Biologia plantarum 43:563-569, 2000 | DOI: 10.1023/A:1002877917537

Pigment Diverse Mutants of Pseudomonas sp.: Inhibition of Fungal Growth and Stimulation of Growth of Cicer arietinum

A.K. Goel1, S.S. Sindhu1, K.R. Dadarwal1
1 Department of Microbiology, Chaudhary Charan Singh Haryana Agricultural University, Hisar -, India

A Pseudomonas strain MRS16 inhibited growth of different pathogenic fungi (Aspergillus sp., Fusarium oxysporum, Pythium aphanidermatum and Rhizoctonia solani) in vitro. Larger inhibition zones were obtained on nutrient agar and King's B media compared to potato dextrose agar and pigment production media. Mutants altered in production of fluorescent pigment were derived by nitrosoguanidine mutagenesis. The pigment overproducer mutant MRS16M-1 was more inhibitory whereas nonproducer mutant MRS16M-5 was less inhibitory than parent strain on nutrient agar medium. Addition of iron (100 µM FeCl3) in the medium decreased inhibition of fungal growth, suggesting the involvement of siderophores and other antifungal secondary metabolites. Seed bacterization of two cultivars of chickpea (Cicer arietinum cvs. H8618 and C235) differing in susceptibility to wilt caused initial root and shoot stunting at 5 d of growth followed by proliferation of secondary root growth at 10 d. Coinoculation of chickpea with Pseudomonas strain MRS16 or mutants and Rhizobium sp. Cicer strain Ca181 enhanced nodulation, nitrogen fixation and plant dry mass as compared to single inoculation with Rhizobium strain under sterile conditions.

Keywords: antifungal activity; chickpea; fluorescent pigment; nodulation; seed bacterization
Subjects: antifungal activity, Pseudomonas; Aspergilus sp.; chickpea, growth stimulation by Pseudomonas; Cicer arietinum; fluorescent pigment; fungi, growth inhibition by Pseudomonas; Fusarium oxysporum; growth stimulation by Pseudomonas, chickpea; nodulation, seed bacterization; pigment mutants of Pseudomonas, growth; Pseudomonas, pigment mutants; Pythium aphanidermatum; Rhizobium sp. Cicer strain; Rhizoctonia solani; seed bacterization, nodulation

Published: December 1, 2000Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Goel, A.K., Sindhu, S.S., & Dadarwal, K.R. (2000). Pigment Diverse Mutants of Pseudomonas sp.: Inhibition of Fungal Growth and Stimulation of Growth of Cicer arietinum. Biologia plantarum43(4), 563-569. doi: 10.1023/A:1002877917537.
Download citation

References

  1. Astrom, B., Gustafsson, A., Gerhardson, B.: Characteristics of a plant deleterious rhizosphere pseudomonad and its inhibitory metabolite(s).-J. appl. Bacteriol. 74: 20-28, 1993. Go to original source...
  2. Bolton, H., Jr., Elliott, L.F.: Toxin production by a rhizobacterial Pseudomonas sp. that inhibits wheat root growth.-Plant Soil 114: 269-278, 1989. Go to original source...
  3. Bolton, H., Jr., Elliott, L.F., Turco, R.F., Kennedy, A.C.: Rhizoplane colonization of pea seedlings by Rhizobium leguminosarum and a deleterious root colonizing Pseudomonas sp. and effects on plant growth.-Plant Soil 123: 121-124, 1990. Go to original source...
  4. Chang, P.C., Blackwood, A.C.: Simultaneous production of three phenazine pigments by Pseudomonas aeruginosa Mac 436.-Can. J. Microbiol. 15: 439-444, 1969.
  5. Dadarwal, K.R., Sindhu, S.S., Batra, R.: Echology of Hup+ Rhizobium strains of cowpea miscellany: native frequency and competence.-Arch. Microbiol. 141: 255-259, 1985. Go to original source...
  6. Dashti, N., Zhang, F., Hynes, R., Smith, D.L. Application of plant growth-promoting rhizobacteria to soybean [Glycine max (L.) Merr.]increases protein and dry matter yield under short-season conditions.-Plant Soil 188: 33-41, 1997. Go to original source...
  7. De Freitas, J.R., Germida, J.J.: Plant growth-promoting rhizobacteria for winter wheat.-Can. J. Microbiol. 36: 265-272, 1990.
  8. Dubeikovsky, A.N., Mordukhova, E. A., Kochetkov, V.V., Polikarpova, F.Y., Boronin, A.M.: Growth promotion of blackcurrant softwood cuttings by recombinant strain Pseudomonas fluorescens BSP53a synthesising an increased amount of indole-3-acetic acid.-Soil Biol. Biochem. 25: 1277-1281, 1993. Go to original source...
  9. Elad, Y., Baker, R.: The role of competition for iron and carbon in suppression of chlamydospore germination of Fusarium spp. by Pseudomonas spp.-Phytopathology 75: 1053-1059, 1985. Go to original source...
  10. Fredrickson, J.K., Elliott, L.F., Engibous, J.C.: Crop residues as substrate for host-specific pseudomonads.-Soil Biol. Biochem. 19: 127-134, 1987. Go to original source...
  11. Fridlender, M., Inbar, J., Chet, I.: Biological control of soil borne plant pathogens by a β-1,3-glucanase-producing Pseudomonas cepacia.-Soil Biol Biochem. 25: 1211-1221, 1993. Go to original source...
  12. Goel, A.K., Sindhu, S.S., Dadarwal, K.R.: Application of plant growth-promoting rhizobacteria as inoculants of cereals and legumes.-In: Singh, T., Yadav, A.K., Raychaudhury, S. (ed.): Recent Advances in Biofertilizer Technology. University Publications, New Delhi 2000. (In press).
  13. Gurusiddaiah, S., Weller, D.M., Sarkar, A., Cook, R.J.: Characterization of an antibiotic produced by a strain of Pseudomonas fluorescens inhibitory to Gaeumannomyces graminis var. tritici and Pythium spp.-Antimicrob. Agents Chemother. 29: 488-495, 1986. Go to original source...
  14. Hebbar, K.P., Davey, A.G., Dart, P.J.: Rhizobacteria of maize antagonistic to Fusarium moniliforme, a soil-borne fungal pathogen: colonization of rhizosphere and roots.-Soil Biol. Biochem. 24: 989-997, 1992. Go to original source...
  15. James, D.W., Gutterson, N.I.: Multiple antibiotics produced by Pseudomonas fluorescens HV37a and their differential regulation by glucose.-Appl. environ. Microbiol. 52: 1183-1189, 1986. Go to original source...
  16. Kanner, D., Gerber, N.N., Bartha, R.: Pattern of phenazine pigment production by a strain of Pseudomonas aeruginosa.-J. Bacteriol. 134: 690-692, 1978. Go to original source...
  17. Kloepper, J.W., Leong, J., Teintze, M., Schroth, M. N.: Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria.-Nature 286: 883-884, 1980. Go to original source...
  18. Kloepper, J.W., Scher, F.M., Lalibert, E.M., Tipping, B.: Emergence promoting rhizobacteria: description and implications for agriculture.-In: Swinburne, T.R. (ed.): Iron, Siderophores and Plant Diseases. Pp. 155-164. Plenum Press, New York 1986. Go to original source...
  19. Knight, T.J., Langston-Unkefer, P.J.: Enhancement of symbiotic dinitrogen fixation by a toxin-releasing plant pathogen.-Science 241: 951-994, 1988. Go to original source...
  20. Leong, J.: Siderophores: their biochemistry and possible role in the biocontrol of plant pathogens.-Annu. Rev. Phytopathol. 24: 187-209, 1986. Go to original source...
  21. Lifshitz, R., Kloepper, J.W., Kozlowski, M.: Growth promotion of canola (rapeseed) seedlings by a strain of Pseudomonas putida under gnotobiotic conditions.-Can. J. Microbiol. 33: 390-395, 1987.
  22. Loper, J.E., Buyer, J.S.: Siderophores in microbial interactions on plant surfaces.-Mol. Plant-Microbe Interact. 4: 5-13, 1991. Go to original source...
  23. Loper, J.E., Schroth, M.N.: Influence of bacterial sources of indole-3-acetic acid on root elongation of sugarbeet.-Phytopathology 76: 386-389, 1986. Go to original source...
  24. Mandeel, Q., Baker, R.: Mechanisms involved in biological control of Fusarium wilt of cucumber with strains of non-pathogenic Fusarium oxysporum.-Phytopathology 81: 462-469, 1991. Go to original source...
  25. Marek-Kozaczuk, M., Deryto, M., Skorupska, A.: Tn5 insertion mutants of Pseudomonas sp. 267 defective in siderophore production and their effect on clover (Trifolium pratense) nodulated with Rhizobium leguminosarum bv. trifolii.-Plant Soil 179: 269-274, 1996. Go to original source...
  26. Parmar, N., Dadarwal, K.R.: Stimulation of nitrogen fixation and induction of flavonoid-like compounds by rhizobacteria.-J. appl. Microbiol. 86: 36-44, 1999. Go to original source...
  27. Rosales, A.M., Thomashow, L., Cook, R.J., Mew, T.W.: Isolation and identification of antifungal metabolites produced by rice-associated antagonistic Pseudomonas spp.-Phytopathology 85: 1028-1032, 1995. Go to original source...
  28. Sakthivel, N., Sivamani, E., Unnamalai, N., Gnanamanickam, S.S.: Plant growth-promoting rhizobacteria in enhancing plant growth and suppressing plant pathogens.-Curr. Sci. 55: 22-25, 1986.
  29. Sambrook, J., Fritsch, E.F., Maniatis, T.: Molecular Cloning: a Laboratory Manual.-Cold Spring Harbor Laboratory, New York 1989.
  30. Schwyn, B., Neilands, J.B.: Universal chemical assay for the detection and determination of siderophores.-Anal. Chem. 160: 47-56, 1987. Go to original source...
  31. Sindhu, S.S., Dadarwal, K.R.: Ex planta nitrogenase induction and uptake hydrogenase in Rhizobium sp. (cowpea miscellany).-Soil Biol. Biochem. 18: 291-295, 1986. Go to original source...
  32. Sindhu, S.S., Gupta, S.K., Dadarwal, K.R.: Antagonistic effect of Pseudomonas spp. on pathogenic fungi and enhancement of plant growth in green gram (Vigna radiata).-Biol. Fertil. Soils 29: 62-68, 1999. Go to original source...
  33. Sloger, C.: Symbiotic effectiveness and nitrogen fixation in nodulated soybean.-Plant Physiol. 44: 1666-1668, 1969. Go to original source...
  34. Somasegaran, P., Hoben, H.J.: Methods in Legume-Rhizobium Technology.-Niftal University of Hawaii Publication, Hawaii 1985.
  35. Voisard, C., Keel, C., Hass, D., Defago, G.: Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions.-EMBO J. 8: 351-358, 1989. Go to original source...
  36. Zhang, F., Dashti, N., Hynes, R.K., Smith, D.L.: Plant growth-promoting rhizobacteria and soybean [Glycine max (L.) Merr.]growth and physiology at suboptimal root zone temperature.-Ann. Bot. 79: 243-249, 1997. Go to original source...