 or ¢i(y) # 0}
is at most 2K, ® is (2K)-Lipschitz. Besides, by property (H.4) of V,
O(x) > d(z,N)/4 for all x € M \ N. Hence, for each i € I we can
define ¢;: M\ N — [0,1] by ¢; = ¢;/®. Of course, Y, ;1 = 1
Consider f: M — F,(N) given by

fa) {5(@ zEN,
' YoierVi(x)o(x;) e MA\N.

By Lemma 2.7, it suffices to show that f is C-Lipschitz for C' =
112(5K)'/?. First, we prove that for all z, y € M\ N

> Ji(a) — i)l < < 28K ), (5.10)

Ap
iel Z,Y

where A, , = max{d(y,N),d(z,N)}. We may assume without loss
of generality that d(z,N) < d(y,N'). Using that the functions ¢; are
1-Lipschitz we obtain

( ) ( )
¢i(2)|®(y) — P(2)| + D(x)[di(x) — ¢i(y)]
O(z)®(y)

<
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2K ¢i(2)d(z,y) + 2(z)d(z, y)

- O(z)®(y)
Thus, summing over I, ,, we get
4K 16K 16 K
; —d ——d(x,y) = —d(x,y).
; i y)| < 5(y) (z,y) < iy N) (z,y) i, (z,y)

Applying Hélder’s inequality yields (5.10). We also infer from Holder’s
inequality that for all z € M\ N

1/p
> ()P < K (sz ) < K'°P (5.11)
i€l el

Let 2, y € M. If {z,y} C N then of course we have || f(z) — f(y)|| =
d(z,y). Suppose that x € N and y € M\ N. By properties (H.1) and
(H.3) of V, d(x;,y) < 7d(x,y) whenever ;(y) # 0. Hence, taking also
into account (5.11),

1f(y) x)||P = Z@/h —(y) +d(y) — d())
< 37U (W) + P (0,2)
< (7" +1)d’(z,y) Z U (y)

< K'P(7P + 1)d(z,y).

It remains to deal with the case {z,y} C M\N. Suppose that there
exists j € I with {z,y} C V;. If z € V; we have

d(xi,xj) < d(zg,x) +d(x,z;) < 2-7d(x,N).

Since the same holds if y € V;, we have d(x;, ;) < 14A, , foralli € I, ,,.
Combining this piece of information with inequality (5.10) we obtain

1f (@) = f)lI” = Z(@Di(ﬂﬁ) — ¥i(y))(6(x:) — 6(x;))
Z i y)IPd’ (i, ;)
SWPALLS () — dily)P

el

< 2-112°KdP(z, ).
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Finally, assume that {i € [: 2z € V;} N{i € I:y € V;} = 0. Taking
into account (5.11) we have

£ () = S()lIP < | wil@)(8(x:) — 6(y)) p
< il@bp VdP(x,y
<ZI¢p WP (zi, ) + dP(x,y))
< (Td (@, N+ d(w,y)) Y v ()
< K'PdP(x,y) + TPAL, ilw
P

Considering also the inequality that we obtain from switching the roles
of z and y, and using again (5.10) yields

1f (@) = FIIP < 17 (@) = 0@ + [16(y) = o(@)[]” + lo(=) = F(w)]I”
< K"+ 1)dP(z,y) + TAY (ZW’ )+ 7 (y >

i€l
= K"+ D) (x,y) + ALY [i(x) — ¢i(y)]”
el
<K' +1+2-56° - K)d(z,y).
Combining the inequalities and comparing the constants in the esti-

mates yields || f(x) — f(y)|| < Cd(zx,y). O

5.2. Applications. The following result answers in the positive [2,
Question 6.7].

Corollary 5.3. Let M be a doubling metric space and N C M. Then
for p € (0,1], N is complementably p-amenable in M with constant
depending only on p and M. In particular, F,(M) has the m-property.

Proof. We can assume without loss of generality that N is closed. Since
N is a doubling metric space with doubling constant depending only on
that of M, the first part of the corollary holds. To prove that F,(M)
has the m-property, we order the set

[={N C M:|N| < oo}

by inclusion, and for each N' € I we choose Ty = L, o Py, where
Py: Fy(M) — F,(N) is the map provided by the complementable p-
amenability of N and L,: F,(M) — F,(N) is the canonical map. O
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Corollary 5.4. Let M be a complete countable doubling metric space.
Then F(M) has the FDD property.

Proof. By Corollary 5.3, F(M) has the m-property and since any com-
plete doubling metric space is proper, by [15] F(M) has MAP. Since
any separable Banach space with 7m-property and MAP has the FDD
property (see [14, Theorem 4.6 and Theorem 6.3]), we are done. [

We also immediately obtain the following interesting result which
applies, e.g., to Carnot groups.

Corollary 5.5. Let p € (0,1] and (M,d) be a self-similar doubling
metric space. Then there exists R > 1 such that

Fp(M) = Fp(Bpm) = Fp(M\ Bym) = 0, (}—p(M(l,R]))) .
Proof. Just apply Theorem 4.8 and Theorem 5.1. 0

The following corollary is a generalization of [29, Corollary 3.5].
Recall that a metric space M is Lipschitz homogeneous if for every
x,y € M there is a Lipschitz isomorphism f: M — M with f(z) = v.

Corollary 5.6. Let (M, d) be a pointed self-similar doubling Lipschitz
homogeneous metric space. Then given N C M with non-empty inte-

rior we have F,(M) ~ F,(N) for all p € (0,1].

Proof. Since M is Lipschitz homogeneous, all the balls are Lipschitz
equivalent. Thus, if B C N is a ball, using Theorem 5.1 and Corol-
lary 5.5 we obtain

Fp(N) QF, (M) = Fp(Bm) = Fp(B) S Fp(N).

By Corollary 5.5 we have F,(M) ~ {,(F,(M)) and so an application
of Pelczyniski’s decomposition method finishes the proof. O

We next see a generalization of the essentially known result that
F(K,d") ~ ¢; whenever (K, d) is an infinite compact set in a doubling
metric space (see [38, Theorems 4.38 and 8.49]). We do not aim here
to prove its analogue for p < 1.

Corollary 5.7. Let (M, d) be a doubling metric space and 0 < a < 1.
Then F(M,d™) =~ (.

Proof. Pick 0 < a < 3 < 1. By Assouad’s theorem (see [8]), (M, d*/?)
admits a bi-Lipschitz embedding in some Euclidean space. Thus, we
assume without loss of generality that (M, d*) is a subset of (X, d?) for
some finite-dimensional Banach space X. Since (X,d”) is a doubling
metric space, from Theorem 5.1 we obtain F(M,d*) < F(X,d?). By
Corollary 4.20, F(X,d?) ~ ¢,. Since ¢, is a prime Banach space (see
[35]) we are done. O
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Let us consider the case when the doubling metric space in question
is not self-similar (a typical example is Z%).

Given R € (0,1) U (1,00), we shall say that a pointed metric space
(M, d,0) is R-closed if there exists a map f: M — M fulfilling (4.6)
with f(0) = 0. Note that, in the case when R < 1 and M is complete,
there is always a fix point of a mapping f satisfying (4.6), so the condi-
tion f(0) = 0 is redundant. Both metric spaces N? and Z? are 2-closed
and doubling.

Theorem 5.8. Let (M, d,0) be a pointed doubling metric space which
is R-closed for some R € (0,1) U (1,00). Let N be a countable set and
¢: N — N, unbounded. Then:

(i) If R > 1, for every ¢ > R we have

lp(Fp(M N\ Bum)) == Fp(M\ Bu) =~ <@ ‘FP<M(R¢(n),CR¢(”)])> .

neN

(i) If R < 1, for every 0 < ¢ < R we have

Up(Fp(Bum)) = Fp(Bm) =~ <@ fp(M(cR¢(“),R¢<”)])) .

neN

In particular, if M is uniformly separated and R > 1, or M is bounded
and R < 1, we have F,(M) =~ €,(F,(M)).

Proof. Let us prove (i). Pick an arbitrary pu > 0. For n € Z, set
M, = Mgncrr) and Ny, == M-1pn yegn). Let f: M — M be a
map such that d(f(x), f(y)) = Rd(x,y) for all x, y € M with f(0) = 0.
Note that f* is a 1-Lipschitz isomorphism onto its image for all k € N.
Moreover, fk(Mn) C M. By Theorem 5.1, there is a constant K,
such that F,(M,) is Kj-complemented in F,(M,,) for every n < m.
Theorem 5.1 also yields a constant K5 such that M,, is complementably
p-amenable in N,, with constant K, for every n € Z. Hence, the result
follows from Theorem 3.8.

The proof of (ii) is analogous and so we omit it. If M is uniformly
separated (resp. bounded) we have M = M \ By (resp. M = By)
under a suitable rescaling of the metric. Since rescaling of the metric
space gives isometric Lipschitz free spaces, we are done U

Remark 5.9. A theorem analogous to Theorem 5.8 holds for open,
closed, left-closed, and right-open intervals.

Recall that a net in a metric space M is an a-separated and b-dense
subset in M for some positive numbers a,b. A typical example of a
net in R? is the set Z?. The following corollary extends and improves
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the result [24, Theorem 7| of P. Hdjek and M. Novotny on ¢;-sums of
Lipschitz free spaces over nets.

Corollary 5.10. Let M be a pointed doubling self-similar metric space
and let N C M be a net in M. Then, for every p € (0,1], we have

FpN) 2= 6, (Fp(N))-

Proof. Tt is not difficult to construct a net Ny C M in M which is
R-closed for some R > 1 (see the proof of [12, Corollary 1.18]). Thus,
by Theorem 5.8, F,(Ny) =~ €,(Fp(No)). If N C M is an arbitrary net
in M, using that M is unbounded and separable, hence all the nets
are infinite and countable, by [2, Theorem 3.5] we get that F,(N) ~
Fp(No), and we are done. O

The following is an improvement of [12, Corollary 1.18].

Corollary 5.11. Let (M,d,0) be a pointed doubling self-similar metric
space and let N C M be a net in M. Then Lipy(N') ~ Lipy(M).

Proof. Just combine [12, Proposition 1.9] with Corollaries 5.5 and 5.10.
O

Corollary 5.10 gives, in particular, F,(Z%) ~ (,(F,(Z%)) for every
d € N. We plan on studying in depth the structure of the Lipschitz
free p-spaces F,(Z¢) in a further publication. For the time being we
can state the following.

Theorem 5.12. For every p € (0,1] and d € N we have F,(N?) ~
Fp(Z).

Proof. By Theorem 5.1, F,(N%) < F,(Z?), and by Theorem 5.8,

Fo(Z4) ~ (@ fp(/\/ln)> ,

neN

where M,, = {z € Z¢: 2" < |z|s < 2772}, Moreover, for every n € N
the set M,, is isometric to a subset of N¢ (use the map x — {2"+2}4—x1),

so by Theorem 5.1 the spaces F,(M,,) are uniformly complemented in
F»(N?). Using Corollary 5.10 we obtain

Fp(Z7) D 4,(F(N)) =~ Fp(NY).

An application of Petczyniski’s decomposition method completes the
proof. 0

To close this section let us relate the finite-dimensional structure of
the Lipschitz-free space over a self-similar doubling metric space with
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the Lipschitz-free spaces over its nets. The following two results apply
for instance to M = R% and N = Z.

Proposition 5.13. Let M be a doubling self-similar metric space and
let N C M be a net in M. For every 0 < p < 1 there is a constant
C > 0 and an increasing sequence (X, )nen of subspaces of F,(M) such

that | J,en Xn = Fp(M) and for all n € N, X,, is C-complemented in
Fp(M) and C-isomorphic to Fy(N).

Proof. Let f: M — M be the bijection from the definition of a self-
similar space and let 0 € M be such that f(0) = 0. It is not dif-
ficult to construct a 1-separated and 1-dense set Ny C M for which
F(No) C N (see, e.g., the proof of [12, Corollary 1.18]). For n € N put
Xy = [0pm(f~™(x)): x € Ny]. Theorem 5.1 gives that X, is uniformly
complemented in F,(M) and uniformly isomorphic to F,(f~™(No)),
which in turn is isometric to F,(Np). Thus, it remains to prove that
Unen Xn is dense in F,(M). For that, it is sufficient to observe that
since Ny is 1-dense, {f™™(z): n € N,z € Ny} is dense in M. Fi-
nally, if N' C M is an arbitrary net, by [2, Proposition 5] we get that
Fp(N) = Fp(No). O

Corollary 5.14. Let M be a doubling self-similar metric space and let
N C M be a net in M. For every p € (0,1], F,(M) is crudely finitely
representable in F,(N) and F,(N) is crudely finitely representable
in Fp(M). Moreover, the finite-dimensional complemented subspace
structures of Fp(N) and F,(M) coincide; that is, there is a constant
C > 1 such that if X is a finite-dimensional and K -complemented
subspace in F,(M) then there is a (CK)-complemented subspace Y in
Fp(N) whose Banach-Mazur distance to X is at most C, and the other
way around.

Proof. By Theorem 5.1, we have F,(N) < F,(M). The rest follows
from Proposition 5.13. 0

6. OPEN PROBLEMS

If M is a compact metric space with only one accumulation point,
F,(M) has the commuting C-BAP for every C > 47 (see Proposi-
tion 4.5). However, by [15] and [13, Theorem 2.4], more can be said
and Fi(K) has even the commuting MAP for every countable metric
compact space K (in fact, it is enough to suppose that K is a count-
able proper metric space, see [16]). We do not know whether a similar
statement holds for p < 1. Note that the proof for p = 1 from [15] is
based on duality techniques and so the proof for p < 1 would be most



36 F. ALBIAC, J. L. ANSORENA, M. CUTH, AND M. DOUCHA

probably interesting even for the classical case of p = 1 as it would
have to rely on different arguments.

Question 6.1. Let K be a countable proper metric space and p € (0, 1).
Does F,(K) have the metric approximation property?

There are known examples of metric spaces M such that F(M)
does not have AP. However, all the examples we know use integration
techniques to some extent. For instance, integration is crucially used
in the proof by Godefroy and Kalton (see [19, Theorem 3.1]) of the
fact that X < F(X) for every separable Banach space, also in the
proof by Godefroy and Ozawa (see [22, Corollary 5]) that there exists a
compact metric space K such that F(K) fails AP, or in the construction
by Hajek et al. (see [23, Corollary 2.2]) of a compact metric space
homeomorphic to the Cantor space whose Lispchitz-free space fails AP.
It would be interesting to find examples based on certain combinatorial
features of the underlying metric space M. Since integration is not
available in p-Banach spaces with p < 1 (see [1]), a natural question in
this direction is the following.

Question 6.2. Let p € (0,1). Does there exist a metric space M such
that F,(M) does not have AP?

Since for uniformly discrete metric spaces M we know that F,(M)
has AP (see Corollary 4.3), the following seems to be an interesting
problem. Note that if the answer is positive for bounded discrete metric
spaces then it is positive for unbounded metric spaces with finitely
many accumulation points as well (see Proposition 4.1).

Question 6.3. Let M be a discrete metric space. Does F(M) have
AP? Or, more generally, does F,(M) have AP for every p € (0, 1]?

By Theorem 4.15, for every Banach space X and every p € (0, 1] we
have F,(X) =~ ¢,(F,(X)). Our techniques work only for metric spaces,
so the following might be an interesting problem.

Question 6.4. Let X be a p-Banach space. Is F,(X) ~ ,(F,(X)) for
p € (0,1]7

Pick a separable Banach space X and Nx anet in X. By [2, Theorem
3.5] and Corollary 5.10, if X is finite-dimensional we have F,(Nx) ~
l,(Fp(Nx)) for every p € (0,1]. The same holds for some infinite-
dimensional Banach spaces X and p = 1 (see [24, Theorem 8]). These
results motivate us to raise the next question. Note that a similar
problem has been proposed for p = 1 in [12, Question 4] and that a
positive answer for some p < 1 would imply a positive answer for each

q € (p,1].
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Question 6.5. Let X be a Banach space and Ny be a net in X. Is
FoNx) = £,(F,(Nx)) for some (any) p € (0, 1]7

By [19, p. 139], we have F(U) ~ U for Pelczynski’s universal basis
space U. We wonder if there are more examples. Recently, there has
been constructed an analogue of this space U for p-Banach spaces, see
[11]. However, the proof that F(U) ~ U seems to very much depend
on techniques available for Banach spaces only. Therefore, we propose
an interesting question which would hopefully also shed the light onto
the case p = 1.

Question 6.6. Does there exist for each p € (0, 1] a p-Banach space X
with F,(X) ~ X7

The following question is motivated by Corollary 5.4, [29, Corollary
3.5], and [25, Theorem 3.1] from where it follows that whenever K C R?
is a compact set which is either countable or has a non-empty interior,
then F(K') has FDD. A related question is [25, Problem 4.1], where
the authors ask whether F(M) has a Schauder basis whenever M is a
subset of an Euclidean space.

Question 6.7. Let d € N. If K C R? is an uncountable compact set
with empty interior, does F(K') have the commuting BAP?

Note that a positive answer to this question would imply that for

every compact set K in an Euclidean space the Banach space F(K)
has the FDD (see the proof of Corollary 5.4).
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