Biologia plantarum 57:481-486, 2013 | DOI: 10.1007/s10535-013-0313-5

Magnesium deficiency-induced changes in organic acid metabolism of Citrus sinensis roots and leaves

L.T. Yang1,2,3, G.H. Yang2,4, X. You2,4, C.P. Zhou2,3, Y.B. Lu1,2, L.S. Chen1,2,3,5,*
1 College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
2 Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, China
3 College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
4 College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
5 Fujian Key Laboratory for Plant Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, China

Organic acid (OA) metabolisms are of fundamental importance but very limited data are available on the responses of plant OA metabolisms to Mg-deficiency. Seedlings of Citrus sinensis (L.) Osbeck cv. Xuegan were irrigated with Mg-deficient (0, 50, or 500 μM MgSO4) or Mg-sufficient (2000 μM MgSO4) nutrient solution every other day for 12 weeks. Thereafter, we investigated the content of Mg, malate, and citrate as well as the activities of acidmetabolizing enzymes in roots and leaves. Root malate content remained stable except for an increase in the highest Mg content and root citrate content increased with increasing root Mg content. As leaf Mg content increased, leaf malate and malate + citrate content decreased whereas leaf citrate content increased. Mg-deficiency decreased or did not affect activities of citrate synthase (CS), aconitase (ACO), phosphoenolpyruvate carboxylase (PEPC), NADP-isocitrate dehydrogenase (NADP-IDH), NAD-malate dehydrogenase (NAD-MDH), NADP-malic enzyme (NADP-ME), and pyruvate kinase (PK) in roots, whereas phosphoenolpyruvate phosphatase (PEPP) activity slightly increased. In contrast, Mg-deficient leaves had higher or similar activities of enzymes above mentioned except PEPP, NAD-MDH, and NADP-ME. In conclusion, both glycolysis and tricarboxylic acid (TCA) cycle may be up-regulated in Mg-deficient leaves but down-regulated in Mg-deficient roots.

Keywords: organic acid-metabolizing enzymes; citrate; glycolysis; malate; tricarboxylic acid cycle
Subjects: magnesium; organic acid metabolism; citrate; glycolysis; malate; tricarboxylic acid cycle; citrate synthase; aconitase; PEP carbocylase; PEP phosphatase; NAD-malate dehydrogenase; NADP-malic enzyme; pyruvate kinase

Received: May 8, 2012; Accepted: November 19, 2012; Published: September 1, 2013Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Yang, L.T., Yang, G.H., You, X., Zhou, C.P., Lu, Y.B., & Chen, L.S. (2013). Magnesium deficiency-induced changes in organic acid metabolism of Citrus sinensis roots and leaves. Biologia plantarum57(3), 481-486. doi: 10.1007/s10535-013-0313-5.
Download citation

References

  1. Achituv, M., Bar-Akiva, A.: Metabolic pathway of α-ketoglutarate in citrus leaves as affected by phosphorus nutrition. - Plant Physiol. 61: 703-705, 1978. Go to original source...
  2. Besford, R.T.: Use of pyruvate kinase activity of leaf extracts for the quantitative assessment of potassium and magnesium status of tomato plants. - Ann. Bot. 42: 317-324, 1978. Go to original source...
  3. Bottrill, D.E., Possingham, J.V., Kriedemann, P.E.: The effect of nutrient deficiencies on photosynthesis and respiration in spinach. - Plant Soil 32: 428-438, 1970. Go to original source...
  4. Büchert, A.M., Civello, P.M., Martínez, G.A.: Characterization of Mg-dechelating substance in senescent and pre-senescent Arabidopsis thaliana leaves. - Biol. Plant. 55: 75-82, 2011. Go to original source...
  5. Cakmak, I., Kirkby, E.A.: Role of magnesium in carbon partitioning and alleviating photooxidative damage. - Physiol. Plant. 133: 692-704, 2008. Go to original source...
  6. Cakmak, I., Hengeler, C., Marschner, H.: Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency. - J. exp. Bot. 45: 1245-1250, 1994a. Go to original source...
  7. Cakmak, I., Hengeler, C., Marschner, H.: Changes in phloem export of sucrose in leaves in response to phosphorus, potassium and magnesium deficiency in bean plants. - J. exp. Bot. 45: 1251-1257, 1994b. Go to original source...
  8. Chen, L.S., Lin, Q., Nose, A.: A comparative study on diurnal changes in metabolite levels in the leaves of three crassulacean acid metabolism (CAM) species, Ananas comosus, Kalanchoë daigremontiana and K. pinnata. - J. exp. Bot. 53: 341-350, 2002. Go to original source...
  9. Epstein, E., Bloom, A.J. (ed.): Mineral Nutrition of Plants: Principles and Perspectives. 2nd Ed. - Sinauer Associates, Sunderland 2004.
  10. Emmerlich, V., Linka, N., Reinhold, T., Hurth, M.A., Traub, M., Martinoia, E., Neuhaus, H.E.: The plant homolog to the human sodium/dicarboxylic cotransporter is the vacuolar malate carrier. - Proc. nat. Acad. Sci. USA 100: 11122-11126, 2003. Go to original source...
  11. Fischer, E.S.: Photosynthetic irradiance response curves of Phaseolus vulgaris under moderate or severe magnesium deficiency. - Photosynthetica 33: 385-390, 1997.
  12. Fischer, E.S., Bremer, E.: Influence of magnesium deficiency on rates of leaf expansion, starch and sucrose accumulation, and net assimilation in Phaseolus vulgaris. - Physiol. Plant. 89: 271-276, 1993. Go to original source...
  13. Fischer, E.S., Lohaus, G., Heineke, D., Heldt, H.W.: Magnesium deficiency results in accumulation of carbohydrates and amino acids in source and sink leaves of spinach. - Physiol. Plant. 102: 16-20, 1998. Go to original source...
  14. Guha, S., Rao, I.S.: Nitric oxide promoted rhizome induction in Cymbidium shoot buds under magnesium deficiency. - Biol. Plant. 56: 227-236, 2012. Go to original source...
  15. Hariadi, Y., Shabala, S.: Screening broad beans (Vicia faba) for magnesium deficiency. II. Photosynthetic performance and leaf bioelectrical responses. - Funct. Plant Biol. 31: 539-549, 2004. Go to original source...
  16. Hermans, C., Bourgis, F., Faucher, M., Strasser, R.J., Delrot, S., Verbruggen, N.: Magnesium deficiency in sugar beets alters sugar partitioning and phloem loading in young mature leaves. - Planta 220: 541-549, 2005. Go to original source...
  17. Hermans, C., Johnson, G.N., Strasser, R.J., Verbruggen, N.: Physiological characterisation of magnesium deficiency in sugar beet: acclimation to low magnesium differentially affects photosystems I and II. - Planta 220: 344-355, 2004. Go to original source...
  18. Hermans, C., Verbruggen, N.: Physiological characterization of Mg deficiency in Arabidopsis thaliana. - J. exp. Bot. 56: 2153-2161, 2005. Go to original source...
  19. Hoffland, E., Van den Boogaard, R., Nelemans, J., Findenegg, G.: Biosynthesis and root exudation of citric and malic acids in phosphate-starved rape plants. - New Phytol. 122: 675-680, 1992. Go to original source...
  20. Hurth, M.A., Suh, S.J., Kretzschmar, T., Geis, T., Bregante, M., Gambale, F., Martinoia, E., Neuhaus, H.E.: Impaired pH homeostasis in Arabidopsis lacking the vacuolar dicarboxylate transporter and analysis of carboxylic acid transport across the tonoplast. - Plant Physiol. 137: 901-910, 2005. Go to original source...
  21. Laing, W., Greer, D., Sun, O., Beets, P., Lowe, A., Payn, T.: Physiological impacts of Mg deficiency in Pinus radiata: growth and photosynthesis. - New Phytol. 146: 47-57, 2000. Go to original source...
  22. Li, L., Tutone, A.F., Drummond, R.S.M., Gardner, R.C., Luan. S.: A novel family of magnesium transport genes in Arabidopsis. - Plant Cell 13: 2761-2775, 2001a. Go to original source...
  23. Li, Y., Liu, X.H., Zhuang, W.M.: The effect of magnesium deficiency on photosynthesis of longan (Dimocarpus longan Lour.) seedlings. - Acta hort. sin. 28: 101-106, 2001b.
  24. Lin, Z.H., Chen, L.S., Chen, R.B., Zhang, F.Z., Jiang, H.X., Tang, N., Smith, B.R.: Root release and metabolism of organic acids in tea plants in response to phosphorus supply. - J. Plant Physiol. 168: 644-652, 2011. Go to original source...
  25. Ling, L.L., Peng, L.Z., Cao, L., Jiang, C.L., Chun, C.P., Zhang, G.Y., Wang, Z.X.: Effect of magnesium deficiency on photosynthesis characteristic of Beibei 447 Jinchen orange. - J. Fruit Sci. 26: 275-280, 2009.
  26. López-Bucio, J., Nieto-Jacobo, M.F., Ramírez-Rodríguez, V., Herrera-Estrella, L.: Organic acid metabolism in plants: from adaptive physiology to transgenic varieties for cultivation in extreme soils. - Plant Sci. 160: 1-13, 2000. Go to original source...
  27. Marschner, H. (ed.): Mineral Nutrition of Higher Plants. 2nd Ed. - Academic Press, San Diego 1995.
  28. Moing, A., Rothan, C., Svanella, L., Just, D., Diakou, P., Raymond, P., Gaudillere, J.-P., Monet, R.: Role of phosphoenolpyruvate carboxylase in organic acid accumulation during peach fruit development. - Physiol. Plant. 108: 1-10, 2000. Go to original source...
  29. Peaslee, D.E., Moss, D.N.: Photosynthesis in K- and Mg-deficient maize (Zea mays L.) leaves. - Soil Sci. Soc. Amer. J. 30: 220-223, 1966.
  30. Rentsch, D., Martinola, E.: Citrate transport into barley mesophyll vacuoles-comparison with malate-uptake activity. - Planta 184: 532-537, 1991. Go to original source...
  31. Sadka, A., Dahan, E., Cohen, L., Marsh, K.B.: Aconitase activity and expression during the development of lemon fruit. - Physiol. Plant. 108: 255-262, 2000. Go to original source...
  32. Salisbury, F.B., Ross, C.W.: Plant Physiology. 4th Ed. - Wadsworth Publishing Company, Belmont 1992.
  33. Schell, J.: Interdependence of pH, malate concentration, and calcium and magnesium concentrations in the xylem sap of beech roots. - Tree Physiol. 17: 479-483, 1997. Go to original source...
  34. Shaul, O.: Magnesium transport and function in plants: the tip of the iceberg. - BioMetals 15: 309-323, 2002. Go to original source...
  35. Tang, Q.Y., Feng, M.G. (ed.): DPS Data Processing System for Practical Statistics. 2nd Ed. - Chinese Science Press, Beijing 2002.
  36. Terry, N., Ulrich, A.: Effects of magnesium deficiency on the photosynthesis and respiration of leaves of sugar beet. - Plant Physiol. 54: 379-381, 1974. Go to original source...
  37. Wang, H., Ma, F., Cheng, L.: Metabolism of organic acids, nitrogen and amino acids in chlorotic leaves of 'Honeycrisp' apple (Malus domestica Borkh) with excessive accumulation of carbohydrates. - Planta 232: 511-522, 2010. Go to original source...
  38. Yamaki, Y.T.: Organic acids in the juice of citrus fruits. - J. jap. Soc. hort. Sci. 58: 587-594, 1989. Go to original source...
  39. Yang, G.D., Zhu, Z.J., Ji, Y.M.: Effect of light intensity and magnesium deficiency on chlorophyll fluorescence and active oxygen in cucumber leaves. - Plant Nutr. Fertil. Sci. 8: 115-118, 2002.
  40. Yang, G.H., Yang, L.T., Jiang, H.X., Wang, P., Chen, L.S.: Physiological impacts of magnesium-deficiency in Citrus seedlings: photosynthesis, antioxidant system and carbohydrates. - Trees Struct. Funct. 26: 1237-1250, 2012. Go to original source...
  41. Yang, L.T., Jiang, H.X., Tang, N., Chen, L.S.: Mechanisms of aluminum-tolerance in two species of citrus: Secretion of organic acid anions and immobilization of aluminum by phosphorus in roots. - Plant Sci. 180: 521-530, 2011. Go to original source...