Biologia plantarum 62:335-342, 2018 | DOI: 10.1007/s10535-018-0777-4

Over-expression of transcription factor GhWRI1 in upland cotton

Z. J. Liu1, Y. P. Zhao1, W. Liang1, Y. P. Cui1, Y. M. Wang2, J. P. Hua1,*
1 Laboratory of Cotton Genetics, Genomics and Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, P.R. China
2 Research Institute of Cash Crops, Hubei Academy of Agricultural Sciences, Wuhan, P.R. China

Transcription factors are involved in lipid metabolism, and in present study, the transcription factor WRINKLED 1 (GhWRI1) was cloned from Gossypium hirsutum L. cv. Coker 201 by reverse transcription (RT)-PCR and rapid amplification of cDNA ends. The Pro35S:WRI1 vector was constructed and transformed into upland cotton cv. Sumian 20 using the pollen tube pathway method. After PCR and Southern blot verification of the positive transgenic plants, T2 transgenic lines derived from T1 individuals with the insertion gene in a single copy were chosen for further dissection. Semi-quantitative and quantitative RT-PCR analyses indicated that GhWRI1 gene expression increased in transgenic plants compared with that in the wild-type. Seed lipid content increased at most transgenic plants, and at the same time, protein content decreased. Compared to the control, major agronomical traits were not affected by overexpression of GhWRI1 in transgenic plants.

Keywords: Gossypium hirsutum; transcription factor; transgenic plants
Subjects: transcription factor; transgenic plants; lipids; proteins; sugars; cotton

Received: March 28, 2017; Revised: October 10, 2017; Accepted: October 18, 2017; Published: June 1, 2018Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Liu, Z.J., Zhao, Y.P., Liang, W., Cui, Y.P., Wang, Y.M., & Hua, J.P. (2018). Over-expression of transcription factor GhWRI1 in upland cotton. Biologia plantarum62(2), 335-342. doi: 10.1007/s10535-018-0777-4.
Download citation

Supplementary files

Download filebpl-201802-0015_S1.pdf

File size: 81.03 kB

References

  1. An, D., Kim, H., Ju, S., Go, Y.S., Kim, H.U., Suh, M.C.: Expression of Camelina WRINKLED1 isoforms rescue the seed phenotype of the Arabidopsis wri1 mutant and increase the triacylglycerol content in tobacco leaves. - Front. Plant Sci. 8: 34, 2017. Go to original source...
  2. An, D., Suh, M.C.: Overexpression of Arabidopsis WRI1 enhanced seed mass and storage oil content in Camelina sativa. - Plant Biotechnol. Rep. 9: 137-148, 2015. Go to original source...
  3. Baud, S., Mendoza, M.S., To, A., Harscoet, E., Lepiniec, L., Dubreucq, B.: WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis. - Plant J. 50: 825-838, 2007. Go to original source...
  4. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. - Anal. Biochem. 72: 248-254, 1976. Go to original source...
  5. Brummer, E.C., Graef, G.L., Orf, J., Wilcox, J.R., Shoemaker, R.C.: Mapping QTL for seed protein and oil content in eight soybean populations. - Crop Sci. 37: 370-378, 1997. Go to original source...
  6. Cahoon, E.B., Shockey, J.M., Dietrich, C.R., Gidda, S.K., Mullen, R.T., Dyer, J. M.: Engineering oilseeds for sustainable production of industrial and nutritional feedstocks: solving bottlenecks in fatty acid flux. - Curr. Opin. Plant Biol. 10: 236-244, 2007. Go to original source...
  7. Cui, Y.P., Liu, Z.J., Zhao, Y.P., Wang, Y.M., Huang, Y., Li, L., Wu, H., Xu, S.X., Hua, J.P.: Overexpression of heteromeric GhACCase subunits enhanced oil accumulation in upland cotton. - Plant mol. Biol. Rep. 35: 287-297, 2017a. Go to original source...
  8. Cui, Y.P., Zhao, Y.P., Wang, Y.M., Liu, Z.J., Ijaz, B., Huang, Y., Hua, J.P.: Genome-wide identification and expression analysis of the biotin carboxyl carrier subunits of heteromeric acetyl-CoA carboxylase in Gossypium. - Front. Plant Sci. 8: 624, 2017b. Go to original source...
  9. Dussert, S., Guerin, C., Andersson, M., Joët, T., Tranbarger, T.J., Pizot, M., Sarah, G., Omore, A., Durand-Gasselin, T., Morcillo, F.: Comparative transcriptome analysis of three oil palm fruit and seed tissues that differ in oil content and fatty acid composition. - Plant Physiol. 162: 1337-1358, 2013. Go to original source...
  10. Focks, N., Benning, C.: wrinkled1: a novel, low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism. - Plant Physiol. 118: 91-101, 1998. Go to original source...
  11. Graef, G., LaVallee, B.J., Tenopir, P., Tat, M., Schweiger, B., Kinney, A.J., Van Gerpen, J.H., Clemente, T.E.: A higholeic- acid and low palmitic-acid soybean: agronomic performance and evaluation as a feedstock for biodiesel. - Plant Biotechnol. J. 7: 411-421, 2009. Go to original source...
  12. Grimberg, A., Carlsson, A.S., Marttila, S., Bhalerao, R., Hofvander, P.: Transcriptional transitions in Nicotiana benthamiana leaves upon induction of oil synthesis by WRINKLED1 homologs from diverse species and tissues. - BMC Plant Biol. 15: 192, 2015. Go to original source...
  13. Hedayat, Z., Bjarne, M.S., Henrik, L., Renate, M.: Isolation and characterization of four somatic embryogenesis receptorlike kinase (RhSERK) genes from miniature potted rose (Rosa hybrida cv. Linda). - Plant Cell Tissue Organ Cult. 101: 331-338, 2010.
  14. Hofvander, P., Ischebeck, T., Turesson, H., Kushwaha, S.K., Feussner, I., Carlsson, A.S., Andersson, M.: Potato tuber expression of Arabidopsis WRINKLED1 increase triacylglycerol and membrane lipids while affecting central carbohydrate metabolism. - Plant Biotechnol. J. 14: 1883-1898, 2016.
  15. Hovav, R., Faigenboim-Doron, A., Kadmon, N., Hu, G.J., Zhang, X., Gallagher, J.P., Wendel J.F.: A transcriptome profile for developing seed of polyploid cotton. - Plant Genome 8: 1, 2015 Go to original source...
  16. Li, P.C., Dong, H.L., Zhao, X.H., Li, Y.B., Mao, S.C.:[Market situation of global cotton in 2015/16 and its prospect.] - Agr. Outlook. 10: 4-6, 2016. [In Chin, ab: E]
  17. Liu, J., Hua, W., Zhan, G.M., Wei, F., Wang, X.F., Liu, G.H., Wang, H.Z.: Increasing seed mass and oil content in transgenic Arabidopsis by the overexpression of wri1-like gene from Brassica napus. - Plant Physiol. Biochem. 48: 9-15, 2010. Go to original source...
  18. Mu, J.Y., Tan, H.L., Zheng, Q., Fu, F.Y., Liang, Y., Zhang, J., Yang, X.H., Wang, T., Chong, K., Wang, X.J., Zuo, J.R.: LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis. - Plant Physiol. 148: 1042-1054, 2008. Go to original source...
  19. Napier, J.A.: The production of unusual fatty acids in transgenic plants. - Annu. Rev. Plant Biol. 58: 295-319, 2007. Go to original source...
  20. Napier, J.A., Graham, I.A.: Tailoring plant lipid composition: designer oilseed come of age. - Curr. Opin. Plant Biol. 13: 330-337, 2010. Go to original source...
  21. Nguyen, M.V., Nickell, C.D., Widholm, J.M.: Selection for high seed oil content in soybean families derived from plants regenerated from protoplasts and tissue cultures. - Theor. appl. Genet. 102: 1072-1075, 2001. Go to original source...
  22. Paterson, A.H., Brubaker, C.L., Wendel, J.F.: A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. - Plant mol. Biol. Rep. 11: 122-127, 1993. Go to original source...
  23. Petit, J., Bres, C., Mauxion, J.P., Tai, F.W.J., Martin, L.B.B, Fich, E.A., Joubès, J., Rose, J.K.C., Domergue, F., Rothan, C.: The glycerol-3-phosphate acyltransferase GPAT6 from tomato plays a central role in fruit cutin biosynthesis. - Plant Physiol. 171: 894-913, 2016. Go to original source...
  24. Pouvreau, B., Baud, S., Vernoud, V., Morin, V., Py, C., Gendrot, G., Pichon, J., Rouster, J., Paul, W., Rogowsky, P.M.: Duplicate maize Wrinkled1 transcription factors activate target genes involved in seed oil biosynthesis. - Plant Physiol. 156: 674-686, 2011. Go to original source...
  25. Shang, L., Li, J., Wang, Y., Li, Y., Wang, D., Xiong, M., Hua, J.: [Establishment and application of model for determining oil content of cotton seed using near infrared spectroscopy]. - Spectroscopy Spectr. Anal. 35: 609-612, 2015. [In Chin, ab: E]
  26. Shen, B., Allen, W.B., Zheng, P.Z., Li, C.J., Glassman, J.R., Nubel, D., Tarczynski, M.C.: Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize. - Plant Physiol. 153: 980-987, 2010. Go to original source...
  27. Shintani, D., Roesler, K., Shorrosh, B., Savage, L., Ohlrogge, J.: Antisense expression and overexpression of biotin carboxylase in tobacco leaves. - Plant Physiol. 114: 881-886, 1997. Go to original source...
  28. Shockey, J., Regmi, A., Cotton, K., Adhikari, N., Browse, J., Bates, P.D.: Identification of Arabidopsis GPAT9 (At5g60620) as an essential gene involved in triacylglycerol biosynthesis. - Plant Physiol. 170: 163-179, 2016. Go to original source...
  29. Singh, N., Vasudev, S., Yadava, D.K., Chaudhary, D.P., Prabhu, K.V.: Oil improvement in maize: potential and prospects. - In: Chuadhary, D.P., Kumar, S., Langyan, S. (ed.): Maize: Nutrition Dynamics and Novel Uses. Pp. 77-82. Springer-Verlag, New Delhi 2014. Go to original source...
  30. Thelen, J.J., Ohlrogge, J.B.: Both antisense and sense expression of biotin carboxyl carrier protein isoform 2 inactivates the plastid acetyl-coenzyme A carboxylase in Arabidopsis thaliana. - Plant J. 32: 419-431, 2002a. Go to original source...
  31. Thelen, J.J., Ohlrogge, J.B.: Metabolic engineering of fatty acid biosynthesis in plants. - Metabol. Eng. 4: 12-21, 2002b. Go to original source...
  32. To, A., Joubès, J., Barthole, G., Lécureuil, A., Scagnelli, A., Jasinski, S., Lepiniec, L., Baud, S.: WRINKLED transcription factors orchestrate tissue-specific regulation of fatty acid biosynthesis in Arabidopsis. - Plant Cell 24: 5007-5023, 2012. Go to original source...
  33. Vanhercke, T., Tahchy, A.E., Shrestha, P., Zhou, X.R., Singh, S.P., Petrie, J., Petrie, J.R.: Synergistic effect of WRI1 and DGAT1 coexpression on triacylglycerol biosynthesis in plants. - FEBS Lett. 587: 364-369, 2013. Go to original source...
  34. Vigeolas, H., Waldeck, P., Zank, T., Geigenberger, P.: Increasing seed oil content in oil-seed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter. - Plant Biotechnol. J. 5: 431-441, 2007. Go to original source...
  35. Wang, M., Zhang, B.H., Wang, Q.L.: Cotton transformation via pollen tube pathway. - Methods mol. Biol. 958: 71-77, 2013. Go to original source...
  36. Wu, J.G., Shi, C.H., Zhang, H.Z.: Partitioning genetic effects due to embryo, cytoplasm and maternal parent for oil content in oilseed rape (Brassica napus L.). - Genet. mol. Biol. 29: 533-538, 2006. Go to original source...
  37. Wu, X.L., Liu, Z.H., Hu, Z.H., Huang, R.Z.: BnWRI1 coordinates fatty acid biosynthesis and photosynthesis pathways during oil accumulation in rapeseed. - J. integr. Plant Biol. 56: 582-593, 2014. Go to original source...
  38. Xu, C.C., Shanklin, J.: Triacylglycerol metabolism, function, and accumulation in plant vegetative tissues. - Annu. Rev. Plant Biol. 67: 179-206, 2016. Go to original source...
  39. Yang, Y., Munz, J., Cass, C., Zienkiewicz, A., Kong, Q., Ma, W., Sanjaya, S.J., Benning C.: Ectopic expression of WRINKLED1 affects fatty acid homeostasis in Brachypodium distachyon vegetative tissues. - Plant Physiol. 169: 1836-1847, 2015.
  40. Zhang, M., Cao, X., Jia, Q.L., Ohlrogge, J.: FUSCA3 activates triacylglycerol accumulation in Arabidopsis seedlings and tobacco BY2 cells. - Plant J. 88: 95-107, 2016. Go to original source...
  41. Zhang, X., Zhen, J.B., Li, Z.H., Kang, D.M., Yang, Y.M., Kong, J., Hua, J.P.: Expression profile of early responsive genes under salt stress in upland cotton (Gossypium hirsutum L.). - Plant mol. Biol. Rep. 29: 626-637, 2011. Go to original source...