Biologia plantarum 60:367-375, 2016 | DOI: 10.1007/s10535-015-0576-0

Differential responses of primary and lateral roots to indole-3-acetic acid, indole-3-butyric acid, and 1-naphthaleneacetic acid in maize seedlings

G. Márquez1, M. V. Alarcón2, J. Salguero1,*
1 Departamento de Biología Vegetal, Ecología y Ciencias de la Tierra, Universidad de Extremadura, Badajoz, Spain
2 Departamento de Hortofruticultura, Centro de Investigaciones Científicas y Tecnológicas de Extremadura, Gobierno de Extremadura, Badajoz, Spain

The role of auxins on root system architecture was studied by applying indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), and 1-naphthaleneacetic acid (NAA) to maize roots and analysing the main processes involved in root development: primary root (PR) elongation, lateral root (LR) formation, and LR root elongation. We found that these effects were not dependent only on concentration, but also on the type of auxin applied. We also studied temporal changes in auxin inhibition of PR elongation. These temporal changes were analysed calculating the elongation ratio between two consecutive one day periods after auxin application. It was observed that a reduction in root elongation was also dependent on the type of auxin applied and its concentration. The inhibitory effect of IBA and IAA decreased on the second day, and the ratio also increased with the concentration. In contrast, NAA increased root elongation inhibition with time. Indeed, the ratio decreased as the NAA concentration increased. Regarding LR formation, we observed that external auxin increased only LR formation in certain zones of the PR. Finally, comparison of inhibition elongation associated with auxin in the LR and PR clearly demonstrates that PR elongation was more sensitive to auxin than LR elongation.

Keywords: auxins; lateral root density; root architecture; root elongation; Zea mays
Subjects: primary root growth; lateral root development; auxin; root elongation; maize

Received: June 19, 2015; Revised: September 2, 2015; Accepted: October 5, 2015; Published: June 1, 2016Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Márquez, G., Alarcón, M.V., & Salguero, J. (2016). Differential responses of primary and lateral roots to indole-3-acetic acid, indole-3-butyric acid, and 1-naphthaleneacetic acid in maize seedlings. Biologia plantarum60(2), 367-375. doi: 10.1007/s10535-015-0576-0.
Download citation

Supplementary files

Download filebpl-201602-0018_S1.pdf

File size: 291.53 kB

References

  1. Alarcón, M.V., Lloret, P.G., Salguero J.: Auxin-ethylene interaction in transversal and longitudinal growth in maize primary root. - Botany 91: 680-685, 2013. Go to original source...
  2. Blakely, L.M., Blakely, R.M., Colowit, P.M., Elliott D.S.: Experimental studies on lateral root formation in radish seedling roots. II. Analysis of the dose-response to exogenous auxin. - Plant Physiol. 87: 414-419, 1988. Go to original source...
  3. Basu, P., Brown, K.M., Pal, A.: Detailed quantitative analysis of architectural traits of basal roots of young seedlings of bean in response to auxin and ethylene. - Plant Physiol. 155: 2056-2065, 2011. Go to original source...
  4. Benjamin, R., Scheres, B.: Auxin: the looping star in plant development. - Annu. Rev. Plant Biol. 59: 443-465, 2008. Go to original source...
  5. Benkova, E., Michniewicz, M., Sauer, M., Teichmann, T., Seifertova, D., Jurgens, G., Friml, J.: Local effluxdependent auxin gradients as a common module for plant organ. - Cell 115: 591-602, 2003. Go to original source...
  6. Casimiro, I., Beeckman, T., Graham, N., Bhalerao, R., Zhang, H., Casero, P., Sandberg, G., Bennett, M.J.: Dissecting Arabidopsis lateral root development. - Trends Plant Sci. 8: 165-171, 2003. Go to original source...
  7. Chhun, T., Taketa, S., Tsurumi, S., Ichii, M.: The effects of auxin on lateral root initiation and root gravitropism in a lateral rootless mutant Lrt1 of rice (Oryza sativa L.). - Plant Growth Regul. 39: 161-170, 2003. Go to original source...
  8. Chhun, T., Taketa, S., Tsurumi, S., Ichii, M.: Different behaviour of indole-3-acetic acid and indole-3-butyric acid in stimulating lateral root development in rice (Oryza sativa L.). - Plant Growth Regul 43: 143-153, 2004. Go to original source...
  9. Cruz-Ramírez, A., Díaz-Triviño, S., Blilou, I., Grieneisen, V.A., Sozzani, R., Zamioudis, C., Miskolczi, P., Nieuwland, J., Benjamins, R., Dhonukshe, P., Caballero-Pérez, J., Horvath, B., Long, Y., Mähönen, A.P., Zhang, H., Xu, J., Murray, J.A., Benfey, P.N., Bako, L., Marée, A.F., Scheres, B.: A bistable circuit involving SCARECROWRETINOBLASTOMA integrates cues to inform asymmetric stem cell division. - Cell 150: 1002-1015, 2012. Go to original source...
  10. Cuesta, C., Wabnik, K., Benkova, E.: System approaches to study root architecture dynamics. - Front. Plant Sci. 4: 537, 2013. Go to original source...
  11. De Smet, I., White, P.J., Bengough, A.G., Dupuy, L., Parizot, B., Casimiro, I., Heidstra, R., Laskowski, M., Lepetit, M., Hochholdinger, F., Draye, X., Zhang, H., Broadley, M.R., Proad, B., Hammond, J.P., Fukaki. H., Mooney, S., Lynch, J.P., Nacry, P., Schurr, U., Laplaze, L., Benfey, P., Beeckman, T., Bennett, M.: Analyzing lateral root development: how to move forward. - Plant Cell 24: 15-20, 2012. Go to original source...
  12. Ding, Z., De Smet, I.: Localised ABA signalling mediates root growth plasticity. - Trends Plant Sci. 18: 533-535, 2013. Go to original source...
  13. Duan, L., Dietrich, D., Ng, C.H., Chan, P.M., Bhalerao, R., Bennett, M.J., Dinneny, J.R.: Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings. - Plant Cell 25: 324-341, 2013. Go to original source...
  14. Dubrovsky, J.G., Soukup, A., Napsucialy-Mendivil, S., Jeknic, Z., Ivanchenko, M.G.: The lateral root initiation index: an integrative measure of primordium formation. - Ann. Bot. 103: 807-817, 2009. Go to original source...
  15. Enders, T.A., Strader, L.C.: Auxin activity: past, present, and future. - Amer. J. Bot. 102: 180-96, 2015. Go to original source...
  16. Epstein, E., Chen, K.-H., Cohen, J.D.: Identification of indole-3 butyric acid as an endogenous constituent of maize kernels and leaves. - Plant Growth Regul. 8: 215-223, 1989. Go to original source...
  17. Ferro, N., Bultinck, P., Gallegos, A., Jacobsen, H.J., Carbo-Dorca, R., Reinard, T.: Unrevealed structural requirements for auxin-like molecules by theoretical and experimental evidences. - Phytochemistry 68: 237-250, 2007. Go to original source...
  18. Fukaki, H., Tasaka, M.: Hormone interactions during lateral root formation. - Plant mol. Biol. 69: 437-449, 2009. Go to original source...
  19. Han, B., Xu, S., Xie, Y.-J., Huang, J.-J., Wang, L.-J., Yang, Z.: ZmHO-1, a maize haem oxygenase-1 gene, plays a role in determining lateral root development. - Plant Sci. 184: 63-74, 2012. Go to original source...
  20. Himanen, K., Boucheron, E., Vanneste, S., De Almeida, E.J., Inze, D., Beeckman, T.: Auxin-mediated cell cycle activation during early lateral root initiation. - Plant Cell 14: 2339-2351, 2002. Go to original source...
  21. Ivanchenko, M.G., Muddy, G.K., Dubrovsky, J.G.: Ethyleneauxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana. - Plant J. 55: 335-347, 2008. Go to original source...
  22. Ivanchenko, M.G., Napsucialy-Mendivil, S., Dubrovsky, J.G.: Auxin-induced inhibition of lateral root initiation contributes to root system shaping in Arabidopsis thaliana. - Plant J. 64: 740-752, 2010. Go to original source...
  23. Kazan, K.: Auxin and the integration of environmental signals into plant root development. - Ann. Bot. 112: 1655-1665, 2013. Go to original source...
  24. Lavenus, J., Goh, T., Roberts, I., Guyomarc'h, S., Lucas, M., De Smet, I., Fukaki, H., Beeckman, T., Bennett, M., Laplaze, L.: Lateral root development in Arabidopsis: fifty shades of auxin. - Trends Plant Sci. 18: 450-458, 2013. Go to original source...
  25. Linch, J.P.: Steep, cheap and deep: an idiotype to optimize water and N acquisition by maize root system. - Ann. Bot. 112: 347-357, 2013. Go to original source...
  26. Liu, Q., Zhou, G.Q., Xu, F., Yan, X.L., Liao, H., Wang, J.X.: The involvement of auxin in root architecture plasticity in Arabidopsis induced by heterogeneous phosphorus availability. - Biol. Plant. 57: 739-748, 2013. Go to original source...
  27. Lloret, P.G., Pulgarín, A.: Effect of naphthaleneacetic acid on the formation of lateral roots in the adventitious root of Allium cepa: number and arrangement of laterals along the parent root. - Can. J. Bot. 70: 1891-1896, 1992.
  28. López-Bucio, J., Cruz-Ramírez, A., Herrera-Estrella, L.: The role of nutrient availability in regulating root architecture. - Current Op. Plant Biol. 6: 280-287, 2003.
  29. Lucas, M., Guédon, Y., Jay-Allemand, C., Laplaze, L.: An auxin transport-based model of root branching in Arabidopsis thaliana. - PLoS ONE 3: e3673, 2008. Go to original source...
  30. Ludwig-Müller, J.: Indol-3-butyric acid in plant growth and development. - Plant Growth Regul. 32: 219-230, 2000. Go to original source...
  31. Ludwig-Müller, J., Kaldorf, M., Sutter, E.G., Epstein, E.: Indole-3-butyric acid (IBA) is enhanced in young maize (Zea mays L.) roots colonized with the arbuscular mycorrhizalfungus Glomus intraradices. - Plant Sci. 125: 153-162, 1977.
  32. Marhavý, P., Van Straelen, M., De Rybel, B., Zhaojun, D., Bennett, M.J., Beeckman, T., Benková, E.: Auxin reflux between the endodermis and pericycle promotes lateral root initiation. - EMBO J. 32: 149-158, 2013.
  33. Martínez de la Cruz, E., García-Ramírez, E., Vázquez-Ramos, J.M., Reyes de la Cruz, H., López-Bucio, J.: Auxins differentially regulate root system architecture and cell cycle protein levels in maize seedlings. - J. Plant Physiol. 176: 147-156, 2015. Go to original source...
  34. Mounier, E., Pervent, M., Ljung, K., Gojon, A., Nacry, P.: Auxin-mediated nitrate signalling by NRT1.1 participates in the adaptive response of Arabidopsis root architecture to the spatial heterogeneity of nitrate availability. - Plant Cell Environ 37: 162-174, 2014. Go to original source...
  35. Nibau, C., Gibbs, D., Coates, J.: Branching out in new directions: The control of root architecture by lateral root formation. - New Phytol 179: 595-614, 2008. Go to original source...
  36. Péret, B., Clément, M., Nussaume, L., Desnos, T.: Root developmental adaptation to phosphate starvation: better safe than sorry. - Trends Plant Sci. 16: 442-450, 2011. Go to original source...
  37. Pérez-Torres, C.A., López-Bucio, J., Cruz-Ramírez, A., Ibarra-Laclette, E., Dharmasiri, S., Estelle, M., Herrera-Estrella, L.: Phosphate availability alters lateral root development in arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. - Plant Cell 20: 3258-3272, 2008 Go to original source...
  38. Pérez-Torres, C.A., López-Bucio, J., Herrera-Estrella, L.: Low phosphate signaling induces changes in cell cycle gene expression by increasing auxin sensitivity in the Arabidopsis root system. - Plant Sig. Behavior 4: 781-783, 2009. Go to original source...
  39. Postma, J.A., Dathe, A., Lynch, J.P.: The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability. - Plant Physiol 166: 590-602, 2014. Go to original source...
  40. Schlicht, M., Ludwig-Muller, J., Burbach, C., Volkmann, D., Baluska, F.: Indole-3-butyric acid induces lateral root formation via peroxisome-derived indole-3-acetic acid and nitric oxide. - New Phytol. 200: 473-482, 2013. Go to original source...
  41. Stepanova, A., Yun, J., Likhacheva, A.V., Alonso, J.M.: Multilevel interactions between ethylene and auxin in Arabidopsis roots. - Plant Cell 19: 2169-2185, 2007. Go to original source...
  42. Strader, L.C., Wheeler, D.L., Christensen, S.E., Berens, J.C., Cohen, J.D., Rampey, R.A., Bartel, B.: Multiple facets of Arabidopsis seedling development require indole-3-butyric acid-derived auxin. - Plant Cell 23: 984-999, 2011. Go to original source...
  43. Sutter, E.G., Cohen, J.D.: Measurement of indolebutyric acid in plant tissues by isotope dilution gas chromatography mass spectrometry analysis. - Plant Physiol. 99: 1719-1722, 1992. Go to original source...
  44. Tian, H., Jia, Y., Niu, T., Yu, Q., Ding, Z.: The key players of the primary root growth and development also function in lateral roots in Arabidopsis. - Plant Cell Rep. 33: 745-753, 2014. Go to original source...
  45. Vanneste, S., De Rybel, B., Beemster, G.T.S., Ljung, K., De Smet, I., Van Isterdael, G., Naudts, M., Iida, R., Gruissem, W., Tasaka, M., Inza, D., Fukaki, H., Beeckman, T.: Cell cycle progression in the pericycle is not sufficient for SOLITARY ROOT/IAA14-mediated lateral root initiation in Arabidopsis thaliana. - Plant Cell 17: 3035-3050, 2005. Go to original source...
  46. Vanneste, S., Friml, J.: Auxin: a trigger for change in plant development. - Cell 136: 1005-1016, 2009. Go to original source...
  47. Wang, W., Vinocur, B., Altman, A.: Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. - Planta 218: 1-14, 2003. Go to original source...
  48. Wang, Y., Li, K., Li, X.: Auxin redistribution modulates plastic development of root system architecture under salt stress in Arabidopsis thaliana. - J. Plant Physiol. 166: 1637-1645, 2009. Go to original source...
  49. Woodward, A.W, Bartel, B.: Auxin: regulation, action, and interaction. - Ann. Bot. 95: 707-735, 2005. Go to original source...
  50. Wu, G., Lewis, D.R., Spalding, E.P.: Mutations in Arabidopsis multidrug resistance-like ABC transporters separate the roles of acropetal and basipetal auxin transport in lateral root development. - Plant Cell 19: 1826-1837, 2007.
  51. Yu, P., White, P.J., Hochholdinger, F., Li, C.: Phenotypic plasticity of the maize root system in response to heterogeneous nitrogen availability. - Planta 240: 667-678, 2014. Go to original source...
  52. Zolla, G., Heimer, Y.M., Barak, S.: Mild salinity stimulates a stress-induced morphogenic response in Arabidopsis thaliana roots. - J. exp. Bot. 61: 211-224, 2010. Go to original source...