Biologia plantarum 59:341-349, 2015 | DOI: 10.1007/s10535-015-0505-2

Alterations in the porphyrin biosynthesis and antioxidant responses to chilling and heat stresses in Oryza sativa

T. -H. Phung1, S. Jung1,*
1 School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea

Roles of an altered porphyrin biosynthesis and antioxidants in protection against chilling and heat stresses were evaluated in rice (Oryza sativa L.). When exposed to the same exposure time (6 or 30 h), heat-stressed (45 °C) plants exhibited a less oxidative stress as indicated by a lower dehydration, ion leakage, and H2O2 production compared to chilling-stressed (4 °C) plants. Malondialdehyde production also increased after a mild chilling stress, whereas it increased only after a long-term heat stress. The content of protoporphyrin IX, Mg-protoporphyrin IX and its methyl ester, and protochlorophyllide drastically declined under both the stresses, particularly under the long-term heat stress. Greater increases in catalase and peroxidase activities in heat-stressed plants indicate more cofactors supplied for hemoproteins compared to those of chilling-stressed and untreated control plants. Intermediates of carotenoid biosynthesis, zeaxanthin and antheraxanthin, also increased under the chilling and heat stresses. In comparison to chilling-stressed plants, heat-stressed plants were more efficient in porphyrin scavenging and antioxidant enzyme responses, which may play crucial roles in plant protection under temperature stress, thereby suffering less from oxidative stress.

Keywords: ascorbate peroxidase; carotenoids; catalase; hydrogen peroxide; malondialdehyde; peroxidase; rice; superoxide dismutase; xanthophyll
Subjects: porphyrin biosynthesis; ascorbate peroxidase; carotenoids; catalase; chlorophyll; RWC; temperature - high; temperature - low; malondialdehyde; peroxidase; superoxide dismutase; xanthophylls; rice
Species: Oryza sativa

Received: July 24, 2014; Revised: November 20, 2014; Accepted: December 4, 2014; Published: June 1, 2015Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Phung, T.-H., & Jung, S. (2015). Alterations in the porphyrin biosynthesis and antioxidant responses to chilling and heat stresses in Oryza sativa. Biologia plantarum59(2), 341-349. doi: 10.1007/s10535-015-0505-2.
Download citation

References

  1. Abdelkader, A.F., Aronsson, H., Sundqvist, C.: High salt stress in wheat leaves causes retardation of chlorophyll accumulation due to a limited rate of protochlorophyllide formation. - Physiol. Plant. 130: 157-166, 2007. Go to original source...
  2. Almeselmani, M., Deshmukh, P.S., Sairam, P.K., Kushwaha, S.R., Singh, T.P.: Protective role of antioxidant enzymes under high temperature stress. - Plant Sci. 171: 382-388, 2006. Go to original source...
  3. Alscher, R.G., Hess, J.L. (ed.): Antioxidants in Higher Plants. - CRC Press, Boca Raton 1993.
  4. Asada, K.: The role of ascorbate peroxidase and monodehydroascorbte reductase in H2O2 scavenging in plants. - In: Scandalios, J.G. (ed.): Oxidative Stress and the Molecular Biology of Antioxidant Defenses. Pp. 715-735. CSHL Press, Cold Spring Harbor 1997.
  5. Back, K., Jung, S.: The lack of plastidal transit sequence cannot override the targeting capacity of Bradyrhizobium japonicum δ-aminolevulinic acid synthase in transgenic rice. - Biol. Plant. 54: 279-284, 2010. Go to original source...
  6. Beale, S.I., Weinstein, J.D.: Tetrapyrrole metabolism in photosynthetic organisms. - In: Daily, H.A. (ed.): Biosynthesis of Heme and Chlorophyll. Pp. 287-391. McGraw-Hill, New York 1990.
  7. Berry, J.A., Björkman, O.: Photosynthetic response and adaptation to temperature in higher plants. - Annu. Rev. Plant Physiol. 31: 491-543, 1980. Go to original source...
  8. Buege, T.A., Aust, S.D.: Microsomal lipid peroxidation. - Methods Enzymol. 52: 302-310, 1978. Go to original source...
  9. Dalal, V.K., Tripathy, B.C.: Modulation of chlorophyll biosynthesis by water stress in rice seedlings during chloroplast biogenesis. - Plant Cell Environ. 35: 1685-1703, 2012. Go to original source...
  10. Duke, S.O., Lydon, J., Becerril, J.M., Sherman, T.D., Lehnen, L.P., Matsumoto, H.: Protoporphyrinogen oxidaseinhibiting herbicides. - Weed Sci. 39: 465-473, 1991.
  11. Dutta, S., Mohanty, S., Tripathy, B.C.: Role of temperature stress on chloroplast biogenesis and protein import in pea. - Plant Physiol. 150: 1050-1061, 2009. Go to original source...
  12. Feierabend, J.: Catalases in plants: molecular and functional properties and role in stress defence. - In: Smirnoff, N. (ed.): Antioxidants and Reactive Oxygen Species in Plants. Pp. 101-140. Blackwell Publishing, Oxford 2005.
  13. Feierabend, J., Mikus, M.: Occurrence of a high temperature sensitivity of chloroplast ribosome formation in several higher plants. - Plant Physiol. 59: 863-867, 1976.
  14. Foyer, C.H., Shigeoka, S.: Understanding oxidative stress and antioxidant functions to enhance photosynthesis. - Plant Physiol. 155: 93-100, 2011. Go to original source...
  15. Gill, S.S., Tuteja, N.: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. - Plant Physiol. Biochem. 48: 909-930, 2010. Go to original source...
  16. Gilmore, A.M., Yamamoto, H.Y.: Zeaxanthin formation and energy-dependent fluorescence quenching in pea chloroplasts under artificially-mediated linear and cyclic electron transport. - Plant Physiol. 96: 635-643, 1991. Go to original source...
  17. Gilmore, A.M., Yamamoto, H.Y.: Linear models relating xanthophylls and lumen acidity to non-photochemical fluorescence quenching. Evidence that antheraxanthin explains zeaxanthin-independent quenching. - Photosynth. Res. 35: 67-78, 1993. Go to original source...
  18. Guy, C.L.: Cold acclimation and freezing stress tolerance. - Annu. Rev. Plant Physiol. Plant mol. Biol. 41: 187-223, 1990. Go to original source...
  19. Holt, N.E., Zigmantas, D., Valkunas, L., Li, X.-P., Niyogi, K.K., Fleming, G.R.: Carotenoid cation formation and the regulation of photosynthetic light harvesting. - Science 307: 433-435, 2005. Go to original source...
  20. Jahns, P., Holzwarth, A.R.: The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. - Biochim. biophys. Acta 1817: 182-193, 2012.
  21. Jung, S., Steffen, K.L.: Influence of photosynthetic photon flux densities before and during long-term chilling on xanthophyll cycle and chlorophyll fluorescence quenching in leaves of tomato (Lycopersicon hirsutum). - Physiol. Plant. 100: 958-966, 1997. Go to original source...
  22. Kaplan, F., Kopka, J., Haskell, D.W., Zhao, W., Schiller, K.C., Gatzke, N., Sung, D.Y., Guy, C.L.: Exploring the temperature-stress metabolome of Arabidopsis. - Plant Physiol. 136: 4159-4168, 2004. Go to original source...
  23. Kim, J.-G., Back, K., Lee, H.Y., Lee, H.-J., Phung, T.H., Grimm, B, Jung, S. - Increased expression of Fe-chelatase leads to increased metabolic flux into heme and confers protection against photodynamically induced oxidative stress. - Plant mol. Biol. 86: 271-287, 2014. Go to original source...
  24. King, M.M., Ludford, P.M.: Chilling injury and electrolyte leakage in fruit of different tomato cultivars. - J. amer. Soc. hort. Sci. 108: 74-77, 1983.
  25. Ledford, H.K., Niyogi, K.K.: Singlet oxygen and photooxidative stress management in plants and algae. - Plant Cell Environ. 28: 1037-1045, 2005. Go to original source...
  26. Lee, G., Carrow, V., Duncan, A.: Growth and water relation responses to salinity stress in halophytic sea shore Paspalum ecotypes. - Sci. Hort. 104: 221-236, 2005. Go to original source...
  27. Lee, D.H., Lee, C.B.: Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays. - Plant Sci. 159: 75-85, 2000. Go to original source...
  28. Lermontova, I., Grimm, B.: Overexpression of plastidic protoporphyrinogen IX oxidase leads to resistance to the diphenylether herbicide acifluorfen. - Plant Physiol. 122: 75-83, 2000. Go to original source...
  29. Lichtenthaler, H.K.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. - Methods Enzymol. 148: 350-382, 1987. Go to original source...
  30. Mazorra, L.M., Nunez, M., Echerarria, E., Coll, F., Sánchez-Blanco, M.J.: Influence of brassinosteroids and antioxidant enzymes activity in tomato under different temperatures. - Plant Biol. 45: 593-596, 2002. Go to original source...
  31. Mittler, R., Finka, A., Goloubinoff, P.: How do plants feel the heat? - Trends biochem. Sci. 37: 118-125, 2012. Go to original source...
  32. Mittler, R., Poulos, T.L.: Ascorbate peroxidase. - In Smirnoff, N. (ed.): Antioxidants and Reactive Oxygen Species in Plants. Pp. 87-100. Blackwell Publishing, Oxford 2005. Go to original source...
  33. Miura, K., Furumoto, T.: Cold signaling and cold response in plants. - Int. J. mol. Sci. 14: 5312-5337, 2013. Go to original source...
  34. Mohanty S., Grimm B., Tripathy B.C.: Light and dark modulation of chlorophyll biosynthetic genes in response to temperature. - Planta 224: 692-699, 2006. Go to original source...
  35. Niyogi, K.K.: Photoprotection revisited: genetic and molecular approaches. - Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 333-359, 1999. Go to original source...
  36. Olson, P.D., Varner, J.E.: Hydrogen peroxide and lignification. - Plant J. 4: 887-892, 1993. Go to original source...
  37. Phung, T.-H., Jung, H.-I., Park, J.-H., Kim, J.-G., Back, K., Jung, S.: Porphyrin biosynthesis control under water stress: Sustained porphyrin status correlates with drought tolerance in transgenic rice. - Plant Physiol. 157: 1746-1764, 2011. Go to original source...
  38. Prasad, T.K., Anderson, M.D., Martin, B.A., Stewart, C.R.: Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. - Plant Cell 6: 65-74, 1994. Go to original source...
  39. Qu, A.-L., Ding, Y.-F., Jiang, Q., Zhu, C.: Molecular mechanisms of the plant heat stress response. - Biochem. biophys. Res. Commun. 432: 203-207, 2013. Go to original source...
  40. Rao, M.V., Paliyath, G., Ormrod, D.P.: Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. - Plant Physiol. 110: 125-136, 1996. Go to original source...
  41. Reinbothe, S., Reinbothe, C.: The regulation of enzymes involved in chlorophyll biosynthesis. - Eur. J. Biochem. 237: 323-343, 1996. Go to original source...
  42. Reinbothe, S., Reinbothe, C., Apel, K., Lebedev, N.: Evolution of chlorophyll biosynthesis - the challenge to survive photooxidation. - Cell 86: 703-705, 1996. Go to original source...
  43. Sanghera, G.S., Wani, S.H., Hussain, W., Singh, N.B.: Engineering cold stress tolerance in crop plants. - Curr. Genomics 2: 30-43, 2011. Go to original source...
  44. Shinozaki, K., Yamaguchi-Shinozaki, K., Seki, M.: Regulatory network of gene expression in the drought and cold stress responses. - Curr. Opin. Plant Biol. 6: 410-417, 2003. Go to original source...
  45. Sung, D.-Y., Kaplan, F., Lee, K.-J., Guy, C.L.: Acquired tolerance to temperature extremes. - Trends Plant Sci. 8: 179-187, 2003. Go to original source...
  46. Suzuki, N., Koussevitzky, S., Mittler, R., Miller, G.: ROS and redox signaling in the response of plants to abiotic stress. - Plant Cell Environ. 35: 259-270, 2012. Go to original source...
  47. Tanaka, A., Tanaka, R.: Chlorophyll metabolism. - Curr. Opin. Plant Biol. 9: 248-255, 2006. Go to original source...
  48. Tewari, A.K., Tripathy, B.C. Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat. - Plant Physiol. 117: 851-858, 1998. Go to original source...
  49. Tewari, A.K., Tripathy, B.C.: Acclimation of chlorophyll biosynthetic reactions to temperature stress in cucumber (Cucumis sativus L.). - Planta 208: 431-437, 1999. Go to original source...
  50. Thordal-Christensen, H., Zhang, Z., Wei, Y., Collinge, D.B.: Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. - Plant J. 11: 1187-1194, 1997. Go to original source...
  51. Tripathy, B.C., Dalal, V.: Modulation of chlorophyll biosynthesis by environmental cues. - In: Biswal, B., Krupinska, K., Biswal, U.C. (ed.): Plastid Development in Leaves During Growth and Senescence. Advances in Photosynthesis and Respiration Vol. 36. Pp. 601-639. Springer, Dordrecht 2013. Go to original source...
  52. Valenzeno, D.: Photomodification of biological membranes with emphasis on singlet oxygen mechanisms. - Photochem. Photobiol. 46: 146-160, 1987. Go to original source...
  53. Wagner, D., Przybyla, D., Op den Camp, R., Kim, C., Landgraf, F., Lee, K.P., Würsch, M., Laloi, C., Nater, M., Hideg, E., Apel, K.: The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana. - Science 306: 1183-1185, 2004. Go to original source...
  54. Wahid, A., Gelani, S., Ashraf, M., Foolad, M.R.: Heat tolerance in plants: an overview. - Environ. exp. Bot. 61: 199-223, 2007. Go to original source...
  55. Wilson, K.E., Sieger, S.M., Huner, N.P.A.: The temperature-dependent accumulation of Mg-protoporphyrin IX and reactive oxygen species in Chlorella vulgaris. - Physiol. Plant. 119: 126-136, 2003. Go to original source...
  56. Woodbury, W., Spencer, A.K., Stahman, M.A.: An improved procedure for using ferricyanide for detecting catalase isozymes. - Anal. Biochem. 44: 301-305, 1971. Go to original source...
  57. Yamaguchi-Shinozaki, K., Shinozaki, K.: Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. - Annu. Rev. Plant Biol. 57: 781-803, 2006. Go to original source...