Biologia plantarum 57:121-127, 2013 | DOI: 10.1007/s10535-012-0135-x

Abscisic acid is required in transduction of cadmium signal to potato roots

A. Stroiński1,*, K. Giżewska1, M. Zielezińska1
1 Department of Plant Physiology, University of Life Sciences, Poznań, Poland

Treatment of potato (Solanum tuberosum) plants with cadmium or abscisic acid (ABA) enhanced the content of StPCS 1 transcript and activity of phytochelatin synthase (PCS) in roots.transcript and activity of phytochelatin synthase (PCS) in roots. These treatments enhanced the contents of ABA and expression of genes coding 9-cis-epoxycarotenoid dioxygenase 1 (NCED1) and basic leucine zipper (b-ZIP).expression of genes coding 9-cis-epoxycarotenoid dioxygenase 1 (NCED1) and basic leucine zipper (b-ZIP). Simultaneous treatment of potato plants with Cd and fluridone (Flu), an inhibitor of ABA biosynthesis, completely halted the Cd-induced transcription of StPCS1, NCED1 and StbZIP genes and limited the increases in PCS activity and ABA content. The data suggest that ABA participates in transduction of the Cd signal to the cells of potato roots.

Keywords: basic leucine zipper; 9-cis-epoxycarotenoid dioxygenase; phytochelatin synthase
Subjects: abscisic acid; cadmium; basic leucine zipper; 9-cis-epoxycarotenoid dioxygenase; phytochelatin synthase
Species: Solanum tuberosum

Received: February 17, 2011; Accepted: January 2, 2012; Published: March 1, 2013Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Stroiński, A., Giżewska, K., & Zielezińska, M. (2013). Abscisic acid is required in transduction of cadmium signal to potato roots. Biologia plantarum57(1), 121-127. doi: 10.1007/s10535-012-0135-x.
Download citation

References

  1. Audran, C., Liotenberg, S., Gonneau, M., North, H., Frey, A., Tap-Waksman, K., Vartanian, N., Marion-Poll, A.: Localisation and expression of zeaxanthin epoxidase mRNA in Arabidopsis in response to drought stress and during seed development. - Aust. J. Plant. Physiol. 28: 1161-1173, 2001. Go to original source...
  2. Barroso, J.B., Francisco, J., Corpas, F.J., Carreras, A., Rodriguez-Serrano, M., Francisco, J., Esteban, F.J., Fernandez-Ocanal, A., Chakil, M., Romero-Puertas, M.C., Valderrama, R., Luisa, M., Sandalio, L.M., Del Rio, L.A.: Localization of S-nitrosoglutathione and expression of Snitrosoglutathione reductase in pea plants under cadmium stress. - J. exp. Bot. 57: 1785-1793, 2006. Go to original source...
  3. Bradford, M.M.: A rapid and sensitive method for the quantitation of mikrogram quantities of protein utilizing the principle of protein-dye binding. - Anal. Biochem. 72: 248-254, 1976. Go to original source...
  4. Branch, A.D., Benenfeld, B.J., Robertson H.D.: RNA fingerprinting. - Methods Enzymol. 180: 130-154, 1989. Go to original source...
  5. Bray, E.A.: Plant responses to water deficit. - Trends in Plant Sci. 2: 48-54, 1997. Go to original source...
  6. Burbidge, A., Taylor, I.B., Thompson, A.: 9-cis-epoxycarotenoid dioxygenase cDNA. - EMBL/GenBank/DDBJdatabases, 2000.
  7. Clemens, C., Kim, E.J., Neumann, D., Schroeder, J.I.: Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. - EMBO J. 18: 3325-3333, 1999. Go to original source...
  8. Clemens, C.: Molecular mechanisms of plant metal tolerance and homeostasis. - Planta 212: 475-486, 2001. Go to original source...
  9. Clemens, C.: Evolution and function of phytochelatin synthase. - J. Plant Physiol. 163: 319-332, 2006. Go to original source...
  10. Cobbett, C., Goldsbrough, P.: Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. - Annu. Rev. Plant Biol. 53: 159-182, 2002. Go to original source...
  11. Desikan, R., Cheung, M.K., Bright, J., Henson, D., John, T., Hancock, J.T., Neill, S.J.: ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. - J. exp. Bot. 55: 205-212, 2004.
  12. Fediuc, E., Lips, H., Erdei, L.: O-acetylserine (thiol) lyase activity in Pragmites and Typha plants under cadmium and NaCl stress conditions and the involvement of ABA in the stress response. - J. Plant Physiol. 162: 865-872, 2005. Go to original source...
  13. Finkemeier, I., Kluge, C., Metwally, A.M., Georgi, M,N., Grotiohann, N., Dietz, K.-J.: Alterations in Cd-induced gene expression under nitrogen deficiency in Hordeum vulgare. - Plant Cell Environ. 26: 821-833, 2003. Go to original source...
  14. Gamble, P.E., Mullet, J.E.: Inhibition of carotenoid accumulation and abscisic acid biosynthesis in fluridonetreated dark-grown barley. - Eur. J. Biochem. 160: 117-121, 1986. Go to original source...
  15. Grappin, P., Bouinot, D., Sotta, B., Miginiac, E., Jullien, M.: Control of seed dormancy in Nicotiana plumbaginifolia: post-imbibition abscisic acid synthesis imposes dormancy maintenance. - Planta 210: 279-285, 2000. Go to original source...
  16. Grill, E., Löffler, S., Winnacker, E.-L., Zenk, M.H.: Phytochelatins, the heavy-metal binding peptides of plants, are synthesized from glutathione by a specific glutamylcysteine dipeptydyl transpeptidase (phytochelatin synthase). - Proc.nat. Acad. Sci. USA 86: 6838-6842, 1989. Go to original source...
  17. Ha, S.-B., Smith, A.P., Howden, R., Dietrich, W.M., Bugg, S., O'Connell, M.J., Goldsbrough, P.B., Cobbett, C.S.: Phytochelatin synthase genes from Arabidopsis and the yeast, Schizosaccharomyces pombe. - Plant Cell 1: 153-1164, 1999. Go to original source...
  18. Himmelbach, A., Yang, Y., Grill, E.: Relay and control of abscisic acid signaling. - Curr. Opin. Plant Biol. 6: 470-479, 2003. Go to original source...
  19. Hsu, Y.T., Kao, C.H.: Abscisic acid accumulation and cadmium tolerance in rice seedlings. - Plant Cell Environ. 6: 867-874, 2003. Go to original source...
  20. Hsu, Y.T., Kao, C.H.: Abscisic acid accumulation and cadmium tolerance in rice seedlings. - Physiol. Plant. 124: 71-80, 2005. Go to original source...
  21. Jakoby, M., Weisshaar, B., Dröge-Laser, W., Vicente-Carbajosa, J., Tiedemann, J., Kroj, T., Parcy F.: bZIP transcription factors in Arabidopsis. - Trends Plant Sci. 7: 106-107, 2002. Go to original source...
  22. Jiang, M., Zhang J.: Effect of abscisic acid on active oxygen species, antioxidative system and oxidative damage in leaves of maize seedlings. - Plant Cell Physiol. 42: 1265-1273, 2001. Go to original source...
  23. Knight, H., Knight, M.R. Abiotic stress signalling pathways: specificity and cross-talk. - Trends Plant Sci. 6: 262-267, 2001. Go to original source...
  24. Lee, S., Korban, S.S. Transcriptional regulation of Arabidopsis thaliana phytochelatin synthase (AtPCS1) by cadmium during early stages of plant development. - Planta 215: 689-693, 2002. Go to original source...
  25. Li, A.M., Yu, B.Y., Chen, F.H., Gan, H.Y., Yuan, J.G., Qiu, R., Huang, J.C., Yang, Z.Y., Xu, Z.F.: Characterization of the Sesbania rostrata phytochelatin synthase gene: alternative splicing and function of four isoforms. - Int. J. mol. Sci. 10: 3269-3282, 2009. Go to original source...
  26. Lopez-Climent, M.F., Arbona, V., Perez-Clement, R.M., Gomez-Cadenas, A.: Effects of cadmium on gas exchange and phytohormone contents in citrus. - Biol. Plant. 55: 187-190, 2011. Go to original source...
  27. Maitani, T., Kubota, H., Sato, K., Yamada, T.: The composition of metals bound to class III metallothionein (phytochelatin and its desglycyl peptide) induced by various metals in root cultures of Rubia tinctorum. - Plant Physiol. 110: 1145-1150, 1996. Go to original source...
  28. Moore, R.: Abscisic acid is not necessary for gravitropism in primary roots of Zea mays. - Ann. Bot. 66: 281-283, 1990. Go to original source...
  29. Murata, Y., Pei, Z-M., Mori, I.C., Schroeder, J.: Abscisic acid activation of plasma membrane Ca+2 channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants. - Plant Cell 13: 2513-2523, 2001. Go to original source...
  30. Nuc, P.W., Chadzinikolau, T., Nuc, K., Stroiński, A.: Solanum tuberosum mRNA for phytochelatin synthase (pcs1 gene). EMBL/GenBank/DDBJ database 2003.
  31. Ogawa, S., Yoshidomi, T., Yoshimura, E.: Cadmium(II)-stimulated enzyme activation of Arabidopsis thaliana phytochelatin synthase 1. - J. Inorg. Chem. 105: 111-117, 2011. Go to original source...
  32. Pal, R., Rai, J.P.N.: Phytochelatins: peptides involved in heavy metal detoxification. - Appl. Biochem.Biotechnol. 160: 945-963, 2010. Go to original source...
  33. Pei, Z.M., Murata, Y., Benning, G., Thomine, S., Klusener, B., Allen, G.J., Grill, E., Schroeder J.I.: Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. - Nature 406: 731-734., 2000. Go to original source...
  34. Prat, S.: S. tuberosum mRNA for leucine zipper transcription factor. - EMBL/GenBank/DDBJ databases 1994.
  35. Rodriguez-Serrano, M., Romero-Puertas, M.C., Zabalza, A., Corpas, F.J., Gomez, M., Del Rio, L.A., Sandalio, L.M.: Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. - Plant Cell Environ. 29: 1532-1544, 2006. Go to original source...
  36. Sanders, D., Brownlee, C., Harper, J.F.: Communicating with calcium. - Plant Cell 11: 691-706, 1999. Go to original source...
  37. Schwartz, S.H., Léon-Kloosterziel, K.M., Koornneef, M., Zeevaart, J.A.I.: Biochemical characterization of the aba2 and aba3 mutants in Arabidopsis thaliana. - Plant Physiol. 114: 161-166, 1997a. Go to original source...
  38. Schwartz, S.H., Qin, X., Zeevaart, J.A.D.: Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants, genes, and enzymes. - Plant Physiol. 131: 1591-1601, 2003. Go to original source...
  39. Schwartz, S.H., Tan, B.C., Gage, D.A., Zeevaart, J.A.D., McCarty, D.R.: Specific oxidative cleavage of carotenoid by VP14 of maize. - Science 276: 1872-1874, 1997b.
  40. Stroiński, A.: Some physiological and biochemical aspects of plant resistance to cadmium effect. I. Antioxidative system. - Acta Physiol. Plant. 21: 175-188, 1999. Go to original source...
  41. Stroiński, A., Chadzinikolau, T., Giżewska, K., Zielezińska, M.: ABA or cadmium induced phytochelatin synthesis in potato tubers. - Biol. Plant. 54: 117-120, 2010. Go to original source...
  42. Stroiński, A., Kozłowska, M.: Cadmium-induced oxidative stress in potato tuber. - Acta Soc. Bot. Polon. 66: 189-195, 1997.
  43. Stroiński, A., Zielezińska, M.: Cadmium effect on hydrogen peroxide, glutathione and phytochelatins levels in potato tuber. - Acta Physiol. Plant. 19: 127-136, 1997. Go to original source...
  44. Stroiński, A. Zielezińska, M. Cadmium and oxidative stress influence on phytochelatin synthase activity in potato tuber. - Acta Physiol. Plant. 23: 157-160, 2001. Go to original source...
  45. Vatamaniuk, O.K., Mari, S., Lu, Y.P., Rea, P.A.: Mechanism of heavy metal ion activation of phytochelatin (PC) synthase: blocked thiols are sufficient for PC synthase-catalyzed transpeptidation of glutathione and related thiol peptides. - J. biol. Chem. 275: 31451-31459, 2000. Go to original source...
  46. Vatamaniuk, O.K., Mari, S., Lang, A., Chalasani, S., Demkiv, L., Rea, P.A.: Phytochelatin synthase, a dipeptidyltransferase that undergoes multisite acylation with γ-glutamylcysteine during catalysis. Stoichiometric and sitedirected mutagenic analysis of Arabidopsis thaliana PCS1- catalyzed phytochelatin synthesis. - J. biol. Chem. 279: 22449-22460, 2004. Go to original source...
  47. Wang, H.C., Wu, J.S., Chia, J.C., Yang, C.C., Wu, Y.J., Juang, R.H.: Phytochelatin synthase is regulated by protein phosphorylation at a threonine residue near its catalytic site. - J. Agr. Food Chem. 57: 7348-7355, 2009. Go to original source...
  48. Xiong, L., Zhu, J.-K.: Regulation of abscisic acid biosynthesis. - Plant Physiol. 133: 29-36, 2003. Go to original source...
  49. Yamaguchi-Shinozaki, K., Shinozaki, K.: Ogranization of cisacting regulatory elements in osmotic- and cold-stressresponsive promoters. - Trends Plant Sci. 10: 88-94, 2005. Go to original source...
  50. Yoshioka T, Endo T, Satoh S.: Restoration of seed germination supraoptimal temperatures by fluridone, an inhibitor of abscisic acid biosynthesis. - Plant Cell Physiol. 39: 307-312, 1998. Go to original source...