Biologia plantarum 58:169-173, 2014 | DOI: 10.1007/s10535-013-0366-5

Effects of exogenous hydrogen sulfide on the redox states of ascorbate and glutathione in maize leaves under salt stress

C. Shan1,*, H. Liu2, L. Zhao3, X. Wang4
1 Henan Institute of Science and Technology, Xinxiang, P.R. China
2 Xinxiang Medical University, Xinxiang, P.R. China
3 College of Life Sciences, Shangqiu Normal University, Shangqiu, P.R. China
4 College of Life Science, Henan Normal University, Xinxiang, P.R. China

This study investigated the effects of exogenous hydrogen sulfide (H2S) on the redox states of ascorbate (AsA) and glutathione (GSH) in maize leaves under NaCl (100 mM) stress. Salt stress increased the activities of ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), Γ-glutamylcysteine synthetase (Γ-ECS), and L-galactono-1,4-lactone dehydrogenase (GalLDH), malondialdehyde content and electrolyte leakage, and reduced the ratios of reduced and oxidised forms of AsA (AsA/DHA) and GSH (GSH/GSSG) compared with control. Pretreatment with NaHS (H2S donor) further enhanced the activities of the above enzymes except MDHAR and ameliorated the decrease in the ratios of AsA/DHA and GSH/GSSG compared with the salt stress alone. Pretreatment with NaHS significantly reduced the malondialdehyde content and electrolyte leakage induced by the salt stress. Pretreatment with NaHS alone did not affect any of the above mentioned parameters compared with the control. Our results suggest that exogenous H2S could maintain the redox states of ascorbate and glutathione by up-regulating the ascorbate and glutathione metabolism and thus play an important role for acquisition of salt stress tolerance in maize.

Keywords: ascorbate peroxidase; electrolyte leakage; glutathione reductase; malondialdehyde; NaCl; Zea mays
Subjects: hydrogen sulfide; ascorbate; glutathione; salinity; ascorbate peroxidase; glutathione reductase; electrolyte leakage; malondialdehyde; maize

Received: December 14, 2012; Revised: April 15, 2013; Accepted: May 28, 2013; Published: March 1, 2014Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Shan, C., Liu, H., Zhao, L., & Wang, X. (2014). Effects of exogenous hydrogen sulfide on the redox states of ascorbate and glutathione in maize leaves under salt stress. Biologia plantarum58(1), 169-173. doi: 10.1007/s10535-013-0366-5.
Download citation

References

  1. Ai, L., Li, Z.H., Xie, Z.X., Tian, X.L., Eneji, A.E., Duan, L.S.: Coronatine alleviates polyethylene glycol-induced water stress in two rice (Oryza sativa L.) cultivars. - J. Agron. Crop Sci. 194: 360-368, 2008. Go to original source...
  2. Arasimowicz, M., Floryszak-Wieczorek, J.: Nitric oxide as a bioactive signalling molecule in plant stress responses. - Plant Sci. 172: 876-887, 2007. Go to original source...
  3. Bandeoğlu, E., Eyidoğan, F., Yücel, M., Öktem, H.A.: Antioxidant responses of shoots and roots of lentil to NaClsalinity stress. - Plant Growth Regul. 42: 69-77, 2004.
  4. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. - Anal. Biochem. 72: 248-254, 1976. Go to original source...
  5. Chen, J., Wang, W.H., Wu, F.H., You, C.Y., Liu, T.W., Dong, X.J., He, J.X., Zheng, H.L.: Hydrogen sulfide alleviates aluminum toxicity in barley seedlings. - Plant Soil 362: 301-308, 2013. Go to original source...
  6. Dalton, D.A., Russell, S.A., Hanus, F.J., Pascoe, G.A., Evans, H.J.: Enzymatic reactions of ascorbate and glutathione that prevent peroxide damage in soybean root nodules. - Proc. nat. Acad. Sci. USA 83: 3811-3815, 1986. Go to original source...
  7. Dringen, R.: Glutathione metabolism and oxidative stress in neurodegeneration. - Eur. J. Biochem. 267: 4903, 2000. Go to original source...
  8. Fatehi, F., Hosseinzadeh, A., Alizadeh, H., Brimavandi, T., Struik, P.C.: The proteome response of salt-resistant and salt-sensitive barley genotypes to long-term salinity stress. - Mol. Biol. Rep. 39: 6387-6397, 2012. Go to original source...
  9. Ferreira-Silva, S.L., Voigt, E.L., Silva, E.N., Maia, J.M., Aragão, T.C.R., Silveira, J.A.G.: Partial oxidative protection by enzymatic and non-enzymatic components in cashew leaves under high salinity. - Biol. Plant. 56: 172-176, 2012. Go to original source...
  10. Grace, S.C., Logan, B.A.: Acclimation of foliar antioxidant systems to growth irradiance in three broad-leaved evergreen species. - Plant Physiol. 112: 1631-1640, 1996. Go to original source...
  11. Griffith, O.W.: Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. - Anal. Biochem. 106: 207-212, 1980. Go to original source...
  12. Hernández, J.A., Campillo, A., Jiménez, A., Alarcon, J.J., Sevilla, F.: Response of antioxidant systems and leaf water relations to NaCl stress in pea plants. - New Phytol. 141: 241-251, 1999. Go to original source...
  13. Hernández, J.A., Jiménez, A., Mullineaux, P., Sevilla, P.F.: Tolerance of pea (Pisum sativum) to long term salt stress is associated with induction of antioxidant defences. - Plant Cell Environ. 23: 853-862, 2000. Go to original source...
  14. Hodges, D.M., Andrews, C.J., Johnson, D.A., Hamilton, R.I.: Antioxidant compound responses to chilling stress in differentially sensitive inbred maize lines. - Physiol. Plant. 98: 685-692, 1996. Go to original source...
  15. Hodges, M.D., DeLong, J.M., Forney, C.F., Prange, R.K.: Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. - Planta 207: 604-611, 1999. Go to original source...
  16. Hosoki, R., Matsuki, N., Kimura, H.: The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. - Biochem. biophys. Res. Commun. 237: 527-531, 1997. Go to original source...
  17. Hou, Z.H., Liu, J., Hou, L.X., Li, X.D., Liu, X.: H2S may function downstream of H2O2 in jasmonic acid-induced stomatal closure in Vicia faba. - Chin. Bull. Bot. 46: 396-406, 2011.
  18. Hu, X., Wang, W., Li, C., Zhang, J., Lin, F., Zhang, A., Jiang, M.: Cross-talks between Ca2+/CaM and H2O2 in abscisic acid-induced antioxidant defense in leaves of maize plants exposed to water stress. - Plant Growth Regul. 55: 183-198, 2008. Go to original source...
  19. Jiang, M., Zhang, J.: Cross-talk between calcium and reactive oxygen species originated from NADPH oxidase in abscisic acid-induced antioxidant defence in leaves of maize seedlings. - Plant Cell Environ. 26: 929-939, 2003. Go to original source...
  20. Kocsy, G., Galiba, G., Brunold, C.: Role of glutathione in adaptation and signaling during chilling and cold acclimation in plants. - Physiol. Plant. 113: 158-164, 2001. Go to original source...
  21. Li, L., Wang, Y., Shen, W.: Roles of hydrogen sulfide and nitric oxide in the alleviation of cadmium-induced oxidative damage in alfalfa seedling roots. - Biometals 25: 617-631, 2012. Go to original source...
  22. Li, L., Van Staden, J., Jäger, A.K.: Effects of plant growth regulators on the antioxidant system in seedlings of two maize cultivars subjected to water stress. - Plant Growth Regul. 25: 81-87, 1998. Go to original source...
  23. Liu, J., Hou, Z., Zhao, F., Liu, X.: Hydrogen sulfide mediates ABA-induced stomatal closure of Vicia faba L. - Acta bot. boreal-occident. sin. 31: 298-304, 2011.
  24. Mittler, R.: Oxidative stress, antioxidants and stress tolerance. - Trends Plant Sci. 7: 405-410, 2002. Go to original source...
  25. Mittova, V., Theodoulou, F.L., Kiddle, G., Gomez, L., Volokita, M., Tal, M., Foyer, C.H., Guy, M.: Coordinate induction of glutathione biosynthesis and glutathione metabolizing enzymes is correlated with salt tolerance in tomato. - FEBS Lett. 554: 417-421, 2003. Go to original source...
  26. Miyake, C., Asada, K.: Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product monodehydroascorbate radicals in thylakoids. - Plant Cell Physiol. 33: 541-553, 1992.
  27. Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. - Plant Cell Physiol. 22: 867-880, 1981.
  28. Nazar, R., Iqbal, N., Syeed, S., Khan, N.A.: Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. - J. Plant Physiol. 168: 807-815, 2011. Go to original source...
  29. Noctor, G., Foyer, C.H.: Ascorbate and glutathione: keeping active oxygen under control. - Annu. Rev. Plant Physiol. 49: 249-279, 1998. Go to original source...
  30. Rüegsegger, A., Brunold, C.: Effect of cadmium on Γ-glutamylcysteine synthesis in maize seedlings. - Plant Physiol. 99: 428-433, 1992. Go to original source...
  31. Shi, Q., Ding, F., Wang, X., Wei, M.: Exogenous nitric oxide protects cucumber roots against oxidative stress induced by salt stress. - Plant Physiol. Biochem. 45: 542-550, 2007. Go to original source...
  32. Sorkheh, K., Shiran, B., Rouhi, V., Khodambashi, M., Sofo, A.: Salt stress induction of some key antioxidant enzymes and metabolites in eight Iranian wild almond species. - Acta Physiol. Plant. 34: 203-213, 2012. Go to original source...
  33. Tabata, K., Oba, K., Suzuki, K., Esaka, M.: Generation and properties of ascorbic acid-deficient transgenic tobacco cells expressing antisense RNA of L-galactono-1,4-lactone dehydrogenase. - Plant J. 27: 139-148, 2001. Go to original source...
  34. Talukdar, D.: Ascorbate deficient semi-dwarf asfL1 mutant of Lathyrus sativus exhibits alterations in antioxidant defense. - Biol. Plant. 56: 675-682, 2012. Go to original source...
  35. Wang, B.L., Shi, L., Li, Y.X., Zhang, W.H.: Boron toxicity is alleviated by hydrogen sulfide in cucumber (Cucumis sativus L.) seedlings. - Planta 231:1301-1309, 2010. Go to original source...
  36. Wang, Y., Li, L., Cui, W., Xu, S., Shen, W., Wang, R.: Hydrogen sulfide enhances alfalfa (Medicago sativa) tolerance against salinity during seed germination by nitric oxide pathway. - Plant Soil 351: 107-119, 2012. Go to original source...
  37. Wendehenne, D., Dumer, J., Klessing, D.F.: Nitric oxide: a new player in plant signaling and defense responses. - Curr. Opin. Plant Biol. 7: 449-455, 2004. Go to original source...
  38. Wheeler, G.L., Jones, M.A., Smirnoff, N.: The biosynthetic pathway of vitamin C in higher plants. - Nature 393: 365-369, 1998. Go to original source...
  39. Zhang, H., Hu, L.Y., Hu, K.D., He, Y.D., Wang, S.H., Luo, J.P.: Hydrogen sulfide promotes wheat seed germination and alleviates the oxidative damage against copper stress. - J. Integr. Plant Biol. 50: 1518-1529, 2008. Go to original source...
  40. Zhang, H., Jiao, H., Jiang, C.X., Wang, S.H., Wei, Z.J., Luo, J.P., Jones, R.L.: Hydrogen sulfide protects soybean seedlings against drought-induced oxidative stress. - Acta Physiol. Plant. 32: 849-857, 2010b. Go to original source...
  41. Zhang, H., Tang, J., Liu, X.P., Wang, Y., Yu, W., Peng, W.Y., Fang, F., Ma, D.F., Wei, Z.J., Hu, L.Y.: Hydrogen sulfide promotes root organogenesis in Ipomoea batatas, Salix matsudana and Glycine max. - J. Integr. Plant Biol. 51: 1086-1094, 2009a. Go to original source...
  42. Zhang, H., Wang, M.J., Hu, L.Y., Wang, S.H., Hu, K.D., Bao, L.J., Luo, J.P.: Hydrogen sulfide promotes wheat seed germination under osmotic stress. - Russ. J. Plant Physiol. 57: 532-539, 2010a. Go to original source...
  43. Zhang, H., Ye, Y.K., Wang, S.H., Luo, J.P., Tang, J., Ma, D.F.: Hydrogen sulfide counteracts chlorophyll loss in sweetpotato seedling leaves and alleviates oxidative damage against osmotic stress. - Plant Growth Regul. 58: 243-250, 2009ib. Go to original source...
  44. Zhao, L.Q., Zhang, F., Guo, J.K., Yang, Y.L., Li, B.B., Zhang, L.X.: Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. - Plant Physiol. 134: 849-857, 2004. Go to original source...