Biologia plantarum 64: 324-334, 2020 | DOI: 10.32615/bp.2020.013

The classification of tetraploid wheat by phylogenetic and cytogenetic analyses

S.-Y. LI1,2, L. XI1,2, H.-J. LIU1,2, W. ZHU1, L.-L XU1, Y. WANG1,2, J. ZENG3, X. FAN1,2, L.-N. SHA1,2, H.-Q. ZHANG1,2, W.-L. QI4, G.-Y. CHEN1,2, Y.-H. ZHOU1,2, H.-Y. KANG1,2,*
1 State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, P.R. China
2 Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, P.R. China
3 College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, P.R. China
4 College of Chemistry and Life science, Chengdu Normal University, Chengdu 611130, Sichuan, P.R. China

Tetraploid wheat (Triticum turgidum L.) is an important species within the genus Triticum and harbors many desirable agronomic traits. The classification, origin, and evolution of tetraploid wheat remain confused and controversial, resulting in useless germplasm resources. Two classification systems for tetraploid wheat are widely used: 1) tetraploid wheat comprises two species; 2) all forms of tetraploid wheat are classified as one species. The present study aimed to reassess the classification of tetraploid wheat using phylogenetic analysis of nuclear rDNA internal transcribed spacer region (ITS) sequence data, fluorescence in situ hybridization (FISH) karyotyping, and observation of meiotic pairing behavior in F1 hybrids. Network analysis of ITS sequences indicates that tetraploid wheat was not closely related to other Triticeae species with the exception of Aegilops speltoides and Ae. sharonensis. Phylogenetic analysis of ITS sequences and FISH show that Triticum turgidum and T. timopheevii clustered on distinct branches, and meiotic pairing in F1 hybrids of these species showed a high frequency of univalents. Meiotic behavior of F1 hybrids among forms of T. turgidum revealed a low number of univalents (means < 2) except for T. turgidum ssp. dicoccoides. The significant variation on chromosomes 1A, 2A, 5A, 1B, 2B, 3B, and 6B in the FISH hybridization patterns were observed between T. turgidum ssp. dicoccoides and other T. turgidum accessions. Furthermore, the results of ITS phylogenetic analyses correspond closely with observations of meiotic behavior and FISH karyotyping. The present results indicate that T. turgidum and T. timopheevii are two distantly related species of different origins. Triticum turgidum ssp. dicoccoides should be maintained as a subspecies of T. turgidum whereas other forms of T. turgidum should be reclassified as varieties.

Keywords: chromosome pairing behavior, FISH analysis, ITS, Triticum turgidum.

Received: October 16, 2019; Revised: January 18, 2020; Accepted: January 23, 2020; Published online: April 21, 2020Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
LI, S.-Y., XI, L., LIU, H.-J., ZHU, W., XU, L.-L., WANG, Y., ... KANG, H.-Y. (2020). The classification of tetraploid wheat by phylogenetic and cytogenetic analyses. Biologia plantarum64, 324-334. doi: 10.32615/bp.2020.013.
Download citation

Supplementary files

Download fileLi6341 Suppl.pdf

File size: 339.33 kB

References

  1. Allaby, R.G., Brown, T.A.: Network analysis provides insights into evolution of 5S rDNA arrays in Triticum and Aegilops. - Genetics 157: 1331-1341, 2001.
  2. Bowden, W.N.: The taxonomy and nomoenclature of the wheats, barleys and ryes and their wild relatives. - Can. J. Bot. 37: 637-684, 1959. Go to original source...
  3. Bryant, D., Moulton, V.: Neighbor-Net: an agglomerative method for the construction of phylogenetic networks. - Mol. Biol. Evol. 21: 255-265, 2004.
  4. Chen, X.M., Luo, Y.H., Xia, X.C., Xia, L.Q., Chen, X., Ren Z.L., Jia, J.Z.: Chromosomal location of powdery mildew resistance gene Pm16 in wheat using SSR marker analysis. - Plant Breed. 124: 225-228, 2005. Go to original source...
  5. Dorofeev, V.F., Filatenko, A.A., Migushova, E.F., Udaczin, R.A., Jakubziner, M.M.: Pshenitsa [Wheat]. - In: Dorofeev, V.F., Korovin, O.N. (ed.): Cultivated Flora of the USSR. Pp. 364. Kolos Publ., Leningrad 1979. [In Russ.]
  6. Doyle, J.J., Doyle, J.L.: Isolation of plant DNA from fresh tissue. - Focus 12: 13-15, 1990.
  7. Forte, P., Virili, M.E., Kuzmanović, L., Moscetti, I., Gennaro, A., D'Ovidio, R., Ceoloni, C.: A novel assembly of Thinopyrum ponticum genes into the durum wheat genome: pyramiding Fusarium head blight resistance onto recombinant lines previously engineered for other beneficial traits from the same alien species. - Mol. Breed. 34: 1701-1716, 2014. Go to original source...
  8. Gerechmr-Amitai, Z.K., Van-Silthout, C.H., Grama, A., Kleitman, F.: Yr15 - a new gene for resistance to Puccinia striiformis in Triticum dicoccoides sel. G-25. - Euphytica 43: 187-190, 1989. Go to original source...
  9. Goncharov, N.P., Golovnina, K.A., Kondratenko, E.Y., Komatsuda, T.: Taxonomy and molecular phylogeny of natural and artificial wheat species. - Breed. Sci. 59: 492-498, 2009. Go to original source...
  10. Goncharov, N.P.: Genus Triticum L. taxonomy: the present and the future. - Plant Syst. Evol. 295: 1-11, 2011. Go to original source...
  11. Han, F., Lamb, J., Birchler, J.: High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. - Proc. nat. Acad. Sci. USA 103: 3238-3243, 2006. Go to original source...
  12. Hsiao, C., Chatterton, N.J., Asay, K.H., Jensen, K.B.: Phylogenetic relationships of the monogenomic species of the wheat tribe, Triticeae (Poaceae), inferred from nuclear rDNA (internal transcribed spacer) sequences. - Genome 38: 221-223, 1995. Go to original source...
  13. Huang, S.X., Sirikhachornkit, A., Su, X.J., Fairs, J., Gill B., Haselkorn R., Gornicki P.: Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum Aegilops complex and the evolutionary history of polyploid wheat. - Proc. nat. Acad. Sci. USA 99: 8133-8138, 2002. Go to original source...
  14. Huson, D.H., Bryant, D.: Application of phylogenetic networks in evolutionary studies. - Mol. Biol. Evol. 23: 254-267, 2005.
  15. Jauhar, P.P., Peterson, T.S.: Registration of DGE-1, a durum alien disomic addition line with resistance to Fusarium head blight. - J. Plant Reg. 2: 167-168, 2008. Go to original source...
  16. Jauhar, P.P., Peterson, T.S., Xu, S.S.: Cytogenetic and molecular characterization of a durum alien disomic addition line with enhanced tolerance to Fusarium head blight. - Genome 52: 467-483, 2009. Go to original source...
  17. Jauhar, P.P.: Durum wheat genetic stocks involving chromosome 1E of diploid wheatgrass: resistance to Fusarium head blight. - Nucleus 57: 19-23, 2014. Go to original source...
  18. Kilian, B., Özkan, H., Deusch, O., Effgen, S., Brandolini, A., Kohl, J., Martin, W.: Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes. - Mol. Biol. Evol. 24: 217-227, 2007. Go to original source...
  19. Kuzmanović, L., Gennaro, A., Benedettelli, S., Dodd, L.C., Quarrie, S.A., Ceoloni, C.: Structural functional dissection and characterization of yield-contributing traits originating from a group 7 chromosome of the wheatgrass species Thinopyrum ponticum after transfer into durum wheat. - J. exp. Bot. 65: 509-525, 2014. Go to original source...
  20. Liu, Z.Y., Sun, Q.X., Xi, Z.F., Nevo, E., Yang, T. Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer. - Euphytica 123: 21-29, 2002. Go to original source...
  21. MacKey, J.: Species relationship in Triticum. - In: MacKey, J. (Ed.): Proceedings of the 2nd International Wheat Genetics Symposium. Vol. 2. Pp. 237-275. Hereditas, Lund 1966.
  22. MacKey, J.: The boundaries and subdivision of the genus Triticum. - In. MacKey, J. (Ed.): Proceedings of the 12th International Botanical Congress. Vol. 2. Pp. 1-23. Kolos Publ., Leningrad 1975.
  23. MacKey, J.: Wheat: its concept, evolution and taxonomy. - In: Royo, C., Nachit, M.M., Fonzo, N.D. (ed.): Durum Wheat Breeding: Current Approaches and Future Strategies. Vol. 1. Pp. 35-94. CRC Press, Boca Raton 2005.
  24. Mantel, N.: The detection of disease clustering and a generalized regression approach. - Cancer Res. 27: 209-220, 1967.
  25. Matsuoka, Y.: Evolution of polyploid Triticum wheats under cultivation: the role of domestication, natural hybridization and allopolyploid speciation in their diversification. - Plant Cell Physiol. 52: 750-764, 2011. Go to original source...
  26. Morris, R., Sears, E.R.: The cytogenetics of wheat and its relatives. - In: Ouissenberry, R. (ed.): Wheat and Wheat Improvement. Pp. 19-87. American Society of Agronomy, Madison 1967.
  27. Muterko, A., Kalendar, R., Cockram, J., Balashova, I.: Discovery, evaluation and distribution of haplotypes and new alleles of the Photoperiod-A1 gene in wheat. - Plant mol. Biol. 88: 149-164, 2015. Go to original source...
  28. Oliveira, H.R., Campana, M.G., Jones, H., Hunt, H.V., Leigh, F., Redhouse, D.I.: Tetraploid wheat landraces in the Mediterranean basin: taxonomy, evolution and genetic diversity. - Plos ONE 7: e37063, 2012. Go to original source...
  29. Özkan, H., Willcox, G., Graner, A., Salamini, F., Kilian, B.: Geographic distribution and domestication of wild emmer wheat (Triticum dicoccoides). - Genet. Resour. Crop Evol. 58: 11-53, 2011. Go to original source...
  30. Özkan, H., Brandolini, A., Pozzi, C.S., Effgen, S., Wunder, J., Salamini, F.: A reconsideration of the domestication geography of tetraploid wheats. - Theor. appl. Genet. 110: 1052-1060, 2005. Go to original source...
  31. Peng, J.H., Fahima, T., Röder, M.S., Li, Y.C., Dahan, A., Grama, A., Ronin, Y.I.: Microsatellite tagging of the stripe-rust resistance gene YrH52 derived from wild emmer wheat, Triticum dicoccoides, and suggentive negative crossover interference on chromosome 1B. - Theor. appl. Genet. 98: 862-872, 1999. Go to original source...
  32. Peleg, Z., Saranga, Y., Yaziei, A., Fahima, T., Ozturk, L.: Grain zinc, iron and protein concentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes. - Plant Soil 306: 57-67, 2008. Go to original source...
  33. Provan, J., Wolters, P., Caldwell, K.H., Powell, P.: High-resolution organellar genome analysis of Triticum and Aegilops sheds new light on cytoplasm evolution in wheat. - Theor. appl. Genet. 108: 1182-1190, 2004. Go to original source...
  34. Reader, S.M., Miller, T.E.: The introduction into bread wheat of a major gene for resistance to powdery mildew from wild emmer wheat. - Euphytica 53: 57-60, 1991. Go to original source...
  35. Rong, J.K., Mliler, T.E., Manisterski, J., Feldman, M.: A new powdery mildew resistance gene: introgression from wild emmer into common wheat and RFLP-based mapping. - Euphytica 115: 121-126, 2000. Go to original source...
  36. Rozas, J., Sánchez del Barrio, J.C., Messeguer, X., Rozas, R.: DnaSP, DNA polymorphism analyses by the coalescent and the other methods. - Bioinformatics 19: 2496-2497, 2003. Go to original source...
  37. Salamini, F., Özkan, H., Brandolini, A., Schäfer, P.R., Martin, W.: Genetics and geography of wild cereal domestication in the Near East. - Nat. Rev. Genet. 3: 429-441, 2002. Go to original source...
  38. Sormacheva, I., Golovnina, K., Vavilova, V., Kosuge, K., Watanabe, N., Blinov, A., Goncharov N.P.: Q gene variability in wheat species with different spike morphology. - Genet. Resour. Crop Evol. 62: 837-852, 2015. Go to original source...
  39. Takenaka, S., Mori, N., Kawahara, T.: Genetic variation in domesticated emmer wheat (Triticum turgidum L.) in and around Abyssinian Highlands. - Breed. Sci. 60: 212-227, 2010. Go to original source...
  40. Takenaka, S., Kawahara, T.: Evolution and dispersal of emmer wheat (Triticum sp.) from novel haplotypes of Ppd-1 (photoperiod response) genes and their surrounding DNA sequences. - Theor. Appl. Genet. 125: 999-1014, 2012. Go to original source...
  41. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S.: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. - Mol. Biol. Evol. 28: 2731-2739, 2011. Go to original source...
  42. Tang, Y., Kang, H.Y., Tang, L., Diao, C.D., Li, D.Y., Zhu, W., Fan, X., Wang, Y., Zeng, J., Xu, L.L., Sha, L.N., Yu, X.F., Zhang, H.Q., Zhou, Y.H.: Phylogenetic analysis of tetraploid wheat based on nuclear DMC1 gene. - Biochem. Syst. Ecol. 70: 239-246, 2017. Go to original source...
  43. Tang, Z.X., Yang, Z.J., Fu, S.L.: Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. - J. appl. Genet. 55: 313-318, 2014. Go to original source...
  44. Thompson, J.D., Plewniak, F., Poch, O.: A comprehensive comparison of multiple sequence alignment programs. - Nucl. Acids Res. 27: 2682-2690, 1999. Go to original source...
  45. Uauy, C., Distelfeld, A., Fahima, T., Blechl, A., Dubcovsky, J.: A NAC gene regulating senescence improves grains protein, zinc, and iron content in wheat. - Science 314: 1298-1301, 2006. Go to original source...
  46. Van Slageren, M.W.: Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae): a revision of all taxa closely related to wheat, excluding wild Triticum species, with notes on other genera in the tribe Triticcae, especially Triticum. - Dissertations & Theses, Wageningen Agricultural University, Wageningen1994.Yamane, K., Kawahara, T.: Intra- and interspecific phylogenetic relationships among diploid Triticum-Aegilops species (Poaceae) based on base-pair substitutions, indels, and microsatellites in chloroplast noncoding sequences. - Amer. J. Bot. 92: 1887-1898, 2005.
  47. Zaharieva, M., Ayana, N.G., Hakimi, A.A., Misra, S.C., Monneveux, P.: Cultivated emmer wheat (Triticum dicoccon Schrank), an old crop with promising future: a review. - Genet. Resour. Crop Evol. 57: 937-962, 2010. Go to original source...
  48. Zohary, D., Hopf, M.: Domestication of Plants in the Old World: the Origin and Spread of Cultivated Plants in West Asia, Europe and the Nile Valley. - Oxford University Press, Oxford 2000.