Biologia plantarum 62:741-749, 2018 | DOI: 10.1007/s10535-018-0804-5

Transcriptional profiling of wheat and wheat-rye addition lines to identify candidate genes for aluminum tolerance

N. Salvador-Moreno1, P. R. Ryan2, I. Holguín3, E. Delhaize2, C. Benito1, F. J. Gallego1,*
1 Departamento de Genética, Facultad de Biología, Universidad Complutense, Madrid, Spain
2 CSIRO Agriculture and Food, Canberra, Australia
3 Forsyth County Public Library, Winston-Salem, USA

A large-scale expression profiling study was performed to investigate candidate genes associated with the two quantitative trait loci (QTLs) for aluminum (Al) tolerance (Alt1 and Alt2). They have been identified in rye and localized on chromosomes 6R and 3R, respectively. Materials employed were hexaploid wheat (cv. Chinese Spring), and two wheat-rye addition lines (3R-AL and 6R-AL). Seedlings were treated with and without Al for 24 h to examine genes up-regulated or down-regulated by Al. Measurements of root growth at different Al concentrations showed the Al tolerance was higher in 3R-AL than in 6R-AL and wheat. Initial transcriptomic results revealed that more genes changed expression (>10 fold) in the wheat and in the 6R-AL line (moderately tolerant) than in the 3R-AL line (highly tolerant). A method was developed to determine whether candidate genes are involved in Al tolerance or in responses to Al toxicity. Real-time qPCRs were carried out in a subset of six genes with known function in near isogenic rye lines 389 (Al-sensitive) and 390 (Al tolerant). All six genes were up-regulated by Al in line 389 but not in line 390, indicating that they were involved in Al stress response but not in Al tolerance mechanisms. Subsequent analysis of Arabidopsis lines with knockout mutations in homologues of these six genes showed an Al sensitivity similar to the wild-type, providing more evidence towards their participation in the response to stress rather than to Al tolerance. Once the stress response genes were ruled out, the focus was turned to the identification of tolerance genes by studying transcripts up-regulated and down-regulated in the tolerant 3R line with respect to wheat and 6R line. Finally, a list of candidate genes that could be conferring increased tolerance was obtained.

Keywords: microarray; mutants; quantitative trait loci; Secale cereale; stress response; Triticum aestivum
Subjects: transcriptional profiling; microarray; QTL; gene expression; aluminum; root length; wheat-rye additional lines; wheat; rye

Received: October 8, 2017; Revised: March 1, 2018; Accepted: March 2, 2018; Published: August 1, 2018Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Salvador-Moreno, N., Ryan, P.R., Holguín, I., Delhaize, E., Benito, C., & Gallego, F.J. (2018). Transcriptional profiling of wheat and wheat-rye addition lines to identify candidate genes for aluminum tolerance. Biologia plantarum62(4), 741-749. doi: 10.1007/s10535-018-0804-5.
Download citation

Supplementary files

Download filebpl-201804-0014_S1.pdf

File size: 590.37 kB

References

  1. Aniol, A.: Screening method for aluminum tolerance for cereals. - Bull. IHAR 43: 3, 1981.
  2. Aniol, A., Gustafson, J.P.: Chromosome location of genes controlling aluminum tolerance in wheat, rye and triticale. - Can. J. Genet. Cytol. 26: 701-705, 1984. Go to original source...
  3. Blancaflor, E.B., Jones, D.L., Gilroy, S.: Alterations in the cytoskeleton accompany aluminum-induced growth inhibition and morphological changes in primary roots of maize. - Plant Physiol. 118: 159-172, 1998. Go to original source...
  4. Benito, C., Fontecha, G., Silva-Navas, J., Hernández-Riquer, V., Eguren, M., Salvador, N., Gallego, F.J.: From the rye Alt3 and Alt4 aluminum tolerance loci to orthologous genes in other cereals. - Plant Soil 327: 107-120, 2010. Go to original source...
  5. Bona, L., Wright, R.J., Baligar, V.C., Matuz, J.: Screening wheat and other small grains for acid soil tolerance. - Landscape Urban Planning 27: 175-178, 1993. Go to original source...
  6. Boscolo, P.R., Menossi, M., Jorge, R.A.: Aluminum-induced oxidative stress in maize. - Phytochemistry 62: 181-189, 2003. Go to original source...
  7. Cakmak, I., Horst, W.J.: Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). - Physiol. Plant. 83: 463-468, 1991. Go to original source...
  8. Carbon, S., Ireland, A., Mungall, C.J., Shu, S., Marshall, B., Lewis, S.: AmiGO: online access to ontology and annotation data. - Bioinformatics 25: 288-289, 2009. Go to original source...
  9. Chaffai, R., Marzouk, B., El Ferjani, E.: Aluminum mediates compositional alterations of polar lipid classes in maize seedlings. - Phytochemistry 66: 1903-1912, 2005.
  10. Collins, N.C., Shirley, N.J., Saeed, M., Pallotta, M., Gustafson, J.P.: An ALMT1 gene cluster controlling aluminum tolerance at the Alt4 locus of rye (Secale cereale L). - Genetics 179: 669-682, 2008. Go to original source...
  11. Delhaize, E., Ma, J.F., Ryan, P.R.: Transcriptional regulation of aluminium tolerance genes. - Trends Plant Sci. 17: 341-348, 2012. Go to original source...
  12. Delhaize, E., Ryan, P.R.: Aluminum toxicity and tolerance in plants. - Plant Physiol. 107: 315-321, 1995. Go to original source...
  13. Delhaize, E., Ryan, P.R, Randall, P.J.: Aluminum tolerance in wheat (Triticum aestivum L.). II. Aluminum-stimulated excretion of malic acid from root apices. - Plant Physiol. 103: 695-702, 1993. Go to original source...
  14. Doncheva, S., Amenós, M., Poschenrieder, C., Barceló, J.: Root cell patterning: a primary target for aluminum toxicity in maize. - J. exp. Bot. 56: 1213-1220, 2005. Go to original source...
  15. Edgar, R., Domrachev, M., Lash, A.E.: Gene expression omnibus: NCBI gene expression and hybridization array data repository. - Nucl. Acids Res. 30: 207-210, 2002. Go to original source...
  16. Ezaki, B., Gardner, R.C., Ezaki, Y., Kondo, H., Matsumoto, H.: Protective roles of two aluminum (Al)-induced genes, HSP150 and SED1 of Saccharomyces cerevisiae, in Al and oxidative stresses. - FEMS Microbiol. Lett. 159: 99-105, 1998. Go to original source...
  17. Ezaki, B., Gardner, R.C., Ezaki, Y., Matsumoto, H.: Expression of aluminum-induced genes in transgenic Arabidopsis plants can ameliorate aluminum stress and/or oxidative stress. - Plant Physiol. 122: 657-665, 2000. Go to original source...
  18. Fontecha, G., Silva-Navas, J., Benito, C., Mestres, M.A., Espino, F. J., Hernández-Riquer, M.V., Gallego, F.J.: Candidate gene identification of an aluminum-activated organic acid transporter gene at the Alt4 locus for aluminum tolerance in rye (Secale cereale L.). - Theor. appl. Genet. 114: 249-260, 2007.
  19. Gallego, F.J., Benito, C: Genetic control of aluminium tolerance in rye (Secale cereale L.). - Theor. appl. Genet. 95: 393-399, 1997. Go to original source...
  20. Gish, W., States, D.J.: Identification of protein coding regions by database similarity search. - Natur. Genet. 3: 266-272, 1993. Go to original source...
  21. Grabski, S., Schindler, M.: Aluminum induces rigor within the actin network of soybean cells. - Plant Physiol. 108: 897-901, 1995. Go to original source...
  22. Guo, P., Bai, G., Carver, B., Li, R., Bernardo, A., Baum, M.: Transcriptional analysis between two wheat near-isogenic lines contrasting in aluminum tolerance under aluminum stress. - Mol. Genet. Genomics 277: 1-12, 2007. Go to original source...
  23. Hoekenga, O.A., Pineros, M.A.: How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. - Annu. Rev. Plant Biol. 55:459-493, 2004.
  24. Hoekenga, O.A., Maron, L.G., Piñeros, M.A., Cançado, G.M., Shaff, J., Kobayashi, Y., Ryan, P.R., Dong, B., Delhaize, E., Sasaki, T., Matsumoto, H., Yamamoto, Y., Koyama, H., Kochian, L.V.: AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. - Proc. nat. Acad. Sci. USA 103: 9738-9743, 2006. Go to original source...
  25. Houde, M., Diallo, A.O.: Identification of genes and pathways associated with aluminum stress and tolerance using transcriptome profiling of wheat near-isogenic lines. - BMC Genomics 9: 400, 2008. Go to original source...
  26. Huang, J.W., Grunes, D.L., Kochian, L.V.: Aluminum effects on the kinetics of calcium uptake into cells of the wheat root apex. - Planta 188: 414-421, 1992. Go to original source...
  27. Iuchi, S., Koyama, H., Iuchi, A., Kobayashi, Y., Kitabayashi, S., Kobayashi, Y., Ikka, T., Hirayama, T., Shinozaki, K., Kobayashi, M.: Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. - Proc. nat. Acad. Sci. USA 104: 9900-9905, 2007. Go to original source...
  28. Kochian, L.V., Piñeros, M.A., Hoekenga, A.O.: The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. - Plant Soil 274: 175-195, 2005. Go to original source...
  29. Ma, J.F., Hiradate, S., Matsumoto, H.: High aluminum resistance in buckwheat. II. Oxalic acid detoxifies aluminum internally. - Plant Physiol. 117: 753-759, 1998. Go to original source...
  30. Ma, J.F., Ryan, P.R., Delhaize, E.: Aluminium tolerance in plants and the complexing role of organic acids. - Trends Plant Sci. 6: 273-278, 2001. Go to original source...
  31. Maron, L.G., Kirst, M., Mao, C., Milner, M.J., Menossi, M., Kochian, L.V.: Transcriptional profiling of aluminum toxicity and tolerance responses in maize roots. - New Phytol. 179: 116-28, 2008. Go to original source...
  32. Maron, L.G., Piñeros, M.A., Guimarães, C.T., Magalhaes, J.V., Pleiman, J.K., Mao, C, Shaff, J, Belicuas, S. N., Kochian, L.V.: Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize. - Plant J. 61: 728-740, 2010. Go to original source...
  33. Mattiello, L., Kirst, M., Da Silva, F.R., Jorge, R.A., Menossi, M.: Transcriptional profile of maize roots under acid soil growth. - BMC Plant Biol. 10: 196, 2010. Go to original source...
  34. Matos, M., Camacho, M.V., Pérez-Flores, V., Pernaute, B., Pinto-Carnide, O., Benito, C.: A new aluminum tolerance gene located on rye chromosome arm 7RS. - Theor. Appl. Genet. 111: 360-369, 2005. Go to original source...
  35. May, C.E., Apples, R.: Rye chromosome 2R substitution and translocation lines in hexaploid wheat. - Cereals Res. Commun. 6: 175-182, 1978.
  36. Miftahudin, Scoles, G.J., Gustafson, J.P.: AFLP markers tightly linked to the aluminum-tolerance gene Alt3 in rye (Secale cereale L.). - Theor. Appl. Genet. 104: 626-631, 2002. Go to original source...
  37. Milla, M.A., Butler, E., Huete, A.R., Wilson, C.F., Anderson, O., Gustafson, J.P.: Expressed sequence tag-based gene expression analysis under aluminum stress in rye. - Plant Physiol. 130: 1706-1716, 2002. Go to original source...
  38. Miyasaka, S.C., Hawes, M.C.: Possible role of root border cells in detection and avoidance of aluminum toxicity. - Plant Physiol. 125:1978-1987, 2001.
  39. Muntzing, A.: [About the emergent 56-chromosomal rye bastards]. - Züchter 8: 188-191, 1936. [In German]. Go to original source...
  40. Ofei-Manu, P., Wagatsuma, T., Ishikawa, S., Twaraya, K.: The plasma membrane strength of the root-tip cells and root phenolic-compounds are correlated with Al tolerance in several common woody plants. - Soil Sci. Plant Nutr. 47: 359-375, 2001. Go to original source...
  41. Panda, S.K., Baluska, F., Matsumoto, H.: Aluminum stress signaling in plants. - Plant Signal. Behav. 4: 592-597, 2009. Go to original source...
  42. Rangel, A.F., Rao, I.M., Horst, W.J.: Intracellular distribution and binding state of aluminum in root apices of two common bean (Phaseolus vulgaris) genotypes in relation to Al toxicity.-Physiol. Plant. 135: 162-173, 2009. Go to original source...
  43. Rengel, Z.: Disturbance of cell Ca2+ homeostasis as a primary trigger of Al toxicity syndrome. - Plant Cell Environ. 15: 931-938, 1992. Go to original source...
  44. Richards, K.D., Schott, E.J., Sharma, Y.K., Davis, K.R., Gardner, R.C.: Aluminum induces oxidative stress genes in Arabidopsis thaliana. - Plant Physiol. 116: 409-418, 1998. Go to original source...
  45. Rounds, M.A., Larsen, P.B.: Aluminum-dependent root-growth inhibition in Arabidopsis results from AtATR-regulated cell-cycle arrest. - Curr Biol. 18: 1495-1500, 2008. Go to original source...
  46. Ryan, P.R., Liu, Q., Sperling, P., Dong, B., Franke, S., Delhaize, E.: A higher plant delta 8 sphingolipid desaturase with a preference for (Z)-isomer formation confers aluminum tolerance to yeast and plants. - Plant Physiol. 144: 1968-1977, 2007.
  47. Ryan, P.R., Tyerman, S.D., Sasaki, T., Furuichi, T., Yamamoto, Y., Zhang, W.H., Delhaize, E.: The identification of aluminium-resistance genes provides opportunities for enhancing crop production on acid soils. - J. exp. Bot. 62: 9-20, 2011. Go to original source...
  48. Sasaki, M., Yamamoto, Y., Matsumoto, H.: Lignin deposition induced by aluminum in wheat (Triticum aestivum) roots. - Physiol. Plant. 96: 193-198, 1996. Go to original source...
  49. Silva-Navas, J., Benito, C., Téllez-Robledo, B., Abd El-Moneim, D., Gallego, F.J.: The ScAACT1 gene at the Qalt5 locus as a candidate for increased aluminum tolerance in rye (Secale cereale L.).-Mol. Breed. 30: 845-856, 2012. Go to original source...
  50. Simoes, C.C., Melo, J.O., Magalhaes, J.V., Guimaraes, C.T.: Genetics and molecular mechanisms of aluminum tolerance in plants. - Genet. Mol. Res. 11: 1949-1957, 2012.
  51. Sun, P., Tian, Q.Y., Zhao, M.G., Huang, J.H., Li, L.H., Zhang, W.H.: Aluminum-induced ethylene production is associated with inhibition of root elongation in Lotus japonicus L. - Plant Cell Physiol. 48: 1229-1235, 2007. Go to original source...
  52. Sjogren, C.A., Bolaris, S.C., Larsen, P.B.: Aluminumdependent terminal differentiation of the Arabidopsis root tip is mediated through an ATR-, ALT2-, and SOG1-regulated transcriptional response. - Plant Cell 27: 2501-2515, 2015. Go to original source...
  53. Tahara, K., Hashida, K., Otsuka,Y., Ohara, S., Kojima, K., Kenji Shinohara, K.: Identification of a hydrolyzable tannin, oenothein B, as an aluminum-detoxifying ligand in a highly aluminum-resistant tree, Eucalyptus camaldulensis. - Plant Physiol. 164: 683-693, 2014. Go to original source...
  54. Taylor, G.J.: The physiology of aluminum phytotoxicity. - In: Sigel, H. (ed.): Metal Ions in Biological System. Vol. 24. Pp. 123-163. Marcel Dekker, New York 1988.
  55. Taylor, G.J.: Current views of the aluminum stress response: the physiological basis of tolerance. - Curr. Topics Plant Biochem. Physiol. 10: 57-93, 1991.
  56. Watanabe, T., Osaki, M., Yoshihara, T., Tadano, T.: Distribution and chemical speciation of aluminum in the Al accumulator plant, Melastoma malabathricum L. - Plant Soil 201: 165-173, 1998. Go to original source...
  57. Xia, J., Yamaji, N., Kasai, T., Ma, J.F.: Plasma membranelocalized transporter for aluminum in rice. - Proc. nat. Acad. Sci. USA 107: 18381-18385, 2010. Go to original source...
  58. Yamaji, N., Huang, C.F., Nagao, S., Yano, M., Sato, Y., Nagamura, Y., Ma, J.F.: A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice. - Plant Cell 21: 3339-3349, 2009. Go to original source...
  59. Yamamoto, Y., Kobayashi, Y., Matsumoto, H.: Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. - Plant Physiol. 125: 199-208, 2001. Go to original source...
  60. Yang, J.L., Li, Y.Y., Zhang, Y.J., Zhang, S.S., Wu, Y.R., Wu, P., Zheng, S.J.: Cell wall polysaccharides are specifically involved in the exclusion of aluminum from the rice root apex. - Plant Physiol. 146: 602-611, 2008. Go to original source...
  61. Yokosho, K., Yamaji, N., Ma, J.F.: Isolation and characterization of two MATE genes in rye. - Funct. Plant Biol. 37: 296-303, 2010. Go to original source...
  62. Yuan, Y.P., Eulenstein, O., Vingron, M., Bork, P.: Towards detection of orthologues in sequence databases. - Bioinformatics 14: 285-289, 1998. Go to original source...
  63. Zeller, F.J.: 1B/1R wheat/rye chromosome substitution and translocations. - In: Sears, E.R., Sears, L.M.S. (ed.): Proceedings of the 4th International Wheat Genetic Symposium. Pp. 209-221, University of Missouri, Columbia 1973.
  64. Zhang, Z., Schwartz, S., Wagner, L., Miller, W.: A greedy algorithm for aligning DNA sequences. - J. Comput. Biol. 72: 203-214, 2000. Go to original source...
  65. Zheng, S.J., Yang, J.L., He, Y.F., Yu, X.H., Zhang, L., You, J.F., Shen, R.F., Matsumoto, H.: Immobilization of aluminum with phosphorus in roots is associated with high aluminum resistance in buckwheat. - Plant Physiol. 138: 297-303, 2005. Go to original source...