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Abstract

Reaction-diffusion systems satisfying assumptions guaranteeing Turing’s instability and supple-
mented by unilateral terms of type v− and v+ are studied. Existence of critical points and
sometimes also bifurcation of stationary spatially non-homogeneous solutions is proved for rates
of diffusions for which it is excluded without any unilateral term. The main tool is a general result
giving a variational characterization of the largest eigenvalue for positively homogeneous operators
in a Hilbert space satisfying a condition related to potentiality, and existence of bifurcation for
equations with such operators. The originally non-variational (non-symmetric) system is reduced
to a single equation with a positively homogeneous potential operator and the abstract results
mentioned are used.

Keywords: positively homogeneous operators, maximal eigenvalue, variational characterization,
global bifurcation, reaction-diffusion systems, unilateral sources

1. Introduction

The original goal of this paper was a study of an influence of unilateral terms of type v−,
v+ to bifurcation of stationary spatially non-homogeneous solutions of reaction-diffusion systems
exhibiting Turing’s diffusion driven instability. The systems discussed have the form

∂u

∂t
= d14u+ b11u+ b12v + n1(u, v)

∂v

∂t
= d24v + b21u+ b22v + n2(u, v) + ĝ−(x, v−)− ĝ+(x, v+)

in Ω× [0,∞), (1)

where Ω is a bounded domain in Rm with a Lipschitz boundary, d1, d2 are positive parameters, bij
are real constants, n1, n2 : R2 → R are small nonlinear perturbations, v+, v− denote the positive
and negative part of v, respectively, and ĝ−, ĝ+ : Ω× [0,∞)→ R are functions describing certain
unilateral sources and sinks, see below for more details. However, for our approach we needed a
variational characterization of the largest eigenvalue of a compact positively homogeneous operator
and existence of bifurcation for equations of type

λu− Su+B(u)−N(u) = 0, (2)

where S is a linear compact symmetric operator in a Hilbert space, B is a compact positively
homogeneous operator and N is a small compact nonlinear perturbation. These results perhaps
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can be of a separate interest and therefore they are given in an abstract form in a separate
self-contained Section 4. For a variational characterization of the largest eigenvalue of a compact
positively homogeneous operator B we need a certain additional assumption, namely the condition
(51), which is related to potentiality. For the proof of existence of bifurcation for the equation
mentioned above we need an odd multiplicity of the largest eigenvalue of S and B is supposed to
be small.

Reaction diffusion system (1) will be always supplemented by mixed boundary conditions

∂u

∂~ν
=
∂v

∂~ν
= 0 on ΓN

u = v = 0 on ΓD,
(3)

where ~ν is the outer unit normal to the boundary ∂Ω, ΓN ,ΓD ⊂ ∂Ω are disjoint subsets of ∂Ω
satisfying

measm−1 ΓD > 0, measm−1(∂Ω\(ΓD ∪ ΓN )) = 0 (4)

(the (m − 1)-dimensional Lebesgue measure). In fact, the original model should describe a bio-
chemical reaction of two morphogens having a positive constant equilibrium ū, v̄. Shifting this
positive steady state to zero, we can write the equations in the form (1), where u and v denote de-
viations of concentrations of the morphogens from the values ū, v̄, not concentrations themselves.
We will always suppose that nj are continuously differentiable and

nj(0, 0) =
∂nj
∂u

(0, 0) =
∂nj
∂v

(0, 0) = 0, j = 1, 2, (5)

detB := b11b22 − b12b21 > 0, b11 + b22 < 0,

b11 > 0, b22 < 0, b12b21 < 0.
(6)

It is known that under the assumptions (5), (6), in the case g± = 0 the trivial solution of the
corresponding system without diffusion, i.e. ODE’s obtained from (1) for d1 = d2 = 0, is asymp-
totically stable, but the trivial solution of the full system (1), (3) is unstable for d1, d2 from a
certain open subset DU of the positive quadrant R2

+ (Turing instability), and stable only for

(d1, d2) ∈ DS = R2
+ \DU . See e.g. [13], [14], [5]. Our goal is to prove that for the problem with

non-trivial g±, there exist global bifurcations of spatially non-homogeneous stationary solutions
in the domain DS , where this is impossible in the case g± = 0.

The unilateral terms g−(x, v−) and g+(x, v+) can model a unilateral source and sink, which
is active only in points x and times t where v(t, x) < 0 and v(t, x) > 0, that means where the
concentration of the second morphogen is less and larger, respectively, than v̄. We will assume in
the whole paper that ĝ−, ĝ+ : Ω × [0,∞) → R are functions satisfying Carathéodory conditions,
having a derivative with respect to the second variable at zero for a.a. x ∈ Ω and

ĝ±(x, 0) ≡ 0,
∂ĝ±(x, ξ)

∂ξ

∣∣∣∣
ξ=0

= s±(x) for a.a. x ∈ Ω, (7)

where

s+ ∈ L∞(Ω), s+(x) ≥ 0 for a.a. x ∈ Ω, s+(x) > 0 for a.a. x ∈ Ω+,

s− ∈ L∞(Ω), s−(x) ≥ 0 for a.a. x ∈ Ω, s−(x) > 0 for a.a. x ∈ Ω−,

Ω+,Ω− being open subsets of Ω, not both coinciding with Ω.

(8)

A typical example is ĝ±(x, ξ) = s±(x)ξ/(1 + ξ), i.e.

ĝ−(x, v−) = s−(x)
v−

1 + v−
, ĝ+(x, v−) = s+(x)

v+

1 + v+
.
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A similar problem was discussed in [4]. However, our current results are in some sense comple-
mentary to those from [4], as explained in Section 2, Remark 5. Let us note that an influence of
unilateral sources or sinks described by variational or quasi-variational inequalities was studied
already in a series of papers, see e.g. [2], [11], [15], [10], [7], [12], [8] and the references therein.
However, variational inequalities model sources and sinks with an infinite power which prevent
any decrease and increase below and above, respectively, the value mentioned, which is hardly to
imagine in a nature. The unilateral terms considered in the current paper and in [4] seem to be
more natural.

A basic step is the proof of existence of critical points, that means couples d1, d2 for which
the homogenized stationary problem

d14u+b11u+ b12v = 0,

d24v+b21u+ b22v + s−(x)v− − s+(x)v+ = 0
(9)

with (3) has a nontrivial solution lying in DS . The main idea is to write the weak formulation in
the form of a system of operator equations in a subspace of the Sobolev space, to express u from
the first equation, substitute it to the second equation, to obtain in this way a single equation with
a positively homogeneous operator, and to use abstract results mentioned above. This idea was
used for the case of unilateral sources described by variational inequalities already in [11], [10],
[1], [8]. For a study of bifurcation we combine these ideas with a use of Leray-Schauder degree (a
jump of a degree implies bifurcation).

Let us note that unilateral sources and sinks for u (an activator) have an opposite influence,
they reduce the region where bifurcation of stationary solutions can arise, see [10] for the case of
quasi-variational inequalities.

The results concerning critical and bifurcation points of reaction diffusion systems with uni-
lateral sources and sinks are formulated and discussed in Section 2. Section 3 is devoted to the
reduction of a reaction-diffusion system to a single operator equation. This makes possible to use
abstract results of Section 4 concerning eigenvalues and bifurcations for equations with positively
homogeneous operators to the proofs of the main results of Section 2, which are given in Section
5. For the completeness, in Appendix we prove the C1 smoothness of a map N1 important for the
use of Implicit Function Theorem in Section 3 and explain a general global bifurcation result used
in Section 4.

The authors express theirs thanks to Lutz Recke for nice and fruitful discussions during his
one week stay in Prague, which substantially improved the final formulation of the condition (51)
and Theorem 7 in Appendix.

2. Main results for systems with unilateral sources and sinks

2.1. Systems with unilateral sources and sinks in the interior of the domain

We are interested in stationary solutions of the system (1), (3), i.e. we will study the system

d14u+ b11u+ b12v + n1(u, v) = 0,

d24v + b21u+ b22v + n2(u, v) + ĝ−(x, v−)− ĝ+(x, v+) = 0
(10)

with boundary conditions (3), n1, n2 satisfying (5) and ĝ± satisfying Caratheodory conditions and
(7), (8). By a solution we will always mean a weak solution (u, v) ∈ HD ×HD, where

HD := {ϕ ∈W 1,2(Ω)| ϕ|ΓD
= 0 in the sense of traces},

see also Observation 2 in Section 3. The space HD will be equipped with the scalar product and
the norm

〈v, ϕ〉 =

∫
Ω

∇v · ∇ϕ dx and ‖v‖ =

(∫
Ω

|∇v|2 dx

) 1
2

for all v, ϕ ∈ HD. (11)
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It is well known that under the assumption (4), this norm is equivalent with the usual Sobolev
norm. We will assume that there exists C > 0 such that

|ni(χ, ζ)| ≤ C(1 + |χ|p−1 + |ζ|p−1) for i = 1, 2 and all ζ, χ ∈ R,
|ĝ±(x, ξ)| ≤ C(1 + |ξ|p−1) for a.a. x ∈ Ω and all ξ ∈ R,

(12)∣∣∣∣∂n1

∂χ
(χ, ζ)

∣∣∣∣+

∣∣∣∣∂n1

∂ζ
(χ, ζ)

∣∣∣∣ ≤ C(1 + |χ|p−2 + |ζ|p−2) for all χ, ζ ∈ R (13)

with some p satisfying

p > 2 if m = 2 or 2 < p <
2m

m− 2
if m > 2. (14)

For the case m = 1 we do not need (12), (13) and we can formally set p =∞. Let us emphasize
that (13) is supposed only for n1, not n2. The reason will be clear in Section 3. We will also
discuss the problem with ĝ−(x, v−), ĝ+(x, v+) ≡ 0, i.e. the system

d14u+ b11u+ b12v + n1(u, v) = 0,

d24v + b21u+ b22v + n2(u, v) = 0
(15)

with boundary conditions (3), and the corresponding linearization

d14u+ b11u+ b12v = 0,

d24v + b21u+ b22v = 0,
(16)

again with b.c. (3).

Definition 1. The points d = (d1, d2) ∈ R2 for which the problem (16), (3) or (9), (3) has a
nontrivial (weak) solution are called critical points of (16), (3) or (9), (3), respectively.

By a bifurcation point of (15), (3) or (10), (3) we mean a point (db1, d
b
2) for which in any

neighborhood of (db1, d
b
2, 0, 0) in R2 ×HD ×HD there exists (d1, d2, u, v) with (u, v) 6= 0 satisfying

(in the weak sense) (15), (3) or (10), (3), respectively.

Standard considerations imply that any bifurcation point is simultaneously a critical point, cf.
also Lemma 2 in Section 4.

The set of all critical points of the problem (16), (3) is known, and those lying in the positive
quadrant form curves Ck introduced below. One of our goals is to show that critical points of (9),
(3) are under some assumptions also in a domain where it is impossible for the problem (16), (3).

However, in order to translate our problem to a variational form, we will fix the value d1 ∈
(0, y1), d1 6= yj := b11/κj for all j ∈ N, that means only d2 will be a parameter. In this case we
will deal with critical and bifurcation points in the sense of the following Definition 2, cf. [1], [8].

Definition 2. A parameter d2 ∈ R is a critical point of (9), (3) or (16), (3) with fixed d1 if there
exists a (weak) solution (u, v) 6= (0, 0) of (9), (3) or (16), (3), respectively.

By a bifurcation point of (15), (3) or (10), (3) with fixed d1 we mean a point db2 for which in
any neighborhood of (db2, 0, 0) in R×HD ×HD there exists (d2, u, v) with (u, v) 6= 0 satisfying (in
the weak sense) (15), (3) or (10), (3), respectively.

Notation 1. Let us denote {κk}k∈N, 0 < κ1 < κ2 ≤ · · · , the set of all eigenvalues of the operator
−4 with boundary conditions (3). We choose an orthonormal basis {ek}k∈N of the Hilbert space
HD so that for any k ∈ N the function ek is an eigenfunction corresponding to the eigenvalue κk.
Let us note that the first eigenvalue κ1 is simple and the corresponding eigenfunction e1 does not
change sign in Ω.

It is known that the set of all critical points (d1, d2) of the linear problem (16), (3) is
⋃∞
i=1 C̃k,

where

C̃k =

{
d = (d1, d2) ∈ R2

∣∣∣∣ d2 :=
1

κk

(
b12b21

d1κk − b11
+ b22

)}
,
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see [13] or [14] for 1D case or [5] for the general case.
For each k ∈ N the set C̃k is a hyperbola in R2. We are interested only in (d1, d2) lying in the

positive quadrant, i.e. we consider the sets

Ck =

{
d = (d1, d2) ∈ R2

+

∣∣∣∣ d2 :=
1

κk

(
b12b21

d1κk − b11
+ b22

)}
.

The envelope of the curves Ck will be denoted as CE . A vertical asymptote yk of Ck is{
(d1, d2) ∈ R2

∣∣∣∣ d1 = yk :=
b11

κk

}
. (17)

The sets Ck are black-colored lines in Fig. 1 on p. 8. We define two sets DU and DS as

DU =
{

(d = d1, d2) ∈ R2
+ | d lies to the left from at least one Ck, k ∈ N, i.e. from CE

}
,

DS =
{
d = (d1, d2) ∈ R2

+ | d lies to the right from all Ck, k ∈ N, i.e. from CE
}
.

According to the following remark, the sets DS and DU are called the domain of stability and
domain of instability, respectively.

Remark 1. Let us consider an eigenvalue problem

d14u+ b11u+ b12v = λu,

d24v + b21u+ b22v = λv

with b.c. (3). If d ∈ DS then there exists ε > 0 such that Re λ < −ε < 0 for all eigenvalues of
this problem, and if d ∈ DU , then there exists at least one real eigenvalue λ > 0, see [13] or [14]
for 1D case or [5] for the general case. Hence, for d ∈ DS or d ∈ DU the trivial solution of (1),
(3) with ĝ± ≡ 0 is linearly stable or unstable, respectively.

If ĝ1, ĝ2 6≡ 0, then it is not possible to describe analytically analogues of DS , DU .
Our main results concerning reaction-diffusion systems are Theorems 1 - 3. The most essential

are the last assertions of these theorems, which state that there is a critical point and a bifurcation,
respectively, in the domain DS where neither critical nor bifurcation points can exist in the classical
case without unilateral sources and sinks (i.e. with g+, g− ≡ 0). The existence of bifurcation in
DS is proved only for small s+, s− while the existence of critical points is proved for arbitrary
nontrivial sources and sinks.

Notation 2. We will consider fixed d1 ∈ (0, y1), d1 6= yj := b11/κj for all j ∈ N, and numbers

λSj :=
b12b21

d1κ2
j − b11κj

+
b22

κj
, d0

2 := max
j∈N

λSj ,

dm2 := sup
{ξj}∈`2\{0}

∞∑
j=1

λSj ξ
2
j +

∞∑
j=1

ξj

∫
Ω

( ∞∑
k=1

ξkek

)−
s− −

( ∞∑
k=1

ξkek

)+

s+

 ej dx

∞∑
j=1

ξ2
j

. (18)

We define the multiplicity of d0
2 as the multiplicity of the eigenvalue κj0 of −4, where j0 is such

that the maximum in the definition of d0
2 is attained for j = j0.

Let us define a convex cone

K := {v ∈ HD
∣∣ s−(x)v−(x)− s+(x)v+(x) = 0 for a.a. x ∈ Ω}.
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The numbers λSj are in fact defined also for parameters d1 > y1. However, in such a case it

follows from (6) that λSj < 0 for all j 6= N. Moreover, because limj→∞ κj =∞, we get

sup
j∈N

λSj = lim
j→∞

λSj = 0,

and no maximizer exists. For this case our method cannot give an existence of positive critical
and bifurcation points. We are interested only in positive diffusion rates, therefore the parameters
d1 > y1 will not be of our interest.

Later we will see in Sections 3 and 5 that if dm2 is positive, then it is the largest eigenvalue
of a certain compact positively homogeneous operator characterizing the problem (9), (3). The
numbers λSj are eigenvalues of a certain linear compact symmetric operator S characterizing the
problem (16), (3). Under the assumptions (6) and d1 ∈ (0, y1), d1 6= yj for all j ∈ N the number
d0

2 is its largest eigenvalue and simultaneously the largest critical point of (16), (3) with fixed d1.
For more details see Section 3.

Under the assumptions (8) the cone K contains functions which are nonnegative on Ω− and
nonpositive on Ω+ and zero elsewhere. In particular, K contains nonzero elements.

Theorem 1. Let (4), (6), (8) be true and let d1 be fixed, d1 ∈ (0, y1), d1 6= yj for all j ∈ N. The
number dm2 from (18) can be estimated as

d0
2 ≥ dm2 ≥ max

sup
j∈N

(
λSj −

‖s−‖L∞ + ‖s+‖L∞
κj

)
, sup
{ξj}∈`2\{0}∑

ξjej∈K

∞∑
j=1

λSj ξ
2
j∑∞

i=1 ξ
2
i

 . (19)

If dm2 is positive, then the supremum in (18) is maximum, i.e.

dm2 = max
{ξj}∈`2\{0}

∞∑
j=1

λSj ξ
2
j +

∞∑
j=1

ξj

∫
Ω

( ∞∑
k=1

ξkek

)−
s− −

( ∞∑
k=1

ξkek

)+

s+

 ej dx

∞∑
j=1

ξ2
j

, (20)

and it is the largest critical point of the system (9), (3) with fixed d1. If d1 ∈ (y2, y1), ‖s−‖L∞ > 0,
‖s+‖L∞ > 0 and dm2 > 0, then (d1, d

m
2 ) ∈ DS.

The proof is postponed to Section 5. Let us note that if the first supremum in (19) is positive,
then it is the maximum. This follows from the fact that limj→∞ λSj = 0, limj→∞ κj = ∞.
Similarly, if the supremum over K in (19) is positive, then it is the maximum, see Theorem 3.2 in
[1].

Remark 2. If d1 ∈ (0, y1), d1 6= yj for all j ∈ N, ‖s±‖L∞ are sufficiently small, then it follows
from (6), Notation 2 and (19) that dm2 from (18) is positive. If, moreover, d1 ∈ (y2, y1) and
‖s±‖L∞ > 0, then (d1, d

m
2 ) ∈ DS by the last assertion of Theorem 1.

The following conclusion follows from Remark 3.4 in [1]:
There exists ε > 0 such that if d1 ∈ [y1 − ε, y1) then the supremum over K in (19) is positive.

Hence, dm2 in (18) is positive. The only assumption for application of the remark mentioned is an
existence of v ∈ K with 〈v, e1〉 6= 0. However, any v positive on Ω+ or on Ω− and zero elsewhere
satisfies this condition because

〈v, e1〉 =

∫
Ω

∇v∇e1 dx = κ1

∫
Ω

ve1 dx 6= 0.

Hence, if ‖s±‖L∞ > 0 and d1 ∈ [y1− ε, y1) then (d1, d
m
2 ) ∈ DS by the last assertion of Theorem 1.
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Let us emphasize that the bounds in (19) can be found explicitly for particular systems.
Let d1 ∈ (0, y1), d1 6= yj for all j ∈ N be fixed. We denote

S = {(d2, u, v) ∈ R×HD ×HD | (u, v) 6= 0, (u, v) is a solution of (10), (3)}.

Theorem 2. Let (4)–(8), (12), (13) be true, let d1 ∈ (0, y1), d1 6= yj for all j ∈ N, let the
multiplicity of d0

2 be odd. Then for any sufficiently small ε > 0 there exists τs > 0 such that if
‖s−‖L∞ , ‖s+‖L∞ ∈ [0, τs) then d0

2− ε < dm2 and there is a global bifurcation point db2 ∈ [d0
2− ε, dm2 ]

of the system (10), (3) with fixed d1 in the following sense. The connected component Sdb2 of S
containing the point (db2, 0) satisfies at least one of the following conditions:

(a) Sdb2 is unbounded,

(b) there exists (u, v) ∈ HD ×HD, (u, v) 6= 0 such that (0, u, v) ∈ Sdb2 ,

(c) there exists a critical point dc2 /∈ [d0
2− ε, dm2 ] of (9), (3) with fixed d1 such that (dc2, 0, 0) ∈ Sdb2 .

If, moreover, d1 ∈ (y2, y1), ‖s+‖L∞ , ‖s−‖L∞ > 0 then (d0
1, d

b
2) ∈ DS.

The proof is postponed to Section 5. It will be seen from it that “sufficiently small ε” means
ε ∈ (0,min(d0

2, (d
0
2 − d2

2)/2)), where d2
2 is the second largest critical point of the system (16), (3)

with fixed d1. Especially if d1 ∈ (y2, y1), then d2
2 < 0 and therefore (d0

2 − d2
2)/2 > d0

2/2. Thus ε
can be taken from the interval (0, d0

2/2). See also Fig. 1 and Observation 3.
If s± ≡ 0, then it is known that the global bifurcation is exactly at the point dm2 = d0

2.
If n1(u, v) ≡ n1(v), then we do not have to suppose the condition (13), see also Remark 6 in

Section 3.

Remark 3. In the proof of the last assertion of Theorem 1 we will use the fact that the first
eigenvalue κ1 of the Laplacian is simple and the eigenfunction e1 does not change its sign in
Ω. Under the assumption ‖s+‖L∞ , ‖s−‖L∞ > 0 it means that e1 /∈ K. Under a more general
assumption

e /∈ K for all eigenfunctions e corresponding to the eigenvalue κj0 , j0 such that d0
2 = λSj0 , (21)

the proof in Section 5 can be modified to get dm2 < d0
2. However, in the case k > 1 it does not

imply that (d1, d
m
2 ) ∈ DS because the point (d1, d

0
2) can lie above the hyperbolas Cj with j ≤ k,

see Observation 3 in Section 3. Therefore the case k > 1 is not included in the last statements of
Theorems 1, 2.

The situation for small ‖s±‖L∞ is sketched in Fig. 1. Black lines are the curves Ck. Grey
lines are lower bounds to the largest critical points of the system (9), (3) given by the expressions
in (19), which continuously depend on d1. Grey filling marks an area in DS containing critical
points and bifurcations of the problem (9), (3) and (10), (3), respectively, see Remark 2.

Remark 4. Applying Theorem 1.1 from [17], we can arrive at the following conclusions. Let
(4)–(8), (12), (13) for both n1, n2 be fulfilled, let d1 ∈ (0, y1), d1 6= yj for all j ∈ N, let d2 ∈ R
be an arbitrary critical point (not necessarily the largest one) with the multiplicity one of the
system (16), (3) with fixed d1 and let (u0, v0) denote the associated nontrivial solution. Let s±
be fixed. Then there are τ0 > 0 and Lipschitz continuous mappings d2+, d2− : [0, τ0) → R,
u+, v+, u−, v− : [0, τ0) → HD such that for any τ ∈ (0, τ0) the numbers d2+(τ), d2−(τ) are in a
certain neighborhood of d2 the only critical points of

d14u+ b11u+ b12v = 0 (22)

d24v + b21u+ b22v + τ(s−(x)v− − s+(x)v+) = 0 (23)

with b.c. (3) and with fixed d1, the functions (u+(τ), v+(τ)), (u−(τ), v−(τ)) are the associated
normalized nontrivial solutions, v+(0) = v0, v−(0) = −v0, d2+(0) = d2−(0) = d2. Moreover,
d2±(τ) are simultaneously bifurcation points of the system

d14u+ b11u+ b12v + n1(u, v) = 0

d24v + b21u+ b22v + n2(u, v) + τ(ĝ−(x, v−)− ĝ+(x, v+)) = 0
(24)
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Figure 1: Sketch of hyperbolas.

with (3) and with fixed d1. Furthermore, if v0 /∈ K ∪ (−K) then d2±(τ) < d2 for all τ ∈ (0, τ0).
In particular, if d1 ∈ (y2, y1) and ‖s±‖L∞ > 0, then (d1, d2±(τ)) ∈ DS for all τ ∈ (0, τ0). The
parameter τ0 has here a similar role as the parameter τs in Theorem 2, i.e. it is related to the
strength of the source. Unlike our Theorems 1, 2, no estimate of the type (19) can be derived from
[17], multiplicity of the critical point of system (16), (3) with fixed d1 is assumed to be one and it
is not known whether the bifurcation branches are global. Cf. also Remark 8 in Section 4 and [17],
Section 4, Theorem 4.3. However, the statement mentioned above does not follow directly from
Section 4 in [17], where applications to our system are given, but the authors assume Ω ∈ C1,1,
and solutions are considered in different spaces.

Remark 5. In the paper [4], existence of bifurcation points in DS was proved for the case that

unilateral terms s
(1)
− u− − s(1)

+ u+ and s
(2)
− v− − s(2)

+ v+ are added into the first and second equation,
respectively. A curve σ intersecting transversally the border CE between the domain of stability
and instability in some point [d0

1, d
0
2] was considered and the existence of a bifurcation point lying

on this curve in DS was shown. An essential assumption was that if [d0
1, d

0
2] ∈ Ck then s

(j)
± e ≡ 0

for some eigenfunction corresponding to κk. This assumption is not fulfilled in the most interesting
situation d1 ∈ (y2, y1), ‖s±‖L∞ > 0 in our Theorems 1, 2, because then [d1, d

0
2] ∈ C1 and e1 does

not change its sign in Ω. Cf. also Remark 3. The result [4] is based on a topological method related
(in a non-direct way) to the well-known Dancer’s global bifurcation theorem, but it gives only a local
bifurcation without any information about existence of a connected branch of bifurcating solutions.
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2.2. Systems with unilateral sources and sinks on the boundary

Let us consider the problem

d14u+ b11u+ b12v + n1(u, v) = 0,

d24v + b21u+ b22v + n2(u, v) = 0,
(25)

u = v = 0 on ΓD,

∂u

∂~n
= 0 on ΓN ,

∂v

∂~n
= s−(x)v− − s+(x)v+ on ΓN ,

(26)

where s± ∈ L∞(ΓN ), s±(x) ≥ 0 for a.a. x ∈ ΓN , and s±(x) > 0 on Γ±, where Γ± are open
subsets of ΓN but not both coinciding with ΓN , cf. (8). We do not consider here general ĝ+, ĝ−
as in (10), because it would mean some additional technical complications. The corresponding
homogenization of (25), (26) is (16), (26). We define a cone

KN := {v ∈ HD
∣∣ s−v− − s+v

+ = 0 on ΓN in the sense of traces}.

Notation 3. Let us define

d̃m2 := sup
{ξj}∈`2\{0}

∞∑
j=1

λSj ξ
2
j +

∞∑
j=1

ξj

∫
ΓN

( ∞∑
k=1

ξkek

)−
s− −

( ∞∑
k=1

ξkek

)+

s+

 ej dS

∞∑
j=1

ξ2
j

. (27)

We will use λSj and d0
2 from Notation 2.

The following Theorem 3 is an analogue of Theorems 1 and 2.

Theorem 3. Let d1 ∈ (0, y1), d1 6= yj for all j ∈ N, let (4)-(6), (13) and the first line of (12)

be true. The estimate (19) with dm2 , K and ‖s±‖L∞ replaced by d̃m2 , KN and CT ‖s±‖L∞(ΓN ),
respectively, is valid, where CT is a constant from the embedding HD ↪→ L2(∂Ω).

If d̃m2 is positive, then the supremum in (27) is maximum, i.e.

d̃m2 = max
{ξj}∈`2\{0}

∞∑
j=1

λSj ξ
2
j +

∞∑
j=1

ξj

∫
ΓN

( ∞∑
k=1

ξkek

)−
s− −

( ∞∑
k=1

ξkek

)+

s+

 ej dS

∞∑
j=1

ξ2
j

, (28)

and it is the largest critical point of the system (16), (26) with fixed d1.
Let the multiplicity of d0

2 be odd. Then for any sufficiently small ε > 0 there exists τs > 0
such that if s−, s+ ∈ L∞(ΓN ), ‖s−‖L∞(ΓN ), ‖s+‖L∞(ΓN ) ∈ [0, τs) then d0

2 − ε < d̃m2 and there is

a global bifurcation point d̃b2 ∈ [d0
2 − ε, d̃m2 ] of the system (25), (26) in the sense of Theorem 2. If

d1 ∈ (y2, y1), ‖s−‖L∞(ΓN ), ‖s+‖L∞(ΓN ) ∈ (0, τ0) then (d1, d̃
b
2) ∈ DS.

An analogue of Remark 2 applies here as well. The proof of Theorem 3 is postponed to Section
5.

3. Abstract formulation and reduction to one equation

In the whole section we will assume (4)–(8), (12), (13). Of course, for the problem (9), (3) the
assumptions (5), (12), (13) are trivially fulfilled.
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3.1. Basic definitions and abstract formulation

Using Riesz Representation Theorem and compact embedding HD ↪→↪→ L2(Ω) we can define
a linear, compact, symmetric and positive operator A : HD → HD by

〈Av, ϕ〉 =

∫
Ω

vϕ dx for all v, ϕ ∈ HD,

and nonlinear operators β+, β− : HD → HD by

〈β−(v), ϕ〉 = −
∫

Ω

s−(x)v−ϕ dx for all v, ϕ ∈ HD,

〈β+(v), ϕ〉 =

∫
Ω

s+(x)v+ϕ dx for all v, ϕ ∈ HD.
(29)

Clearly, β± are positively homogeneous, i.e. β±(tv) = tβ±(v) for all t > 0, v ∈ HD.
Let us recall that if v ∈ HD, then v− ∈ HD and ‖v−‖ ≤ ‖v‖, see e.g. [19], p. 47, Corollary

2.1.8.

Observation 1. One can easily show that the eigenvalues of A are λk := κ−1
k , k = 1, 2, ..., and

the corresponding eigenfunctions of −4 and A coincide.

Using Riesz Representation Theorem, the growth conditions (12), well-known properties of
Nemyckii operator and compact embedding HD ↪→↪→ Lp(Ω) with p satisfying (14), we can define
continuous compact nonlinear operators N1, N2 : HD ×HD → HD by

〈Ni(u, v), ϕ〉 =

∫
Ω

ni(u, v)ϕ dx for all u, v, ϕ ∈ HD, i = 1, 2, (30)

and Ĝ−, Ĝ+ : HD → HD by

〈Ĝ−(v), ϕ〉 = −
∫

Ω

ĝ−(x, v−)ϕ dx, 〈Ĝ+(v), ϕ〉 =

∫
Ω

ĝ+(x, v+)ϕ dx for all v, ϕ ∈ HD.

The operators N1, N2 satisfy

N1(0, 0) = N2(0, 0) = 0, lim
u,v→0

N1(u, v)

‖u‖+ ‖v‖
= lim
u,v→0

N2(u, v)

‖u‖+ ‖v‖
= 0. (31)

The first condition in (31) follows directly from (5), the proof of the second condition in (31) can
be found in [10].

If N1(u, v) ≡ N1(v), then the condition (13) is superfluous. This will be seen from the proof
of Theorem 4 describing a reduction of our system to a single equation, where (13) guarantees
N1 ∈ C1(HD ×HD,HD), see Theorem 7 in Appendix.

The relation between the operators Ĝ− and β−, Ĝ+ and β+ is explained by the following
lemma.

Lemma 1. If vn ⇀ v in HD then β−(vn) → β−(v), β+(vn) → β+(v). If vn → 0, vn/‖vn‖ ⇀ w
in HD, then

Ĝ−(vn)

‖vn‖
→ β−(w) and

Ĝ+(vn)

‖vn‖
→ β+(w).

Proof. Let vn ⇀ v. The compact embedding HD ↪→↪→ L2(Ω) gives∥∥β− (vn)− β−(v)
∥∥ = sup

ϕ∈HD,‖ϕ‖=1

−
∫

Ω

s−(x)
(
vn
− − v−

)
ϕ dx ≤ C‖s−‖L∞‖vn − v‖L2 → 0. (32)

Let us define the operator G : HD → HD by

〈G(v), ϕ〉 = −
∫

Ω

(g−(x, v)− s−(x)v)ϕ dx for all v, ϕ ∈ HD.

10



The assumption (7) implies

lim
ξ→0

g−(x, ξ)− s−(x)ξ

ξ
= 0 for a.a. x ∈ Ω,

and this together with (12) give

lim
v→0

G(v)

‖v‖
= 0,

see Proposition 3.2 from [6]. If vn → 0, then also v−n → 0, and the choice v := v−n yields

lim
n→∞

‖Ĝ−(vn)− β−(vn)‖
‖vn‖

= lim
n→∞

‖G(v−n )‖
‖vn‖

≤ lim
n→∞

‖G(v−n )‖
‖v−n ‖

= 0. (33)

If vn/‖vn‖⇀ w, then this together with the positive homogeneity of β− and (32) with vn replaced
by vn/‖vn‖ and v replaced by w give

Ĝ−(vn)

‖vn‖
→ β−(w).

The proof for β+, Ĝ+ is analogous.

Observation 2. A couple (u, v) ∈ HD × HD is a weak solution of the problem (10), (3) or (9),
(3) if and only if it is a solution of the system of operator equations

d1u− b11Au− b12Av −N1(u, v) = 0,

d2v − b21Au− b22Av −N2(u, v) + Ĝ−(v) + Ĝ+(v) = 0,
(34)

or

d1u− b11Au− b12Av = 0,

d2v − b21Au− b22Av + β−(v) + β+(v) = 0,

respectively.

The abstract formulation of (16), (26) and (25), (26) can be done similarly, see the end of
Section 5.

3.2. Reduction to one equation

Theorem 4. Let d1 be fixed, d1 6= yj for all j ∈ N. Then there exist neighborhoods U, V of 0 in
HD such that (u, v) ∈ U × V satisfies (34) if and only if

d2v − Sv −N(v) + β+(v) + β−(v) = 0,

u = F (v),
(35)

where F : V → U is a bijective and continuously differentiable map, S := b12b21A(d1I−b11A)−1A+
b22A is a linear, compact and symmetric operator and N : HD → HD is a continuous and compact
nonlinear operator satisfying

lim
v→0

N(v)

‖v‖
= 0. (36)

We postpone the proof to the end of this section. Let us note that Theorem 4 is crucial for
the proofs of Theorems 1 and 2.

Remark 6. It will be seen from the proof that if n1(u, v) ≡ n1(v), then U = V = HD,

F (v) = b12(d1I − b11A)−1Av + (d1I − b11A)−1N1(v),

and the condition (13) is not needed.
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According to Theorem 4, it will be sufficient to study only the first equation in (35).

Corollary 1. It follows from Theorem 4 and Observation 2 that d2 is a critical point of (9), (3)
with fixed d1 if and only if d2 is an eigenvalue of the operator S − β+ − β− (see Definition 3 in
Section 4). A point d2 is a bifurcation point of the system (10), (3) with fixed d1 if and only if d2

is a bifurcation point of the first equation in (35).
In particular, d2 is a critical point of (16), (3) with fixed d1 or a bifurcation point of the system

(15), (3) with fixed d1 if and only if d2 is simultaneously an eigenvalue of the operator S or a
bifurcation point of the first equation in (35) with β± ≡ 0, respectively.

First, let us apply Theorem 4 to the system (34) with Ĝ− ≡ 0, Ĝ+ ≡ 0, i.e. to the system

d1u− b11Au− b12Av −N1(u, v) = 0,

d2v − b21Au− b22Av −N2(u, v) = 0,
(37)

and to the corresponding linearization

d1u− b11Au− b12Av = 0,

d2v − b21Au− b22Av = 0.
(38)

Theorem 4 reduces an analysis of (37) and (38) to a study of equations

d2v = Sv +N(v) and d2v = Sv, (39)

respectively. The operator S is compact and symmetric, thus it has a sequence of eigenvalues, all
of them are real and have the only accumulation point zero. Using Observation 1 and Notation 1
we can easily find that

Sek = b12b21A(d1I − b11A)−1Aek + b22Aek =
1

κk

(
b12b21

d1κk − b11
+ b22

)
ek. (40)

Hence,

λSk =
1

κk

(
b12b21

d1κk − b11
+ b22

)
, k ∈ N (41)

introduced already in Notation 2 are eigenvalues of S with the corresponding eigenfunctions ek.
Since the set {ek}k∈N is an orthonormal base of HD, there are no other eigenvalues of S.

Observation 3. Let d1 ∈ (0, y1), d1 6= yj for all j ∈ N. In our notation the sequence λSk is not
monotone and the largest eigenvalue of S denoted as λSmax is in general not λS1 but λSj , where

λSj = max
w∈HD

‖w‖6=0

〈Sw,w〉
‖w‖2

= max
k∈N

1

κk

(
b12b21

d1κk − b11
+ b22

)
. (42)

Let us write for a moment S(d1) and λSk (d1) to emphasize the dependence of S and λSk on d1.
It follows from the definition of Ck that the graph of the function λSk (d1) is the curve Ck, see Fig.
1. If d1 < yk = b11/κk for some k ∈ N, i.e. d1 is to the left from k-th asymptote (17), then
d1 < b11/κj for any j ≤ k and consequently λSj > 0 as can be seen from formulae (41) and (6). If

d1 ∈ (y2, y1), then λS1 is simple because κ1 is simple, and it is the only positive eigenvalue of S.
Hence, λSmax = λS1 .

Proof of Theorem 4. We will show that the assumptions of Implicit Function Theorem are fulfilled
for the map Φ : HD ×HD → HD defined by

Φ(u, v) := d1u− b11Au− b12Av −N1(u, v).

Evidently Φ(0, 0) = 0. Since N1 ∈ C1(HD × HD,HD) under the assumptions (12), (13), see
Theorem 7 in Appendix, and the operator A is linear and bounded, we have Φ ∈ C1(HD×HD,HD).
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The conditions (31) and d1 6= yk for all k ∈ N, that means d1 /∈ σ(b11A), guarantee that the partial
derivative

Φ′u(0, 0) = d1I − b11A− (N1)′u(0, 0) = d1I − b11A

is a linear isomorphism of the space HD. Implicit Function Theorem gives that there exist neigh-
borhoods U, V of the origin in HD and a bijection F : V → U such that

Φ(u, v) = 0 for (u, v) ∈ U × V if and only if u = F (v).

Moreover, F ∈ C1(V,U). We calculate the partial derivative

Φ′v(0, 0) = −b12A− (N1)′v(0, 0) = −b12A

to find that
F ′(0) = −Φ′u(0, 0)−1Φ′v(0, 0) = b12 [d1I − b11A]

−1
A.

The first equation in (34) gives u = F (v) and introducing the linear compact symmetric operator
S := b21AF

′(0) + b22A, the second equation in (34) can be written as

d2v − Sv −N2(F (v), v)− b21A(F (v)− F ′(0)(v)) + Ĝ−(v) + Ĝ+(v) = 0.

It follows that system (34) is on U × V equivalent to (35) with

N(v) := N2(F (v), v) + b21A(F (v)− F ′(0)(v))− Ĝ−(v) + β−(v)− Ĝ+(v) + β+(v).

The operators A,N1, N2, Ĝ±, β
± are continuous and compact, therefore N is continuous and com-

pact. It remains to show that N(v) satisfies (36). Mean Value Theorem gives an existence of
C > 0 such that

‖F (v)‖+ ‖v‖
‖v‖

≤ C‖v‖ for all v ∈ V,

which together with (31) implies

lim
v→0

N2(F (v), v)

‖v‖
= lim
v→0

N2(F (v), v)

‖F (v)‖+ ‖v‖
‖F (v)‖+ ‖v‖

‖v‖
→ 0. (43)

We can use Mean Value Theorem again to get

‖F (v)− F ′(0)v‖ = sup
t∈[0,1]

‖F ′(tv)(v)− F ′(0)(v)‖.

Due to the continuity of F ′ we have

lim
v→0

sup
t∈[0,1]

‖F ′(tv)(v)− F ′(0)(v)‖
‖v‖

≤ lim
v→0

sup
t∈[0,1]

∥∥∥∥F ′(tv)

(
v

‖v‖

)
− F ′(0)

(
v

‖v‖

)∥∥∥∥ = 0. (44)

Using (43), (44) and (33) (which holds for any vn → 0) and its analogue for Ĝ+, β
+ we get (36).

4. Eigenvalues and bifurcations for equations with positively homogeneous operators

In this section we will always consider a general real Hilbert space H with a scalar product
〈·, ·〉, the corresponding norm ‖·‖ and a nonlinear compact operator P : H→ H which is positively
homogeneous. Moreover, we will assume that P fulfills the conditions

vn ⇀ v in H ⇒ P (vn)→ P (v) in H, (45)

sup
v∈H,‖v‖=1

〈P (v), v〉 > 0. (46)
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It follows easily that the number

|P | := sup
v∈H,‖v‖=1

‖P (v)‖

is finite and

‖P (v)‖ ≤ |P |‖v‖ for all v ∈ H.

We will work mainly with operators P := S − B satisfying (46), where S : H → H is always a
linear symmetric compact operator, B is a positively homogeneous operator satisfying (45) (with
P replaced by B) and

〈B(v), v〉 ≥ 0 for all v ∈ H. (47)

Furthermore, N : R×H→ H will denote always a compact nonlinear operator satisfying

lim
v→0

N(λ, v)

‖v‖
= 0 uniformly for λ from compact subsets of R. (48)

We will consider a nonlinear problem

λv − Sv +B(v)−N(λ, v) = 0. (49)

Definition 3. We call λ ∈ R an eigenvalue of a positively homogeneous operator P : H → H if
there exists a nontrivial v ∈ H (an eigenvector corresponding to λ) such that P (v) = λv. We will
denote λPmax the largest eigenvalue of the operator P , if it exists.

Of course, eigenvectors of a positively homogeneous operator corresponding to an eigenvalue
λ do not form a subspace in general.

The goal of this section is to give a variational characterization of the largest eigenvalue of a
positively homogeneous operator and in some cases also to give an existence of a global bifurcation
points for the equation (49).

Theorem 5. There exists v0 ∈ H such that ‖v0‖ = 1 and

max
v∈H,‖v‖6=0

〈P (v), v〉
‖v‖2

= max
v∈H,‖v‖=1

〈P (v), v〉 = 〈P (v0), v0〉. (50)

If there is v0 with ‖v0‖ = 1 satisfying (50) and in addition the condition

lim
t→0

1

t

[
〈P (v0 + th)− P (v0), v0〉

]
= 〈P (v0), h〉 for all h ∈ H, (51)

then the largest eigenvalue of P is λPmax = 〈P (v0), v0〉 and v0 is the corresponding eigenvector.
If (51) is fulfilled for all v0 ∈ H, ‖v0‖ = 1, then v0 ∈ H with ‖v0‖ = 1 is an eigenvector of P

corresponding to λPmax if and only if v0 fulfills (50).

Condition (51) means that the functional Φ(v) := 1
2 〈P (v), v〉 has at v0 the Frechet derivative

Φ′(v0) = P (v0). Hence, if (51) is fulfilled for all v0 ∈ H, ‖v0‖ = 1, then P is a potential operator
with the potential Φ.

We will prove in Section 5 that particular operators β+ and β− introduced in Section 3, which
are neither linear, nor differentiable, satisfy (51) for all v0 ∈ H, ‖v0‖ = 1. The following simple
example demonstrates that sometimes only some maximizers of (50) satisfy (51).

Example 1. Let H = R3 and let P be a linear operator defined by a matrix

P =

1 0 0
0 a −a
0 a a

 ,
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a > 0 being a parameter. The eigenvalues are λmax = 1, λ2 = a(1 + i), λ3 = a(1 − i). If a = 1,
then 〈v, Pv〉 = ‖v‖2 for all v ∈ R3 and the maximum in (50) is 1. However, only the maximizers
v := ±(1, 0, 0) satisfy the condition (51) and they are the only eigenvectors corresponding to the
eigenvalue λPmax. If a = 2, then the maximum in (50) is 2, no maximizer satisfies (51) and the
largest eigenvalue λPmax is not characterized by the formula (50).

Proof of Theorem 5. The first equality in (50) follows from positive homogenity if this maximum
exist. There exists a sequence {vn} ⊂ H, ‖vn‖ = 1 for all n ∈ N such that

sup
v∈H,‖v‖=1

〈P (v), v〉 = lim
n→∞

〈P (vn), vn〉.

We can assume without loss of generality that vn ⇀ v0 with some v0 ∈ H and it follows from (45)
that

P (vn)→ P (v0).

Moreover, v0 6= 0 due to (46). We will prove that ‖v0‖ = 1. Clearly ‖v0‖ ≤ 1. If there were
‖v0‖ < 1 then we would have

sup
v∈H,‖v‖=1

〈P (v), v〉 =〈P (v0), v0〉 <
〈P (v0), v0〉
‖v0‖2

,

which is a contradiction. Thus, ‖v0‖ = 1, the maximum in (50) exists and is attained at v0.

Now let v0 satisfy also (51). Then for arbitrary t ∈ R and h ∈ H with ‖v0 + th‖ 6= 0 we
have

〈P (v0 + th), v0 + th〉
‖v0 + th‖2

≤ 〈P (v0), v0〉.

Since ‖v0‖ = 1, this can be rewritten as

〈P (v0 + th), v0 + th〉 ≤ 〈P (v0), v0〉(1 + 2t〈v0, h〉+ t2‖h‖2).

Rearranging the inequality and setting λPmax = 〈P (v0), v0〉 give

〈P (v0 + th), v0〉 − 〈P (v0), v0〉+ t〈P (v0 + th), h〉 ≤ λPmax(2t〈v0, h〉+ t2‖h‖2).

For t 6= 0 we can divide the last inequality by 2t. Then the limiting processs t → 0+, t → 0−
together with (51) and the continuity of P give successively

〈P (v0), h〉 ≤ λPmax〈v0, h〉,
〈P (v0), h〉 ≥ λPmax〈v0, h〉.

Since h was arbitrary, we get
P (v0) = λPmaxv0.

Hence, λPmax is an eigenvalue and v0 is a corresponding eigenvector of the operator P . Let λP ∈ R
be an arbitrary eigenvalue of P and v1 a corresponding eigenvector. We multiply the equation
λP v1 = P (v1) by v1/‖v1‖2 and use (50) to get

λP =
〈P (v1), v1〉
‖v1‖2

≤ max
v∈H,v 6=0

〈P (v), v〉
‖v‖2

= λPmax.

Hence, λPmax is the largest eigenvalue of the operator P .
Let (51) be fulfilled for all v0 ∈ H, ‖v0‖ = 1. If v0 ∈ H, ‖v0‖ = 1 is an eigenvector to λPmax,

then

λPmax = λPmax‖v0‖2 = 〈P (v0), v0〉 ≤ max
v∈H,‖v‖=1

〈P (v), v〉 = λPmax,

i.e. v0 satisfies (50). Conversely, if v0 fulfills (50), then according to the first statement of Theorem
5 it must be an eigenvector of P corresponding to λPmax.
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Remark 7. Theorem 5 is a generalization of the well-known fact that the largest eigenvalue of a
linear symmetric compact operator S satisfying (46) is

λSmax = max
v∈H,‖v‖=1

〈Sv, v〉 (52)

and the eigenvectors of S corresponding to λSmax are exactly all maximizers. Any such operator
has a potential Φ(v) = 1

2 〈Sv, v〉, that means it satisfies (51) for all v0.
Let us also recall that the second largest eigenvalue λS2 of the operator S satisfies

λS2 = max
v∈H̃,‖v‖=1

〈Sv, v〉, (53)

where H̃ is the orthogonal complement to the eigenspace of λSmax.
Even in the case of a symmetric linear operator, the assumption (46) is crucial. If S is a

negative operator, then sup‖v‖=1〈Sv, v〉 = 0, no maximizer exists and 0 is not an eigenvalue of S.

In particular, if (51) is fulfilled for v0 satisfying (50) with P := B, then it is fulfilled also for
P := S −B and Theorem 5 gives that the largest eigenvalue λS−Bmax of S −B is

λS−Bmax = max
v∈H,‖v‖=1

(〈Sv, v〉 − 〈B(v), v〉) .

Observation 4. Since we assume that B is a positively homogeneous operator satisfying (47), we
see that

λS−Bmax = max
v∈H,‖v‖=1

(〈Sv, v〉 − 〈B(v), v〉) ≥ max
v∈H,‖v‖=1

〈Sv, v〉 − max
v∈H,‖v‖=1

〈B(v), v〉 =

= λSmax − max
v∈H,‖v‖=1

〈B(v), v〉 ≥ λSmax − |B|.

Remark 8. The following assertions can be obtained from Theorem 1.1 in [17]. If the operators S
and B satisfying our assumptions are given and λS is an arbitrary simple eigenvalue of S with an
eigenvector v0, ‖v0‖ = 1, then there are τ0 > 0 and Lipschitz continuous maps λ+ : (−τ0, τ0)→ R,
λ− : (−τ0, τ0) → R, v+ : (−τ0, τ0) → H, v− : (−τ0, τ0) → H such that λ+(τ), λ−(τ) are the
only eigenvalues of the operator S − τB in a certain neighborhood of λS, v+(τ), v−(τ) are the
corresponding normalized eigenvectors, v+(0) = v0, v−(0) = −v0 and λ±(0) = λS. Moreover,
λ±(τ) are simultaneously bifurcation points of the equation

λv − Sv + τB(v)−N(λ, v) = 0,

but this bifurcation is only local. In fact, problems studied in [17] are more general but the simplicity
of λS is essential. The information that the eigenvalues λ±(τ) are isolated is not self-evident. Let
us emphasize that a variational inequality, which can be approximated by an equation with a large
positively homogeneous penalty term, can have an interval of eigenvalues, see [9].

In our Theorem 5 we need no assumption concerning multiplicity and no smallness of the
positively homogeneous perturbation B, but we deal only with the largest eigenvalue. In Theorem 6
below we get a global bifurcation point for small positively homogeneous perturbations B under the
assumption that λSmax is of odd multiplicity, but unfortunately we do not show that the bifurcation
is in λS−Bmax , only in its small left neighborhood. However, this is a plausible information from the
point of view of an application to reaction-diffusion systems from Section 2.

For any positively homogeneous operator B, let us denote

S(B) = {(λ, v) ∈ (0,∞)×H | v 6= 0, (λ, v) satisfies (49)}.

Let us recall that λS2 denotes the second largest eigenvalue of S, see (53).
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Theorem 6. Let the multiplicity of λSmax be odd. Then for any ε ∈ (0,min{(λSmax−λS2 )/2, λSmax})
there exists τ0 > 0 such that the following assertion is true. If B satisfies besides our basic
assumptions also |B| ≤ τ0 and P := S−B fulfills (51) with v0 satisfying (50), then λSmax−ε < λS−Bmax

and there is a global bifurcation point λb ∈ [λSmax − ε, λS−Bmax ] of the problem (49) in the following
sense. The connected component Sλb

of S(B) containing the point (λb, 0) ∈ R×H satisfies at least
one of the following conditions:

(a) Sλb
is unbounded,

(b) there exists v ∈ H, v 6= 0 such that (0, v) ∈ Sλb
,

(c) there exists an eigenvalue λc /∈ [λSmax− ε, λS−Bmax ] of the operator S−B such that (λc, 0) ∈ Sλb
.

For the proof of this Theorem we will need two auxiliary lemmas.

Lemma 2. Let {λn} be a sequence of real numbers such that λn → λ 6= 0, let {vn} be a sequence
in H satisfying vn → 0, vn/‖vn‖⇀ w and

λnvn − Svn +B(vn)−N(λn, vn) = 0. (54)

Then
vn
‖vn‖

→ w, ‖w‖ = 1 and λw − Sw +B(w) = 0.

Proof. Dividing (54) by ‖vn‖ gives

λn
vn
‖vn‖

= S

(
vn
‖vn‖

)
−B

(
vn
‖vn‖

)
+
N(λn, vn)

‖vn‖
. (55)

The operator S is compact and linear, the operator P := B satisfies (45) and the nonlinear operator
N satisfies (48), therefore the r.h.s. of the equation (55) converges strongly. Since λn → λ 6= 0,
it implies that vn/‖vn‖ converges strongly and the only possible limit is the vector w, ‖w‖ = 1.
Providing the limit in the equation (55) and using (48) yields

λw = Sw −B (w) .

Notation 4. For λ 6= 0 we denote by deg(I − (1/λ)P,Br, 0) the Leray-Schauder degree of the
map I − (1/λ)P with respect to the ball Br with the radius r > 0, centred at the origin and with
respect to the point 0. This degree is independent of r due to the positive homogenity. We use the
symbol σ(S) for the spectrum of the operator S. The set σ(S) consist of 0 and all eigenvalues of
the operator S.

Lemma 3. For any ε > 0 there exists τ0 > 0 such that

deg

(
I − 1

λ
(S +B), Br, 0

)
= deg

(
I − 1

λ
S,Br, 0

)
for any λ ∈ R satisfying dist(λ, σ(S)) > ε, any B satisfying in addition to our standard assump-
tions |B| ≤ τ0, and all r > 0.

Proof. Due to a homotopy invariance of the degree it suffices to prove that for any ε > 0 there is
τ0 > 0 such that

v − 1

λ
(Sv + tB(v)) 6= 0 for all λ,B from the assumptions, t ∈ [0, 1], ‖v‖ = 1.

Let us suppose that it is not true. Then there exist ε > 0, tn ∈ [0, 1], λn with dist(λn, σ(S)) > ε,
Bn and vn with ‖vn‖ = 1 for all n ∈ N, satisfying

λn → λ, vn ⇀ v, ‖Bn(vn)‖ → 0, (56)
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and
λnvn − Svn + tnBn(vn) = 0. (57)

Since 0 ∈ σ(S) and dist(λn, σ(S)) > ε we have |λn| > ε for all n ∈ N. The compactness of S
together with (56), (57) gives vn → v, ‖v‖ = 1. Providing the limit in the equation (57) leads to

λv − Sv = 0,

but simultaneously dist(λ, σ(S)) > ε which is a contradiction.

Proof of Theorem 6. The assumptions (46) for P := S−B and (47) imply that sup‖v‖=1〈Sv, v〉 >
0, therefore λSmax exists and is positive. Due to Leray-Schauder Index Formula and the assumed
odd multiplicity of λSmax we have

deg

(
I − 1

λ
S,Br, 0

)
= 1 for all λ > λSmax, r > 0

deg

(
I − 1

λ
S,Br, 0

)
= −1 for all λ ∈ (λS2 , λ

S
max), r > 0,

where λS2 is the second largest eigenvalue of S. Lemma 3 gives that for any ε from the assumptions
there exists τ0 > 0 such that for B satisfying |B| ≤ τ0 we have

deg

(
I − 1

λ
(S +B), Br, 0

)
= deg

(
I − 1

λ
S,Br, 0

)
= 1 for all λ > λSmax + ε, r > 0

deg

(
I − 1

λ
(S +B), Br, 0

)
= deg

(
I − 1

λ
S,Br, 0

)
= −1 for all λ ∈ (λS2 + ε, λSmax − ε), r > 0.

It follows from known results [16] and [18], see Theorem 8 in Appendix for details, that there exists
λb ∈ [λSmax − ε, λSmax + ε] such that the connected component Sλb

of S(B) containing the point
(λb, 0) satisfies at least one of the alternatives (a)–(c) with the interval [λSmax − ε, λS−Bmax ] replaced
by [λSmax−ε, λSmax +ε]. Due to Theorem 5 the largest eigenvalue λS−Bmax of S−B exists. Observation
4 gives that λSmax − ε < λS−Bmax if τ0 is small enough. According to Lemma 2 the number λb must
be in the interval [λSmax− ε, λS−Bmax ] and at least one of the conditions (a)–(c) must be fulfilled.

5. Proofs of Theorems 1, 2 and 3

In this section we will always consider the operators A, β±, S,N introduced in Section 3.

Lemma 4. The operators β+ and β− are positively homogeneous and satisfy (47) with B = β±

and (51) with P = β± for any v0 ∈ HD, ‖v0‖ = 1. The operator P := S − β− − β+ satisfies (51)
for any v0 ∈ HD, ‖v0‖ = 1.

Proof. The condition (47) for β± follows directly from the definition and (8). Let t ∈ R and
h, v0 ∈ HD, ‖v0‖ = 1 be arbitrary. We will show that (51) is true for the operator P := β−. We
introduce sets Ω+

0 ,Ω
−
0 ,Ω

+
th,Ω

−
th such that Ω+

0 ∪ Ω−0 ∪ Ω+
th ∪ Ω−th = Ω and

(v0 + th)(x) < 0 for a.a. x ∈ Ω−th, v0 + th ≥ 0 for a.a. x ∈ Ω+
th,

v0(x) < 0 for a.a. x ∈ Ω−0 , v0(x) ≥ 0 for a.a. x ∈ Ω+
0 .

Then
1

t

[
〈β−(v0 + th)− β−(v0), v0〉

]
− 〈β−(v0), h〉 =

=
1

t

[
−
∫

Ω

(v0 + th)−v0 − v−0 v0 dx

]
+

∫
Ω

v−0 h dx =

=
1

t

[∫
Ω−th

(v0 + th)v0 dx−
∫

Ω−0

v2
0 dx

]
−
∫

Ω−0

v0h dx =

=
1

t

[∫
Ω−th

v2
0 dx−

∫
Ω−0

v2
0 dx

]
+

∫
Ω−th

v0h dx−
∫

Ω−0

v0h dx.

(58)
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Dominated Convergence Theorem gives

lim
t→0

(∫
Ω−th

v0h dx

)
= lim
t→0

∫
Ω

v0hχΩ−th
dx =

∫
Ω

v0hχΩ−0
dx =

∫
Ω−0

v0h dx, (59)

where χ denotes the characteristic function of a set in a subscript. Now we introduce sets
Ωth1,Ωth2,Ωth3 such that

Ω−th = Ωth1 ∪ Ωth2, Ω−0 = Ωth1 ∪ Ωth3,

and

v0(x) < −th(x) and v0(x) < 0 for a.a. x ∈ Ωth1,

v0(x) < −th(x) and v0(x) ≥ 0 for a.a. x ∈ Ωth2,

v0(x) ≥ −th(x) and v0(x) < 0 for a.a. x ∈ Ωth3.

Then ∫
Ω−th

v2
0 dx−

∫
Ω−0

v2
0 dx =

∫
Ωth1

v2
0 dx +

∫
Ωth2

v2
0 dx−

∫
Ωth1

v2
0 dx−

∫
Ωth3

v2
0 dx =

=

∫
Ωth2

v2
0 dx−

∫
Ωth3

v2
0 dx.

(60)

Since |v0(x)| < |th(x)| for a.a. x ∈ Ωth2 ∪ Ωth3, we get

lim
t→0

1

t

∣∣∣∣∫
Ωth2

v2
0 −

∫
Ωth3

v2
0

∣∣∣∣ ≤ lim
t→0

1

t

∣∣∣∣∫
Ωth2

(th)2 −
∫

Ωth3

(th)2

∣∣∣∣ = 0. (61)

It follows from (58) – (61) that

lim
t→0

∣∣∣∣1t [〈β−(v0 + th)− β−(v0), v0〉
]
− 〈β−(v0), h〉

∣∣∣∣ = 0,

which proves that β− satisfies (51). The proof for β+ is similar. The operator S is linear, compact
and symmetric, therefore it also satisfies (51) for any v0 ∈ HD, ‖v0‖ = 1. Clearly, the operator
P = S − β+ − β− satisfies (51) for any v0 ∈ HD, ‖v0‖ = 1 as well.

Proof of Theorem 1. Since {ek}k∈N is an orthonormal base in HD, see Notation 1, for any v ∈ HD
there exists {ξi} ∈ `2 such that

v =

∞∑
i=1

ξiei.

As Sek = λSk ek by (40), (41) we get

sup
v∈HD,‖v‖=1

〈Sv − β−(v)− 〈β+(v), v〉 =

= sup
{ξj}∈`2\{0}

〈
S

( ∞∑
k=1

ξkek

)
,
∞∑
j=1

ξjej

〉
−

〈
β−
( ∞∑
k=1

ξkek

)
+ β+

( ∞∑
k=1

ξkek

)
,
∞∑
j=1

ξjej

〉
∥∥∥∥∥ ∞∑j=1

ξjej

∥∥∥∥∥
2 =

= sup
{ξj}∈`2\{0}

∞∑
j=1

λSj ξ
2
j +

∞∑
j=1

ξj

∫
Ω

( ∞∑
k=1

ξkek

)−
s− −

( ∞∑
k=1

ξkek

)+

s+

 ej dx

∞∑
j=1

ξ2
j

= dm2

(62)
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by Notation 2. Now we will prove the estimate (19). Due to (8) we have

−〈β−(v), v〉 =

∫
Ω

s−(x)v−v ≥ −‖s−‖L∞
∫

Ω

v2 = −‖s−‖L∞〈Av, v〉,

−〈β+(v), v〉 = −
∫

Ω

s+(x)(v+)2 ≥ −‖s+‖L∞
∫

Ω

v2 = −‖s+‖L∞〈Av, v〉
(63)

for all v ∈ HD. The eigenvalues of the operator S − ‖s−‖L∞A− ‖s+‖L∞A are

λSk −
‖s+‖L∞ + ‖s−‖L∞

κk
,

cf. Observation 1 and (41). By use of (52) with S replaced by S − ‖s−‖L∞A− ‖s+‖L∞A we get

sup
v∈HD,‖v‖=1

〈Sv − ‖s−‖L∞Av − ‖s+‖L∞Av, v〉 = sup
j∈N

(
λSj −

‖s−‖L∞ + ‖s+‖L∞
κj

)
. (64)

If the last supremum is positive, then it is maximum. If it is equal to zero, then no maximizer
exists, cf. Remark 7. Notation 2, Observation 3, the first statement of Lemma 4 and the formulae
(62)– (64) give

d0
2 = max

j∈N
λSj = λSmax = max

v∈HD,‖w‖=1
〈Sv, v〉 ≥ sup

v∈HD,‖v‖=1

〈Sv − β−(v)− β+(v), v〉 =

=dm2 ≥ sup
v∈HD,‖v‖=1

〈Sv − (‖s−‖L∞ + ‖s+‖L∞)Av, v〉 =

= sup
j∈N

(
λSj −

‖s−‖L∞ + ‖s+‖L∞
κj

)
. (65)

Hence, the upper estimate of dm2 and a part of the lower estimate in (19) is proved. Due to the
definition of K and (62) we see that

dm2 = sup
v∈HD,‖v‖=1

〈Sv − β−(v)− β+(v), v〉 ≥ sup
v∈K,‖w‖=1

〈Sv − β−(v)− β+(v), v〉 =

= sup
v∈K,‖w‖=1

〈Sv, v〉 = sup
ξj∈`2\{0}∑
ξjej∈K

∞∑
j=1

λSj ξ
2
j

∞∑
i=1

ξ2
i

,

which finishes the proof of (19).
We will verify that the assumptions of Theorem 5 are fulfilled for the positively homogeneous

operator P := S − β− − β+. The equality (62) together with assumed positiveness of dm2 yield

sup
v∈HD,‖v‖=1

〈Sv − β−(v)− β+(v), v〉 > 0,

and therefore (46) is true. The first assertion of Lemma 1 together with linearity and compactness
of S imply (45). Lemma 4 guarantees that (51) is fulfilled for any v0 ∈ HD. Theorem 5 gives the
existence of v0, ‖v0‖ = 1 such that

λS−β
−−β+

max = max
v∈HD,‖v‖=1

〈Sv − β−(v)− β+(v), v〉 = 〈Sv0 − β−(v0)− β+(v0), v0〉 (66)

is the largest eigenvalue of the operator S − β+ − β−. Now it follows from (62) and (66) that the

supremum in (18) is maximum, i.e. (20) is proved. Due to Corollary 1, the point dm2 = λS−β
−−β+

max

is the largest critical point of the system (9), (3) with fixed d1.
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If d1 ∈ (y2, y1) then λSmax = λS1 , λSmax is simple and the corresponding eigenfunction of S is e1

by Observation 3 and (40). Since e1 has a constant sign in Ω, see Notation 1, we get under the
assumption ‖s+‖L∞ > 0 and ‖s−‖L∞ > 0 that

〈β+(e1) + β−(e1), e1〉 =

∫
Ω

s+(x)(e+
1 )2 + s−(x)(e−1 )2 dx > 0.

Let v0 be from (66). If v0 6= e1 then 〈Sv0, v0〉 < λSmax by Remark 7 and

〈Sv0, v0〉 − 〈β−(v0) + β+(v0), v0〉 < λSmax.

If v0 = e1 then 〈Sv0, v0〉 = λSmax, 〈β−(v0) + β+(v0), v0〉 > 0 and therefore

〈Sv0, v0〉 − 〈β−(v0) + β+(v0), v0〉 < λSmax.

Summarizing, we get

dm2 = max
v∈H,‖v‖=1

〈Sv − β−(v)− β+(v), v〉 < λSmax = d0
2,

which together with the assumption dm2 > 0 implies (d1, d
m
2 ) ∈ DS .

Proof of Theorem 2. We have

〈β−(v), ϕ〉 = −
∫

Ω

s−(x)v−ϕ dx ≤ ‖s−‖L∞‖v−‖L2‖ϕ‖L2 ≤ C‖s−‖L∞‖v‖‖ϕ‖,

where C is a constant from Poincaré inequality. This implies

‖β−(v)‖ = sup
ϕ∈HD,‖ϕ‖=1

〈β−(v), ϕ〉 ≤ C‖s−‖L∞‖v‖.

Similarly for β+ and therefore

‖
(
β− + β+

)
(v)‖ ≤ C (‖s−‖L∞ + ‖s+‖L∞) ‖v‖.

We assume that d0
2 has an odd multiplicity. By Observation 3, the eigenvalue λSmax = d0

2 has an
odd multiplicity and therefore it follows from Theorem 6 and Observation 4 with B := β− + β+

that for any ε ∈ (0,min{λSmax, (λ
S
max − λS2 )/2) there exists τ0 > 0 such that if ‖s−‖L∞ , ‖s+‖L∞ <

τs := τ0/(2C), then λSmax − ε < λS−β
−−β+

max and there is a global bifurcation point λb ∈ [λSmax −
ε, λS−β

−−β+

max ] of the equation

λv − Sv −N(v) + β+(v) + β−(v) = 0

in the sense of Theorem 6. The formulae (62) and (66) imply that λS−β
−−β+

max = dm2 . Due to

Theorem 4 and Corollary 1, db2 = λb ∈ [d0
2 − ε, dm2 ] = [λSmax − ε, λS−β

−−β+

max ] is simultaneously a
global bifurcation point of the system (10), (3) with fixed d1 in the sense of Theorem 2.

To give an abstract formulation of the problem from Section 2.2, we define the operators
β±N : HD → HD by

〈β−N (v), ϕ〉 = −
∫

ΓN

s−(x)v−ϕ dS for all v, ϕ ∈ HD,

〈β+
N (v), ϕ〉 =

∫
ΓN

s+(x)v+ϕ dS for all v, ϕ ∈ HD.

The weak form of (25), (26) is

d1u− b11Au− b12Av −N1(u, v) = 0,

d2v − b21Au− b22Av −N2(u, v) + β−N (v) + β+
N (v) = 0,

(67)
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and the weak form of (16), (26) is

d1u− b11Au− b12Av = 0,

d2v − b21Au− b22Av + β−N (v) + β+
N (v) = 0.

(68)

An analogue of Theorem 4 can be proved to get that

d2v − Sv −N(v) + β−N (v) + β+
N (v) = 0,

u = F (v)
(69)

is equivalent on a neighborhood of the origin with (67). Here F, S are the same as in Theorem 4,
and N is a small nonlinear compact perturbation, i.e. N(v)/‖v‖ → 0 as v → 0 in HD.

An analogue of Corollary 1 applies here as well. To be more precise, any eigenvalue of S −
β−N −β

+
N is simultaneously a critical point of (16), (26) with fixed d1 and vice versa. A bifurcation

of (69) occurs if and only if a bifurcation of (25), (26) with fixed d1 occurs.

Proof of Theorem 3. An analogue of Lemma 4 can be proved. The operators P := β±N fulfill (45)
due to the compact embedding HD ↪→↪→ L2(∂Ω). For the proof of (51) with P := β−N we introduce
sets Γ+

th,Γ
−
th,Γ

+
0 ,Γ

−
0 such that ΓN = Γ+

th ∪ Γ−th = Γ+
0 ∪ Γ−0 ,

(v0 + th)(x) < 0 for a.a. x ∈ Γ−th, (v0 + th)(x) ≥ 0 for a.a. x ∈ Γ+
th,

v0(x) < 0 for a.a. x ∈ Γ−0 , v0(x) ≥ 0 for a.a. x ∈ Γ+
0 ,

and Γth1,Γth2,Γth3 such that Γ−th = Γth1 ∪ Γth2, Γ−0 = Γth1 ∪ Γth3,

v0(x) < −th(x) and v0(x) < 0 for a.a. x ∈ Γth1,

v0(x) < −th(x) and v0(x) ≥ 0 for a.a. x ∈ Γth2,

v0(x) ≥ −th(x) and v0(x) < 0 for a.a. x ∈ Γth3.

Similarly for the operator β+
N . Then we can follow the proof of Lemma 4. The proof of the first

part of Theorem 3 is now almost the same as the proof of Theorem 1. To prove the second part
of Theorem 3, we will use Theorem 6 in the same way as in the proof of Theorem 2.

6. Appendix

For completeness, we will explain here in more details a result concerning a smoothness of the
map N1 used in Section 3 and a general result concerning a global bifurcation from an interval
used in Section 4.

6.1. Smoothness of the map N1 from (30)

Theorem 7. Under the assumptions (5), (12), (13) the operator N1 defined in (30) satisfies
N1 ∈ C1(HD ×HD,HD) and its Fréchet derivative is given by

〈N ′1(u, v)(h1, h2), ϕ〉 =

∫
Ω

n′1(u, v)(h1, h2) · ϕ dx =

∫
Ω

(∂un1(u, v)h1 + ∂vn1(u, v)h2)ϕ dx,

for all u, v, ϕ, h1, h2 ∈ HD.
(70)

Proof. Under the assumptions (12), (13), Nemyckii operators (u, v) → ∂un1(u, v), (u, v) →
∂vn1(u, v) map Lp×Lp into L

p
p−2 . Hence, using the embedding H ↪→ Lp, for any u, v, h1, h2 ∈ HD

we can define N ′1(u, v)(h1, h2) ∈ HD by (70). We will show that N ′1(u, v)(h1, h2) is a directional
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derivative of N1 at the point (u, v) and in the direction (h1, h2). Let B1 ⊂ HD be the unit ball
centered at the origin. Using Hölder inequality we get

lim
t→0

∥∥∥∥N1((u, v) + t(h1, h2))−N1(u, v)

t
−N ′1(u, v)(h1, h2)

∥∥∥∥ =

= lim
t→0

sup
ϕ∈B1

∫
Ω

(
n1((u, v) + t(h1, h2))− n1(u, v)

t
− n′1(u, v)(h1, h2)

)
ϕ dx ≤

≤ C lim
t→0

(∫
Ω

∣∣∣∣n1((u, v) + t(h1, h2))− n1(u, v)

t
− n′1(u, v)(h1, h2)

∣∣∣∣p′ dx

) 1
p′

,

where p′ = p/(p − 1), p is from (12). We want to apply Dominated Convergence Theorem to
exchange limit and integral, hence, we have to find an integrable majorant. We use Mean Value
Theorem to get∣∣∣∣n1((u, v) + t(h1, h2))− n1(u, v)

t
− n′1(u, v)(h1, h2)

∣∣∣∣ = |(n′1((u, v) + tθ(h1, h2))− n′1(u, v))(h1, h2)|

for a.a. x ∈ Ω,

where θ(x) ∈ [0, 1] for a.a. x ∈ Ω. From now we will use one universal symbol C for various
constants. We use the triangle inequality and condition (13) to get the existence of C > 0 such
that

|n′1((u, v) + θt(h1,h2))(h1, h2)| ≤
∣∣∣∣∂n1

∂u
(u+ θth1, v + θth2)

∣∣∣∣ |h1|+
∣∣∣∣∂n1

∂v
(u+ θth1, v + θth2)

∣∣∣∣ |h2| ≤

≤ C
(
1 + |u+ θth1|p−2 + |v + θth1|p−2

)
(|h1|+ |h2|).

(71)

The Young inequality with (p− 1)/(p− 2) and (p− 1) implies

|u+ θth1|p−2|h1| ≤ C(|u|p−2|h1|+ (θt)p−2|h1|p−1) ≤ C(|u|p−1 + (1 + (θt)p−2)|h1|p−1).

Analogous estimates can be done for the other terms in (71). Using all these estimates together
with the embedding HD ↪→ Lp we get for sufficiently small t that

|(n′1((u, v) + tθ(h1, h2))− n′1(u, v))(h1, h2)| ≤

≤C
(
|u|p−1 + |v|p−1 + |h1|p−1 + |h2|p−1

)
∈ Lp

′
for any u, v, h1, h2 ∈ HD.

Summarizing, we obtain∣∣∣∣n1((u, v) + t(h1, h2))− n1(u, v)

t
− n′1(u, v)(h1, h2)

∣∣∣∣p′ ≤
≤ C

(
|u|p−1 + |v|p−1 + |h1|p−1 + |h2|p−1

)p′ ∈ L1,

and Dominated Convergence Theorem gives

lim
t→0

∥∥∥∥N1((u, v) + t(h1, h2))−N1(u, v)

t
−N ′1(u, v)(h1, h2)

∥∥∥∥ = 0.

Hence, N ′1(u, v)(h1, h2) is a directional derivative of N1(u, v) in an arbitrary direction (h1, h2).
Let (u, v) ∈ HD × HD be arbitrary fixed. It is clear that the operator N ′1(u, v) : (h1, h2) 7→

N ′1(u, v)(h1, h2) from (70) is linear. Using the generalized Hölder inequality and (13) we get

‖N ′1(u, v)(h1, h2)‖ = sup
ϕ∈B1

∫
Ω

n′1(u, v)(h1, h2)ϕ dx ≤

≤ C(1 + ‖u‖Lp + ‖v‖Lp)(‖h1‖Lp + ‖h2‖Lp) ≤ C(‖h1‖+ ‖h2‖).
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Hence, the linear operator N ′1(u, v) is bounded and therefore it is a Gâteaux derivative.
Let (u0, v0) ∈ HD ×HD be arbitrary. Then

lim
(u,v)→(u0,v0)

‖N ′1(u, v)−N ′1(u0, v0)‖L(HD×HD,HD×HD) =

= lim
(u,v)→(u0,v0)

sup
ϕ∈B1

sup
(h1,h2)∈B1×B1

∫
Ω

(n′1(u, v)− n′1(u0, v0)) (h1, h2) · ϕ dx.

The growth conditions (13) and the generalized Hölder inequality leads to∫
Ω

(n′1(u, v)− n′1(u0, v0)) (h1, h2) · ϕ ≤

≤
∥∥∥∥∂n1

∂u
(u, v)− ∂n1

∂u
(u0, v0)

∥∥∥∥
L

p
p−2

‖h1‖Lp‖ϕ‖Lp +

∥∥∥∥∂n1

∂v
(u, v)− ∂n1

∂v
(u0, v0)

∥∥∥∥
L

p
p−2

‖h2‖Lp‖ϕ‖Lp .

The Nemyckii operators (u, v) → ∂un1(u, v), (u, v) → ∂vn1(u, v) are under the conditions (13)

continuous from Lp × Lp into L
p

p−2 . Hence,

lim
(u,v)→(u0,v0)

∥∥∥∥∂n1

∂u
(u, v)− ∂n1

∂u
(u0, v0)

∥∥∥∥
L

p
p−2

= 0, lim
(u,v)→(u0,v0)

∥∥∥∥∂n1

∂v
(u, v)− ∂n1

∂v
(u0, v0)

∥∥∥∥
L

p
p−2

= 0,

and

lim
(u,v)→(u0,v0)

‖N ′1(u, v)−N ′1(u0, v0)‖L(HD×HD,HD×HD) = 0,

i.e. the map (u, v)→ N ′(u, v) from HD ×HD into L(HD ×HD) is continuous and therefore it is
a Fréchet derivative, see e.g. Proposition 3.2.15 in [3].

6.2. A global bifurcation for positively homogeneous problems

We give below a Rabinowitz type global bifurcation result used in the proof of Theorem 6.
Since we need only some of the assumptions considered in Section 4, we formulate them explicitly.
We will denote by S(B) the set introduced before Theorem 6 but now for more general operators
considered in the following theorem.

Theorem 8. Let X be Banach space, S : X → X a linear compact operator, B : X → X a
positively homogeneous continuous compact operator and N : R × X → X a nonlinear compact
operator satisfying (48). Let us assume that positive λ1 < λ2 are not eigenvalues of the operator
S −B and

deg

(
I − 1

λ1
(S −B), Br, 0

)
6= deg

(
I − 1

λ2
(S +B), Br, 0

)
for all r > 0. (72)

Then there exists λb ∈ [λ1, λ2] such that the connected component Sλb
of the set S(B) containing

the point (λb, 0) satisfies at least one of the following conditions:

(a) Sλb
is unbounded,

(b) there exists v ∈ X, v 6= 0 such that (0, v) ∈ Sλb
,

(c) there exists an eigenvalue λc /∈ [λ1, λ2] of the operator S −B such that (λc, 0) ∈ Sλb
.

Proof. Our assertion can be obtained as a particular case of very abstract Theorem 7 in [18], where
we set

Λ = (0,∞), Ω = X, Ω0 = Br, r > 0 small enough,

F = I, φ(λ, v) = λ−1(Sv −B(v) +N(λ, v)), x0 = 0
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and B = B0 can be the system of all bounded subsets of (0,∞) × X, see also remarks below
Proposition 8 in [18]. The assumptions (7), (8) in that theorem and (a),(b) on the top of the p.
217 can be written in our particular situation as the following conditions:

zero is an isolated solution of (49) for any λ in a neighbourhood of λ1 and λ2, (73)

deg(I − 1

λ1
(S +B −N), Br, 0) 6= deg(I − 1

λ2
(S −B +N), Br, 0) for r > 0 small enough, (74)

the set of all (λ, v) satisfying (49) is closed in (0,∞)×X, (75)

any closed and bounded set of (λ, v) satisfying (49) is compact. (76)

Let us verify these conditions. If (73) were not true then λ(n), vn satisfying (49) would exist such
that λ(n) → λj , j = 1 or j = 2, vn → 0. Dividing (49) by ‖vn‖ and using the compactness
of S and B and the condition (48) we would get a subsequence of vn satisfying vnk

/‖vnk
‖ → w

with some w ∈ X and λjw = Sw − B(w). Therefore λj would be an eigenvalue of the operator
S − B, which is a contradiction with the assumptions. The condition (74) for sufficienly small
r > 0 follows easily from (72) by the homotopy invariance of the degree by using the homotopy
H(t, v) = v − 1

λj
(Sv + B − tN(λj , v)), t ∈ [0, 1] and the assumption (48). The condition (75) is

clearly fulfilled due to continuity of our maps. The condition (76) follows from the compactness
of the operator S −B +N .

Now, the assertion of Theorem 7 in [18] translated to our particular situation gives the assertion
of our Theorem 8. Let us only recall that we have chosen B0 as the system of all bounded subsets
of (0,∞) × X and therefore our case (a) coincides with the condition (i) in Theorem from [18]
stating that Sb is not contained in a set from B0.

Proof of Theorem 8 can be done also directly in a similar way as that of Theorem 1.3 in [16].
The difference is that the case B ≡ 0 is considered and no assumption about the degree is necessary
in [16] because bifurcation from a characteristic value µ of S of odd multiplicity is discussed. Our
condition (72) follows then by using Leray-Schauder formula even for arbitrary λ1, λ2 sufficiently
close to 1

µ and λ1 <
1
µ , λ2 >

1
µ . We have to realize that if (72) is true then also

deg

(
I −

(
1

λ1
− δ
)

(S +B), Br, 0

)
6= deg

(
I −

(
1

λ1
− δ
)

(S +B), Br, 0

)
for all δ > 0 small enough and all r > 0. Then we can modify the proof from [16] replacing the
component Cµ of the set S discussed in [16] by the component containing Sλ1,λ2

to get that Sλ1,λ2

satisfies at least one of the conditions (a), (b), (c).
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[6] J. Eisner, M. Kučera, M. Väth, Degree and global bifurcation for elliptic equations with
multivalued unilateral conditions, Nonlinear Analysis 64 (2006), 1710–1736
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