Biologia plantarum 59:436-444, 2015 | DOI: 10.1007/s10535-015-0521-2

Expression of stable reference genes and SPINDLY gene in response to gibberellic acid application at different stages of grapevine development

A. Upadhyay1,*, S. Jogaiah1, S. R. Maske1, N. Y. Kadoo2, V. S. Gupta2
1 ICAR-National Research Centre for Grapes, Pune, India
2 CSIR-National Chemical Laboratory, Pune, India

Gibberellic acid (GA3) is widely used at different stages of berry development, and to understand the molecular mechanism of its action requires identification of stable reference genes. We sprayed grapevine (Vitis vinifera L.) cv. Thompson Seedless with GA3 at rachis stage for rachis elongation, at flower cluster stage for flower thinning, and at 3-4 mm berry stage for berry elongation. Tissue samples were collected at different time points after GA3 application. The expression of 10 candidate reference genes was analyzed using 4 different algorithms to assess their suitability for real time-PCR data normalization. Based on the overall ranking, PP2A, Sutra, and SAND were identified as the most stably expressed genes across all samples. With regard to different stages, tubulin, EF1α, and UBC were the most stable genes during rachis elongation; PP2A, SAND, and Sutra were the most suitable at the flower cluster and berry stages. The expression of GA signaling gene SPINDLY (VvSpy) was analyzed to validate the stable reference genes. After the GA3 application, the expression of VvSpy was reduced at the rachis stage but did not change at the flower cluster and berry stages. The expression profile of VvSpy was comparable when two or three reference genes were used for data normalization.

Keywords: developmental stages; Vitis vinifera
Subjects: reference genes; SPINDLY gene; gibberellic acid; developmental stages; gene expression; grapevine

Received: November 14, 2014; Revised: February 18, 2015; Accepted: March 4, 2015; Published: September 1, 2015Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Upadhyay, A., Jogaiah, S., Maske, S.R., Kadoo, N.Y., & Gupta, V.S. (2015). Expression of stable reference genes and SPINDLY gene in response to gibberellic acid application at different stages of grapevine development. Biologia plantarum59(3), 436-444. doi: 10.1007/s10535-015-0521-2.
Download citation

Supplementary files

Download filebpl-201503-0004_S1.pdf

File size: 208.09 kB

References

  1. Andersen, C., Jensen, J., Orntoft, T.: Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. - Cancer Res. 64: 5245-5250, 2004. Go to original source...
  2. Bustin, S.A., Benes, V., Garson, J.A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M.W., Shipley, G.L., Vandesompele, J., Wittwer, C.T.: The MIQE guidelines: minimum Iiformation for publication of quantitative real-time PCR experiments. - Clin. Chem. 55: 611-622, 2009. Go to original source...
  3. Casanova, L., Casanova, R., Moret, A., Augustis, M.: The application of gibberellic acid increases berry size of' Emperatriz' seedless grapes. - Span. J. agr. Res. 7: 919-927, 2009. Go to original source...
  4. Chen, L., Zhong, H., Kuang, J., Li, J., Lu, W., Chen, J.: Validation of reference genes for RT-qPCR studies of gene expression in banana fruit under different experimental conditions. - Planta 234: 377-390, 2011. Go to original source...
  5. Davies, C., Robinson, S. P.: Sugar accumulation in grape berries, cloning of two putative vacuolar invertase cDNAs and their expression in grapevine tissues. - Plant Physiol. 111: 275-283, 1996. Go to original source...
  6. Derveaux, S., Vandesompele, J., Hellemans, J.: How to do successful gene expression analysis using real-time PCR. - Methods 50: 227-230, 2010. Go to original source...
  7. Dheda, K., Huggett, J.F., Chang, J.S., Kim, L.U., Bustin, S.A., Johnson, M.A., Rook, G.A.W., Zumla, A.: The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization. - Anal. Biochem. 344: 141-143, 2005. Go to original source...
  8. Dimovska, V., Petropulos, V.I., Salamovska, A., Ilieva, F.: Flame Seedless grape variety (Vitis vinifera L.) and different concentrations of gibberellic acid (GA3). - Bulg. J. agr. Sci. 20: 137-142, 2014.
  9. Dokoozlian, N.K., Peacock, W.L.: Gibberellic acid applied at bloom reduces fruit set and improves size of' Crimson Seedless' table grapes. - HortScience 36: 706-709, 2001. Go to original source...
  10. Fujita, A., Soma, N., Goto-Yamamoto, N., Shindo, H., Kakuta, T., Koizumi, T., Hashizume, K.: Anthocyanidin reductase gene expression and accumulation of flavan-3-ols in grape berry. - Amer. J. Enol. Viticult. 56: 336-342, 2005.
  11. Gamm, M., Héloir, M.-C., Kelloniemi, J., Poinssot, B., Wendehenne, D., Adrian, M.: Identification of reference genes suitable for qRT-PCR in grapevine and application for the study of the expression of genes involved in pterostilbene synthesis. - Mol. Genet. Genomics 285: 273-285, 2011. Go to original source...
  12. Glasziou, K.T.: Control of enzyme formation and inactivation in plants. - Annu. Rev. Plant Physiol. 20: 63-88, 1969. Go to original source...
  13. Guénin, S., Mauriat, M., Pelloux, J., Van Wuytswinkel, O., Bellini, C., Gutierrez, L.: Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. - J. exp. Bot. 60: 487-493, 2009. Go to original source...
  14. Gutha, L., Casassa, L., Harbertson, J., Naidu, R.: Modulation of flavonoid biosynthetic pathway genes and anthocyanins due to virus infection in grapevine, Vitis vinifera L. leaves. - BMC Plant Biol. 10: 187, 2010. Go to original source...
  15. Gutierrez, L., Mauriat, M., Guénin, S., Pelloux, J., Lefebvre, J.F., Louvet, R., Rusterucci, C., Moritz, T., Guerineau, F., Bellini, C., Van Wuytswinkel, O.: The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction, RT-PCR analysis in plants. - Plant Biotechnol. J. 6: 609-618, 2008a. Go to original source...
  16. Gutierrez, L., Mauriat, M., Pelloux, J., Bellini, C., Van Wuytswinkel, O.: Towards a systematic validation of references in real-time RT-PCR. - Plant Cell Online 20: 1734-1735, 2008b. Go to original source...
  17. Hilt, C., Bessis, R.: Abscission of grapevine fruitlets in relation to ethylene biosynthesis. - Vitis 42: 1-3, 2003.
  18. Iskandar, H., Simpson, R., Casu, R., Bonnett, G., Maclean, D., Manners, J.: Comparison of reference genes for quantitative real-time polymerase chain reaction analysis of gene expression in sugarcane. - Plant mol. Biol. Rep. 22: 325-337, 2004. Go to original source...
  19. Jacobsen, S.E., Olszewski, N.E.: Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction. - Plant Cell Online 5: 887-896, 1993. Go to original source...
  20. Kimura, P.H., Okamoto, G., Hirano, K.: Effects of gibberellic acid and streptomycin on pollen germination and ovule and seed development in Muscat Bailey. - Amer. J. Enol. Viticult. 47: 152-156, 1996.
  21. Mafra, V., Kubo, K.S., Alves-Ferreira, M., Ribeiro-Alves, M., Stuart, R.M., Boava, L.P., Rodrigues, C.M., Machado, M.A.: Reference genes for accurate transcript normalization in Citrus genotypes under different experimental conditions. - PLoS ONE 7: e31263, 2012. Go to original source...
  22. Maymon, I., Greenboim-Wainberg, Y., Sagiv, S., Kieber, J.J., Moshelion, M., Olszewski, N., Weiss, D.: Cytosolic activity of SPINDLY implies the existence of a DELLAindependent gibberellin-response pathway. - Plant J. 58: 979-988, 2009. Go to original source...
  23. Okamoto, G., Miura, K.: Effect of pre-bloom GA application on pollen tube growth in cv. Delaware grape pistils. - Vitis 44: 157-159, 2005.
  24. Perini, P., Pasquali, G., Margis-Pinheiro, M., De Oliviera, P., Revers, L. Reference genes for transcriptional analysis of flowering and fruit ripening stages in apple, Malus × domestica Borkh.. - Mol. Breed. 34: 829-842, 2014. Go to original source...
  25. Pfaffl, M., Tichopad, A., Prgomet, C., Neuvians, T.: Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper- Excel-based tool using pair-wise correlations. - Biotechnol. Lett. 26: 509-515, 2004. Go to original source...
  26. Pfaffl, M.W., Horgan, G.W., Dempfle, L. Relative expression software tool, REST© for group-wise comparison and statistical analysis of relative expression results in real-time PCR. - Nucl. Acids Res. 30: e36, 2002. Go to original source...
  27. Ramteke, S.D., Somkuwar, R.G.: Effect of stage and concentration of GA3 and carbaryl on Tas-A-Ganesh grafted on 1613C rootstock. - J. Maharashtra agr. Univ. 31: 364-365, 2006.
  28. Reid, K., Olsson, N., Schlosser, J., Peng, F., Lund, S.: An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. - BMC Plant Biol. 6: 1-11, 2006. Go to original source...
  29. Roper, T.R., Williams, L.E.: Net CO2 assimilation and carbohydrate partitioning of grapevine leaves in response to trunk girdling and gibberellic acid application. - Plant Physiol. 89: 1136-1140, 1989. Go to original source...
  30. Shimada, A., Ueguchi-Tanaka, M., Sakamoto, T., Fujioka, S., Takatsuto, S., Yoshida, S., Sazuka, T., Ashikari, M., Matsuoka, M.: The rice SPINDLY gene functions as a negative regulator of gibberellin signaling by controlling the suppressive function of the DELLA protein, SLR1, and modulating brassinosteroid synthesis. - Plant J. 48: 390-402, 2006. Go to original source...
  31. Silver, N., Best, S., Jiang, J., Thein, S.: Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. - BMC mol. Biol. 7: 33, 2006. Go to original source...
  32. Smith, L.G.: Cytoskeletal control of plant cell shape: getting the fine points. - Curr. Opin. Plant Biol. 6: 63-73, 2003. Go to original source...
  33. Solovyev, V., Kosarev, P., Seledsov, I., Vorobyev, D.: Automatic annotation of eukaryotic genes, pseudogenes and promoters. - Genome Biol. 7(Suppl 1): 10.1-10.12, 2006. Go to original source...
  34. Thornton, T.M., Swain, S.M., Olszewski, N.E.: Gibberellin signal transduction presents… the SPY who O-GlcNAc'd me. - Trends Plant Sci. 4: 424-428, 1999. Go to original source...
  35. Untergasser, A., Nijveen, H., Rao, X., Bisseling, T., Geurts, R., Leunissen, J.A.M.: Primer3Plus, an enhanced web interface to Primer3. - Nucl. Acids Res. 35: W71-W74, 2007. Go to original source...
  36. Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., Speleman, F.: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. - Genome Biol. 3: research0034, 2002.
  37. Xia, W., Mason, A.S., Xiao, Y., Liu, Z., Yang, Y., Lei, X., Wu, X., Ma, Z., Peng, M.: Analysis of multiple transcriptomes of the African oil palm, Elaeis guineensis to identify reference genes for RT-qPCR. - J. Biotechnol. 184: 63-73, 2014. Go to original source...
  38. Xie, F., Xiao, P., Chen, D., Xu, L., Zhang, B.: miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. - Plant mol. Biol. 80: 75-84, 2012. Go to original source...
  39. Xu, H., Liu, Q., Yao, T., Fu, X.: Shedding light on integrative GA signaling. - Curr. Opin. Plant Biol. 21: 89-95, 2014. Go to original source...
  40. Xu, M., Zhang, B., Su, X., Zhang, S., Huang, M.: Reference gene selection for quantitative real-time polymerase chain reaction in Populus. - Anal. Biochem. 408: 337-339, 2011. Go to original source...
  41. Zhong, H.-Y. Chen, J.-W., Li, C.-Q., Chen, L., Wu, J.-Y., Chen, J.-Y., Lu, W.-J., Li, J.-G.: Selection of reliable reference genes for expression studies by reverse transcription quantitative real-time PCR in litchi under different experimental conditions. - Plant Cell Rep. 30: 641-653, 2011. Go to original source...
  42. Zhu, X. Li, X., Chen, W., Chen, J., Lu, W., Chen, L., Fu, D.: Evaluation of new reference genes in Papaya for accurate transcript normalization under different experimental conditions. - PLoS One 7: e44405, 2012. Go to original source...