Biologia plantarum 62:379-387, 2018 | DOI: 10.1007/s10535-018-0785-4

Cadmium tolerant and sensitive wheat lines: their differences in pollutant accumulation, cell damage, and autophagy

J. Y. Yue1, X. J. Wei1, H. Z. Wang1,*
1 Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, P.R. China

Cadmium (Cd) is a major abiotic stressor that affects plant growth and reduces the productivity of field crops. Here, we examined the ultrastructural, physiological, and molecular changes in three wheat cultivars [Sumai 3, Jingdong 8 (JD 8), and Nannong 9918 (9918)] in response to different concentrations of Cd (0, 10, 50, and 100 μM) in 1/4 Hoagland nutrient solution. The results showed that JD 8 contained the lowest shoot Cd content and the highest root Cd content among the three cultivars at higher Cd concentrations and so JD 8 was proposed to be a relatively Cd-tolerant cultivar. Next, the stress responses of JD 8 and 9918 were compared. Cadmium reduced root growth and size and number of the leaves, inhibited root hair development, and promoted leaf cell death. The result of trypan blue staining showed that the dead leaf cells induced by Cd stress gradually emerged in the xylem, supporting the hypothesis that cell death could restrict Cd transport. The Cd-induced deterioration of the leaf ultrastructure led to the complete disorganization of the chloroplasts, which had lower amounts of transitory starch and an increased number of osmiophilic granules compared to those in the untreated controls. Autophagy-related genes and autophagy in the leaves were induced by Cd stress. At the same concentration and Cd treatment time, the Cd-tolerant genotype JD 8 exhibited less toxic symptoms compared to the Cd-sensitive genotype 9918. The results of this study provide insights into the ultrastructural and physiological damages induced by Cd stress, which may help in selecting Cd-tolerant wheat cultivars.

Keywords: Cd stress; chloroplast; growth; Triticum aestivum; ultrastructure
Subjects: cadmium; cadmium tolerance; growth; chloropast; cell damage; wheat

Received: September 25, 2015; Revised: August 25, 2017; Accepted: September 6, 2017; Published: June 1, 2018Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Yue, J.Y., Wei, X.J., & Wang, H.Z. (2018). Cadmium tolerant and sensitive wheat lines: their differences in pollutant accumulation, cell damage, and autophagy. Biologia plantarum62(2), 379-387. doi: 10.1007/s10535-018-0785-4.
Download citation

Supplementary files

Download filebpl-201802-0020_S1.pdf

File size: 195.07 kB

References

  1. Affenzeller, M.J., Darehshouri, A., Andosch, A. Lütz, C., Lütz-Meindl, U.: Salt stress-induced cell death in the unicellular green alga Micrasterias denticulata. - J. exp. Bot. 60: 939-954, 2009. Go to original source...
  2. Ahmad, I., Naeem, M., Khan, N.A., Samiullah: Effects of cadmium stress upon activities of antioxidative enzymes, photosynthetic rate, and production of phytochelatins in leaves and chloroplasts of wheat cultivars differing in yield potential. - Photosynthetica 47: 146-151, 2009. Go to original source...
  3. Aichinger, N., Lütz-Meindl, U.: Organelle interactions and possible degradation pathways visualized in high-pressure frozen algal cells. - J. Microscopy 219: 86-94, 2005. Go to original source...
  4. Avin-Wittenberg, T., Bajdzienko, K., Wittenberg, G., Alseekh, S., Tohge, T., Bock, R., Giavalisco, P., Fernie, A.R.: Global analysis of the role of autophagy in cellular metabolism and energy homeostasis in Arabidopsis seedlings under carbon starvation. - Plant Cell 27: 306-322, 2015. Go to original source...
  5. Baryla, A., Carrier, P., Franck, F., Coulomb, C., Sahut, C., Havaux, M.: Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil: causes and consequences for photosynthesis and growth. - Planta 212: 696-709, 2001. Go to original source...
  6. Belenghi, B., Acconcia, F., Trovato, M., Perazzolli, M., Bocedi, A., Polticelli, F., Ascenzi, P., Delledonne, M.: AtCYS1, a cystatin from Arabidopsis thaliana, suppresses hypersensitive cell death. - Eur. J. Biochem. 270: 2593-2604, 2003. Go to original source...
  7. Chen, L., Liao, B., Qi, H., Xie, L.J., Huang, L., Tan, W.J., Zhai, N., Yuan, L.B., Zhou, Y., Yu, L.J., Chen, Q.F., Shu, W., Xiao, S.: Autophagy contributes to regulation of the hypoxia response during submergence in Arabidopsis thaliana. - Autophagy 11: 2233-2246, 2015. Go to original source...
  8. Ci, D., Jiang, D., Wollenweber, B., Dai, T., Jing, Q., Cao, W.: Cadmium stress in wheat seedlings: growth, cadmium accumulation and photosynthesis. - Acta Physiol. Plant. 32: 365-373, 2010 Go to original source...
  9. Di Baccio, D., Castagna, A., Tognetti, R., Ranieri, A., Sebastiani, L.: Early responses to cadmium of two poplar clones that differ in stress tolerance. - J. Plant Physiol. 171: 1693-1705, 2014. Go to original source...
  10. Ghiglione, H.O., Gonzalez, F.G., Serrago, R., Maldonado, S.B., Chilcott, C., Curá, J.A., Miralles, D.J., Zhu, T., Casal, J.J.: Autophagy regulated by day length determines the number of fertile florets in wheat. - Plant J. 55: 1010-1024, 2008. Go to original source...
  11. He, J., Qin, J., Long, L., Ma, Y., Li, H., Li, K., Jiang, X., Liu, T., Polle, A., Liang, Z., Luo, Z.B.: Net cadmium flux and accumulation reveal tissue-specific oxidative stress and detoxification in Populus × canescens. - Physiol. Plant. 143: 50-63, 2011. Go to original source...
  12. Hof, A., Zechmann, B., Schwammbach, D., Hückelhoven, R., Doehlemann, G.: Alternative cell death mechanisms determine epidermal resistance in incompatible barley-Ustilago interactions. - Mol. Plant Microbe Interact. 27: 403-414, 2014. Go to original source...
  13. Jakhar, S., Mukherjee, D.: Chloroplast pigments, proteins, lipid peroxidation and activities of antioxidative enzymes during maturation and senescence of leaves and reproductive organs of Cajanus cajan L. - Physiol. mol. Biol. Plants 20: 171-180, 2014. Go to original source...
  14. Jiang, Q., Zhao, L., Dai, J., Wu, Q.: Analysis of autophagy genes in microalgae: Chlorella as a potential model to study mechanism of autophagy. - PloS ONE 7: e41826, 2012. Go to original source...
  15. Khan, M.D., Mei, L., Ali, B., Chen, Y., Cheng, X., Zhu, S.J.: Cadmium-induced upregulation of lipid peroxidation and reactive oxygen species caused physiological, biochemical, and ultrastructural changes in upland cotton seedlings. - BioMed Res. Int. 2013: 374063, 2013. Go to original source...
  16. Kovács, V., Gondor, O.K., Szalai, G., Darkó, E., Majláth, I., Janda, T., Pál, M.: Synthesis and role of salicylic acid in wheat varieties with different levels of cadmium tolerance. - J. Hazard. Mater. 280: 12-19, 2014. Go to original source...
  17. Krzesłowska, M., Lenartowska, M., Samardakiewicz, S., Bilski, H., Woźny, A.: Lead deposited in the cell wall of Funaria hygrometrica protonemata is not stable - a remobilization can occur. - Environ. Pollut. 158: 325-338, 2010. Go to original source...
  18. Kuzuoglu-Ozturk, D., Cebeci Yalcinkaya, O., Akpinar, B.A., Mitou, G., Korkmaz, G., Gozuacik, D., Budak, H.: Autophagy-related gene, TdAtg8, in wild emmer wheat plays a role in drought and osmotic stress response. - Planta 236: 1081-1092, 2012. Go to original source...
  19. Kwon, S.I., Cho, H.J., Park, O.K.: Role of Arabidopsis RabG3b and autophagy in tracheary element differentiation. - Autophagy 6: 1187-1189, 2010. Go to original source...
  20. Li, S., Yang, W., Yang, T., Chen, Y., Ni, W.: Effects of cadmium stress on leaf chlorophyll fluorescence and photosynthesis of Elsholtzia argyi - a cadmium accumulating plant. - Int. J. Phytoremed. 17: 85-92, 2015.
  21. Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. - Methods 25: 402-408, 2001. Go to original source...
  22. Liu, Y., Xiong, Y., Bassham, D.C.: Autophagy is required for tolerance of drought and salt stress in plants. - Autophagy 5: 954-963, 2009. Go to original source...
  23. Luo, B.F., Du, S.T., Lu, K.X., Liu, W.J., Lin, X.Y., Jin, C.W.: Iron uptake system mediates nitrate-facilitated cadmium accumulation in tomato (Solanum lycopersicum) plants. - J. exp. Bot. 63: 3127-3136, 2012. Go to original source...
  24. Masclaux-Daubresse, C., Clément, G., Anne, P., Routaboul, J.M., Guiboileau, A., Soulay, F., Shirasu, K., Yoshimoto, K.: Stitching together the multiple dimensions of autophagy using metabolomics and transcriptomics reveals impacts on metabolism, development, and plant responses to the environment in Arabidopsis. - Plant Cell 26: 1857-1877, 2014.
  25. Müller, M., Kunz, H.H., Schroeder, J.I., Kemp, G., Young, H.S., Neuhaus, H.E.: Decreased capacity for sodium export out of Arabidopsis chloroplasts impairs salt tolerance, photosynthesis and plant performance. - Plant J. 78: 646-658, 2014. Go to original source...
  26. Pei, D., Zhang, W., Sun, H., Wei, X., Yue, J., Wang, H.: Identification of autophagy-related genes ATG4 and ATG8 from wheat (Triticum aestivum L.) and profiling of their expression patterns responding to biotic and abiotic stresses. - Plant Cell Rep. 33: 1697-1710, 2014. Go to original source...
  27. Peng, X., Teng, L., Yan, X., Zhao, M., Shen, S.: The cold responsive mechanism of the paper mulberry: decreased photosynthesis capacity and increased starch accumulation. - BMC Genomics 16: 898, 2015. Go to original source...
  28. Reggiori, F., Klionsky, D.J.: Autophagosomes: biogenesis from scratch? - Curr. Opin. cell. Biol. 17: 415-422, 2005. Go to original source...
  29. Rizwan, M., Meunier, J.D., Davidian, J.C., Pokrovsky, O.S., Bovet, N., Keller, C.: Silicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponics. - Environ. Sci. Pollut. Res. Int. 23: 1414-1427, 2016. Go to original source...
  30. Saidi, I., Chtourou, Y., Djebali, W.: Selenium alleviates cadmium toxicity by preventing oxidative stress in sunflower (Helianthus annuus) seedlings. - J. Plant Physiol. 171: 85-91, 2014. Go to original source...
  31. Shi, G.R., Cai, Q.S.: Photosynthetic and anatomic responses of peanut leaves to cadmium stress. - Photosynthetica 46: 627-630, 2008. Go to original source...
  32. Sun, X., Wang, P., Jia, X., Huo, L., Che, R., Ma, F.: Improvement of drought tolerance by overexpressing MdATG18a is mediated by modified antioxidant system and activated autophagy in transgenic apple. - Plant Biotechnol J. 2017, doi: 10.1111/pbi.12794 Go to original source...
  33. Thévenod, F., Lee, W.K.: Cadmium and cellular signaling cascades: interactions between cell death and survival pathways. - Arch. Toxicol. 87: 1743-1786, 2013. Go to original source...
  34. Thompson, A.R., Vierstra, R.D.: Autophagic recycling: lessons from yeast help define the process in plants. - Curr. Opin. Plant Biol. 8: 165-173, 2005. Go to original source...
  35. Wan, G., Najeeb, U., Jilani, G., Naeem, M.S., Zhou, W.: Calcium invigorates the cadmium-stressed Brassica napus L. plants by strengthening their photosynthetic system. - Environ. Sci. Pollut. Res. Int. 18: 1478-1486, 2011. Go to original source...
  36. Wang, Y., Jiang, X., Li, K., Wu, M., Zhang, R., Zhang, L., Chen, G.: Photosynthetic responses of Oryza sativa L. seedlings to cadmium stress: physiological, biochemical and ultrastructural analyses. - Biometals 27: 389-401, 2014. Go to original source...
  37. Xie, Y., Hu, L., Du, Z., Sun, X., Amombo, E., Fan, J., Fu, J.: Effects of cadmium exposure on growth and metabolic profile of bermudagrass [Cynodon dactylon (L.) Pers]. - PloS ONE 9: e115279, 2014. Go to original source...
  38. Xie, Z., Klionsky, D.J.: Autophagosome formation: core machinery and adaptations. - Nat. cell. Biol. 9: 1102-1109, 2007. Go to original source...
  39. Yano, K., Suzuki, T., Moriyasu, Y.: Constitutive autophagy in plant root cells. - Autophagy 3: 360-362, 2007. Go to original source...
  40. Zhang, L., Ma, H., Chen, T., Pen, J., Yu, S., Zhao, X.: Morphological and physiological responses of cotton (Gossypium hirsutum L.) plants to salinity. - PloS ONE 9: e112807, 2014. Go to original source...
  41. Zhou, C., Zhang, K., Lin, J., Li, Y., Chen, N., Zou, X., Hou, X., Ma, X.: Physiological responses and tolerance mechanisms to cadmium in Conyza canadensis. - Int. J. Phytoremed. 17: 280-289, 2015.
  42. Zhou, J., Yu, J.Q., Chen, Z.: The perplexing role of autophagy in plant innate immune responses. - Mol. Plant Pathol. 15: 637-645, 2014. Go to original source...