Biologia plantarum 2016, 60:585-594 | DOI: 10.1007/s10535-016-0635-1

Involvement of nitric oxide in 5-aminolevulinic acid-induced antioxidant defense in roots of Elymus nutans exposed to cold stress

J. J. Fu1, X. T. Chu1, Y. F. Sun1, Y. F. Xu1,*, T. M. Hu1,*
1 Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China

Nitric oxide (NO) and 5-aminolevulinic acid (5ALA) play fundamental roles in plant responses to environmental stresses, but their cross-talk in antioxidant defense in cold-stressed Elymus nutans Griseb. have not been investigated. We herein report that 5ALA and NO donor, sodium nitroprusside (SNP), alleviated cold stress-induced plant growth inhibition and lipid peroxidation in roots of two E. nutans ecotypes (Damxung, DX and Zhengdao, ZD). However, application of an NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (PTIO) differentially blocked these protective effects indicating that an inhibition of NO accumulation reduced 5ALA-enhanced cold resistance. Application of exogenous 5ALA or NO markedly up-regulated activities of superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase, enhanced reduced glutathione accumulation and reduced glutathione to oxidized glutathione ratio, activated plasma membrane (PM) H+-ATPase, and reduced Na+/K+ ratio in roots of the two E. nutans ecotypes. Moreover, in the presence of 5ALA, nitric oxide synthase (NOS) activity and NO release in cold-resistant DX were higher than those in cold-sensitive ZD. Conversely, both NO treatment and inhibition of endogenous NO accumulation by PTIO or NOS inhibitor Nω-nitro-L-arginine did not induce 5ALA production. These results suggest that NO might be acting as a downstream signal to mediate 5ALA-induced cold resistance by activating antioxidant defense and PM H+-ATPase and maintaining Na+ and K+ homeostasis.

Keywords: lipid peroxidation; Na+, K+ homeostasis; plasma membrane H+-ATPase activity; PTIO
Subjects: nitric oxide; aminolevulinic acid; cold stress; lipid peroxidation; electrolyte leakage; hydrogen peroxide; superoxide dismutase; ascorbate peroxidase; glutathione; potassium
Species: Elymus nutans

Received: September 23, 2015; Revised: December 2, 2015; Accepted: December 4, 2015; Published: September 1, 2016Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Fu, J.J., Chu, X.T., Sun, Y.F., Xu, Y.F., & Hu, T.M. (2016). Involvement of nitric oxide in 5-aminolevulinic acid-induced antioxidant defense in roots of Elymus nutans exposed to cold stress. Biologia plantarum60(3), 585-594. doi: 10.1007/s10535-016-0635-1.
Download citation

References

  1. Ahn, S.J., Im, Y.J., Chung, G.C., Cho, B.H.: Inducible expression of plasma membrane H+-ATPase in the roots of fig leaf gourd plants under chilling root temperature. - Physiol. Plant. 106: 35-40, 1999. Go to original source...
  2. Akram, N.A., Ashraf, M.: Regulation in plant stress tolerance by a potential plant growth regulator, 5-aminolevulinic acid. - J. Plant Growth Regul. 32: 663-679, 2013. Go to original source...
  3. Ali, B., Tao, Q.J., Zhou, Y.F., Gill, R.A., Ali, S., Rafiq, M.T., Xu, L., Zhou, W.J.: 5-Aminolevolinic acid mitigates the cadmium-induced changes in Brassica napus as revealed by the biochemical and ultra-structural evaluation of roots. - Ecotox. environ. Safe. 92: 271-280, 2013. Go to original source...
  4. Ali, B., Xu, X., Gill, R.A., Yang, S., Ali, S., Tahir, M., Zhou, W.J.: Promotive role of 5-aminolevulinic acid on mineral nutrients and antioxidative defense system under lead toxicity in Brassica napus. - Ind. Crop. Prod. 52: 617-626, 2014. Go to original source...
  5. Arasimowicz-Jelonek, M., Floryszak-Wieczore, K.J., Kubis, J.: Involvement of nitric oxide in water stress-induced responses of cucumber roots. - Plant Sci. 177: 682-690, 2009. Go to original source...
  6. Aroca, R., Irigoyen, J.J., Sánchez-Díaz, M.: Photosynthetic characteristics and protective mechanisms against oxidative stress during chilling and subsequent recovery in two maize varieties differing in chilling sensitivity. - Plant Sci. 161: 719-726, 2001. Go to original source...
  7. Bai, X.G., Chen, J.H., Kong, X.X., Todd, C.D., Yang, Y.P., Hu, X.Y., Li, D.Z.: Carbon monoxide enhances the chilling tolerance of recalcitrant Baccaurea ramiflora seeds via nitric oxide-mediated glutathione homeostasis. - Free Radical Biol. Med. 53: 710-720, 2012. Go to original source...
  8. Balestrasse, K.B., Tomaro, M.L., Batlle, A., Noriega, G.O.: The role of 5-aminolevulinic acid in the response to cold stress in soybean plants. - Phytochemistry 71: 2038-2045, 2010. Go to original source...
  9. Beauchamp, C., Fridovich, I.: Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. - Anal. Biochem. 44: 276-287, 1971. Go to original source...
  10. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. - Anal. Biochem. 72: 248-254, 1976. Go to original source...
  11. Cakmak, I., Marschner, H.: Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. - Plant Physiol. 98: 1222-1227, 1992. Go to original source...
  12. Corpas, F.J., Chaki, M., Fernández-Ocaña, A., Valderrama, R., Palma, J.M., Carreras, A., Begara-Morales, J.C., Airaki, M., Del Barroso, L.A., Barroso, J.B.: Metabolism of reactive nitrogen species in pea plants under abiotic stress conditions. - Plant Cell Physiol. 49: 1711-1722, 2008. Go to original source...
  13. Crawford, N.M.: Mechanisms for nitric oxide synthesis in plants. - J. exp. Bot. 57: 471-478, 2006. Go to original source...
  14. Dhindsa, R.S., Plumb-dhindsa, P., Thorpe, T.A.: Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. - J. exp. Bot. 32: 93-101, 1981. Go to original source...
  15. Erdal, S., Dumlupinar, R.: Exogenously treated mammalian sex hormones affects in organic constituents of plants. - Biol. Trace Element Res. 143: 500-506, 2011. Go to original source...
  16. Fu, J.J., Sun, Y.F., Chu, X.T., Xu, Y.F., Hu, T.M.: Exogenous 5-aminolevulenic acid promotes seed germination in Elymus nutans against oxidative damage induced by cold stress. - PLoS ONE 9: e107152, 2014. Go to original source...
  17. Gill, S.S., Hasanuzzaman, M., Nahar, K., Macovei, A., Tuteja, N.: Importance of nitric oxide in cadmium stress tolerance in crop plants. - Plant Physiol. Biochem. 63: 254-261, 2013. Go to original source...
  18. Harel, E., Klein, S.: Light dependent formation of 5-aminolevulinic acid in etiolated leaves of higher plants. - Biochem. biophys. Res. Commun. 49: 364-370, 1972. Go to original source...
  19. He, Y., Tang, R.H., Hao, Y., Stevens, R.D., Cook, C.W., Ahn, S.M., Jing, L., Yang, Z., Chen, L., Guo, F.: Nitric oxide represses the Arabidopsis floral transition. - Science 305: 1671-1968, 2004.
  20. Hotta, Y., Tanaka, T., Luo, B.S., Takeuchi, Y., Konnai, M.: Improvement of cold resistance in rice seedlings by 5-aminolevulinic acid. - J. Pest Sci. 23: 29-33, 1998. Go to original source...
  21. Kampfenkel, K., Van Montagu, M., Inzé, D.: Extraction and determination of ascorbate and dehydroascorbate from plant tissue. - Anal. Biochem. 225: 165-167, 1995. Go to original source...
  22. Kang, H.M., Saltveit, M.E.: Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. - Physiol. Plant. 115: 571-576, 2002. Go to original source...
  23. Khan, M.N., Siddiqui, M.H., Mohammad, F., Naeem, M.: Interactive role of nitric oxide and calcium chloride in enhancing tolerance to salt stress. - Nitric Oxide 27: 210-218, 2012. Go to original source...
  24. Kong, W.W., Huang, C.Y., Chen, Q., Zou, Y.J., Zhang, J.X.: Nitric oxide alleviates heat stress-induced oxidative damage in Pleurotus eryngii var. tuoliensis. - Fungal. Genet. Biol. 49: 15-20, 2012. Go to original source...
  25. Korkmaz, A., Korkmaz, Y., Demirkiran, A.R.: Enhancing chilling stress tolerance of pepper seedlings by exogenous application of 5-aminolevulinic acid. - Environ. exp. Bot. 67: 495-501, 2010. Go to original source...
  26. Law, M.Y., Charles, S.A., Halliwell, B.: Glutathione and ascorbic-acid in spinach (Spinacia oleracea) chloroplasts - the effect of hydrogen-peroxide and of paraquat. - Biochem. J. 210: 899-903, 1983. Go to original source...
  27. Ma, L., Zhang, H., Sun, L., Jiao, Y., Zhang, G., Miao, C., Hao, F.: NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na+/K+ homeostasis in Arabidopsis under salt stress. - J. exp. Bot. 63: 305-317, 2012. Go to original source...
  28. Mishra, P.K., Bisht, S.C., Ruwari, P., Selvakumar, G., Joshi, G.K., Bisht, J.K., Bhatt, J.C., Gupta, H.S.: Alleviation of cold stress in inoculated wheat (Triticum aestivum L.) seedlings with psychrotolerant pseudomonads from NW Himalayas. - Arch. Microbiol. 193: 497-513, 2011. Go to original source...
  29. Mittler, R.: Oxidative stress, antioxidants and stress tolerance. - Trends Plant Sci. 7: 405-410, 2002. Go to original source...
  30. Murphy, M.E., Noack E.: Nitric oxide assay using hemoglobin method. - Methods Enzymol. 233: 240-250, 1994. Go to original source...
  31. Naeem, M.S., Jin, Z.L., Wan, G.L., Liu, D., Liu, H.B., Yoneyama, K., Zhou, W.J.: 5-Aminolevulinic acid improves photosynthetic gas exchange capacity and ion uptake under salinity stress in oilseed rape (Brassica napus L.). - Plant Soil 332: 405-415, 2010. Go to original source...
  32. Naeem, M.S., Rasheed, M., Liu, D., Jin, Z.L., Ming, D.F., Yoneyama, K., Takeuchi, Y., Zhou, W.J.: 5-Aminolevulinic acid ameliorates salinity-induced metabolic, water-related and biochemical changes in Brassica napus L. - Acta Physiol. Plant. 33: 517-528, 2011. Go to original source...
  33. Naeem, M.S., Warusawitharana, H., Liu, H.B., Liu, D., Ahmad, R., Waraich, E.A., Xu, L., Zhou, W.J.: 5-Aminolevulinic acid alleviates the salinity-induced changes in Brassica napus as revealed by the ultrastructural study of chloroplast. - Plant Physiol. Biochem. 57: 84-92, 2012. Go to original source...
  34. Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplast. - Plant Cell Physiol. 22: 867-880, 1981.
  35. Palmgren, M.G., Askerlund, P., Fredrikson, K., Widell, S., Sommarin, M., Larsson, C.: Sealed inside-out and right-side-out plasma membrane vesicles: optimal conditions for formation and separation. - Plant Physiol. 92: 871-880, 1990. Go to original source...
  36. Ryter, S.W., Otterbein, L.E., Morse, D., Choi, A.M.K.: Heme oxygenase/carbon monoxide signaling pathways: regulation and functional significance. - Mol. Cell Biochem. 234: 249-263, 2002. Go to original source...
  37. Santa-Cruz, D.M., Pacienza, N.A., Polizio, A.H., Balestrasse, K.B., Tomaro, M.L., Yannarelli, G.G.: Nitric oxide synthase-like dependent NO production enhances heme oxygenase up-regulation in ultraviolet-B-irradiated soybean plants. - Phytochemistry 71: 1700-1707, 2010. Go to original source...
  38. Shaedle, M., Bassham, J.A.: Chloroplast glutathione reductase. - Plant Physiol. 59: 1011-1012, 1977. Go to original source...
  39. Shi, H., Li, R., Cai, W. Liu, W., Wang, C., Lu, Y.: Increasing nitric oxide content in Arabidopsis thaliana by expressing rat neuronal nitric oxide synthase resulted in enhanced stress tolerance. - Plant Cell Physiol. 53: 344-357, 2012. Go to original source...
  40. Shi, H., Ye, T., Chen, F., Cheng, Z., Wang, Y., Yang, P., Zhang, Y., Chan, Z.: Manipulation of arginase expression modulate abiotic stress tolerance in Arabidopsis: effect on arginine metabolism and ROS accumulation. - J. exp. Bot. 64: 1367-1379, 2013. Go to original source...
  41. Song, L., Ding, W., Zhao, M., Sun, B., Zhang, L.: Nitric oxide protects against oxidative stress under heat stress in the calluses from two ecotypes of reed. - Plant Sci. 171: 449-458, 2006. Go to original source...
  42. Song, L.L., Ding, W., Shen, J., Zhang, Z.G., Bi, Y.R., Zhang, L.X.: Nitric oxide mediates abscisic acid induced thermotolerance in the calluses from two ecotypes of reed under heat stress. - Plant Sci. 175: 826-832, 2008. Go to original source...
  43. Sun, Y.P., Zhang, Z.P., Wang, L.J.: Promotion of 5-amino-levulinic acid treatment on leaf photosynthesis is related with increase of antioxidant enzyme activity in watermelon seedlings grown under shade condition. - Photosynthetica 47: 347-354, 2009. Go to original source...
  44. Tartoura, K.A.H., Youssef, S.A.: Stimulation of ROS-scavenging systems in squash (Cucurbita pepo L.) plants by compost supplementation under normal and low temperature conditions. - Sci. Hort. 130: 862-868, 2011. Go to original source...
  45. Vital, S.A., Fowler, R.W., Virgen, A., Gossett, D.R., Banks, S.W., Rodriguez, J.: Opposing roles for superoxide and nitric oxide in the NaCl stress-induced upregulation of antioxidant enzyme activity in cotton callus tissue. - Environ. exp. Bot. 62: 60-68, 2008. Go to original source...
  46. Wang, J.J., Jiang, W.B., Huang, B.J.: Promotion of 5-aminolevulinic acid on photosynthesis of melon (Cucumis melo) seedlings under low light and chilling stress conditions. - Physiol. Plant. 121: 258-264, 2004. Go to original source...
  47. Wendehenne, D., Pugin, A., Klessig, D.F., Durner, J.: Nitric oxide: comparative synthesis and signaling in animal and plant cells. - Trends Plant Sci. 6: 177-183, 2001. Go to original source...
  48. Xu, M.J., Dong, J.F., Zhang, M., Xu, X.B., Sun, L.N.: Cold-induced endogenous nitric oxide generation plays a role in chilling tolerance of loquat fruit during postharvest storage. - Postharvest Biol. Technol. 65: 5-12, 2012. Go to original source...
  49. Xu, Y.F., Chu, X.T., Fu, J.J., Yang, L.Y., Hu, T.M.: Crosstalk of nitric oxide with calcium induced tolerance of tall fescue leaves to high irradiance. - Biol. Plant. 60: 376-384, 2016. Go to original source...
  50. Xu, Y.F., Sun, X.L., Jin, J.W., Zhou, H.: Protective effect of nitric oxide on light-induced oxidative damage in leaves of tall fescue. - J. Plant Physiol. 167: 512-518, 2010. Go to original source...
  51. Yu, C.W., Murphy, T.M., Lin, C.H.: Hydrogen peroxide-induced chilling tolerance in mung beans mediated through ABA-independent glutathione accumulation. - Funct. Plant Biol. 30: 955-963, 2003. Go to original source...
  52. Zhang, A., Zhang, J., Zhang, J., Ye, N., Zhang, H., Tan, M., Jiang, M.: Nitric oxide mediates brassinosteroid-induced ABA biosynthesis involved in oxidative stress tolerance in maize leaves. - Plant Cell Physiol. 52: 181-192, 2011. Go to original source...
  53. Zhang, A.Y., Jiang, M.Y., Zhang, J.H, Ding, H.D., Xu, S.C., Hu, X.L., Tan, M.P.: Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. - New Phytol. 175: 36-50, 2007. Go to original source...
  54. Zhang, J., Li, D.M., Gao, Y., Yu, B., Xia, C.X., Bai, J.G.: Pretreatment with 5-aminolevulinic acid mitigates heat stress of cucumber leaves. - Biol. Plant. 56: 780-784, 2012. Go to original source...
  55. Zhang, L.G., Zhou, S., Xuan, Y., Sun, M., Zhao, L.Q.: Protective effect of nitric oxide against oxidative damage in Arabidopsis leaves under ultraviolet-B irradiation. - J. Plant Biol. 52: 135-140, 2009a. Go to original source...
  56. Zhang, W.F., Zhang, F., Raziuddin, R., Gong, H.J., Yang, Z.M., Lu, L., Ye, Q.F., Zhou, W.J.: Effects of 5-aminolevulinic acid on oilseed rape seedling growth under herbicide toxicity stress. - J. Plant Growth Regul. 27: 159-169, 2008. Go to original source...
  57. Zhang, Y.K., Han, X.J., Chen, X.L., Jin, H., Cui, X.M.: Exogenous nitric oxide on antioxidative system and ATPase activities from tomato seedlings under copper stress. - Sci. Hort. 123: 217-223, 2009b. Go to original source...
  58. Zhang, Y.Y., Wang, L.L., Liu, Y.L., Zhang, Q., Wei, Q.P., Zhang, W.H.: Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. - Planta 224: 545-555, 2006. Go to original source...
  59. Zhao, L., He, J.X., Wang, X.M., Zhang, L.X.: Nitric oxide protects against polyethylene glycol-induced oxidative damage in two ecotypes of reed suspension cultures. - J. Plant Physiol. 165: 182-191, 2008. Go to original source...