Biologia plantarum 59:661-670, 2015 | DOI: 10.1007/s10535-015-0536-8

Unravelling genome dynamics in Arabidopsis synthetic auto and allopolyploid species

M. Bento1, D. Tomás1, W. Viegas1, M. Silva1,*
1 Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal

Polyploidization is a major genome modification that results in plant species with multiple chromosome sets. Parental genome adjustment to co-habit a new nuclear environment results in additional innovation outcomes. We intended to assess genomic changes in polyploid model species with small genomes using inter retrotransposons amplified polymorphism (IRAP) and retrotransposon microsatellite amplified polymorphism (REMAP). Comparative analysis among diploid and autotetraploid A. thaliana and A. suecica lines with their parental lines revealed a marginal fraction of novel bands in both polyploids, and a vast loss of parental bands in allopolyploids. Sequence analysis of some remodelled bands shows that A. suecica parental band losses resulted mainly from sequence changes restricted to primer domains. Moreover, in A. suecica, both parental genomes presented rearrangement frequencies proportional to their sizes. Overall rates of genomic remodelling events detected in A. suecica were similar to those observed in species with a large genome supporting the role of retrotransposons and microsatellite sequences in the evolution of most allopolyploids.

Keywords: microsatellites; polyploidization; retrotransposons; sequence rearrangement
Subjects: genome dynamics; auto and allopolyploid species; microsatellite markers; retrotransposons

Received: November 24, 2014; Revised: March 31, 2015; Accepted: April 1, 2015; Published: December 1, 2015Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Bento, M., Tomás, D., Viegas, W., & Silva, M. (2015). Unravelling genome dynamics in Arabidopsis synthetic auto and allopolyploid species. Biologia plantarum59(4), 661-670. doi: 10.1007/s10535-015-0536-8.
Download citation

Supplementary files

Download filebpl-201504-0008_S1.pdf

File size: 73.58 kB

References

  1. AGI (The Arabidopsis Genome Initiative): Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. - Nature 408: 796-815, 2000. Go to original source...
  2. Ainouche, M.L.: Plant polyploidy. - New Phytol. 186 (Special Issue): 1-261, 2010.
  3. Beaulieu, J., Jean, M., Belzile, F.: The allotetraploid Arabidopsis thaliana-Arabidopsis lyrata subsp. petraea as an alternative model system for the study of polyploidy in plants. - Mol. Genet. Genomics. 281: 421-435, 2009. Go to original source...
  4. Bennett, M.D., Leitch, I.J.: Plant DNA C-values Database Release 6.0, Dec. 2012. http://data.kew.org/cvalues.
  5. Bento, M., Gustafson, P., Viegas, W., Silva, M.: Genome merger: from sequence rearrangements in triticale to their elimination in wheat-rye addition lines. - Theor. appl. Genet. 121: 489-497, 2010. Go to original source...
  6. Bento, M., Pereira, S., Rocheta, M., Gustafson, P., Viegas, W., Silva, M.: Polyploidization as a retraction force in plant genome evolution: sequence rearrangements in triticale. - PLoS ONE 3: e1402, 2008. Go to original source...
  7. Bento, M., Tomas, D., Viegas, W., Silva, M.: Retrotransposons represent the most labile fraction for genomic rearrangements in polyploid plant species. - Cytogenet. Genome Res. 140: 286-294, 2013. Go to original source...
  8. Bomblies, K., Madlung, A.: Polyploidy in the Arabidopsis genus. - Chromosome Res. 22: 117-134, 2014. Go to original source...
  9. Brenchley, R., Spannagl, M., Pfeifer, M., Barker, G.L., D'Amore, R., Allen, A.M., McKenzie, N., Kramer, M., Kerhornou, A., Bolser, D., Kay, S., Waite, D., Trick, M., Bancroft, I., Gu, Y., Huo, N., Luo, M.C., Sehgal, S., Gill, B., Kianian, S., Anderson, O., Kersey, P., Dvorak, J., McCombie, W.R., Hall, A., Mayer, K.F., Edwards, K.J., Bevan, M.W., Hall, N.: Analysis of the bread wheat genome using whole-genome shotgun sequencing. - Nature 491: 705-710, 2012. Go to original source...
  10. Comai, L., Tyagi, A.P., Winter, K., Holmes-Davis, R, Reynolds, S.H., Stevens, Y., Byers, B.: Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids. - Plant Cell 12: 1551-1567, 2000. Go to original source...
  11. Dong, Y.Z., Liu, Z.L., Shan, X.H., Qiu, T., He, M.Y., Liu, B.: Allopolyploidy in wheat induces rapid and heritable alterations in DNA methylation patterns of cellular genes and mobile elements. - Russ. J. Genet. 41: 890-896, 2005. Go to original source...
  12. Dvořák, J.: Triticeae genome structure and evolution. - In: Muehlbauer, G.J., Feuillet, C. (ed.): Genetics and Genomics of the Triticeae. Pp. 685-711. Springer, New York 2009. Go to original source...
  13. Eilam, T., Anikster, Y., Millet, E., Manisterski, J., Feldman, M.: Nuclear DNA amount and genome downsizing in natural and synthetic allopolyploids of the genera Aegilops and Triticum. - Genome 51: 616-627, 2008. Go to original source...
  14. Feldman, M., Levy, A.A.: Genome evolution in allopolyploid wheat-a revolutionary reprogramming followed by gradual changes. - J. Genet. Genomics 36: 511-518, 2009. Go to original source...
  15. Ferreira-de-Carvalho, J., Chelaifa, H., Boutte, J., Poulain, J., Couloux, A., Wincker, P., Bellec, A., Fourment, J., Berge's, H., Salmon, A., Ainouche, M.: Exploring the genome of the salt-marsh Spartina maritima (Poaceae, Chloridoideae) through BAC end sequence analysis. - Plant mol. Biol. 83: 591-606, 2013. Go to original source...
  16. Hazzouri, R.M., Mohajer, A., Dejak, S.I., Otto, S.P., Wright, S.I.: Contrasting patterns of transposable-element insertion polymorphism and nucleotide diversity in autotetraploid and allotetraploid Arabidopsis species. - Genetics 179: 581-592, 2008. Go to original source...
  17. Henry, I.M., Dilkes, B.P., Tyagi, A., Gao, J., Christensen, B., Comai, L.: The BOY NAMED SUE quantitative trait locus confers increased meiotic stability to an adapted natural allopolyploid of Arabidopsis. - Plant Cell. 26: 181-194, 2014. Go to original source...
  18. Huang, S., Li, R., Zhang, Z., Li, L., Gu, X., Fan, W., Lucas, W.J., Wang, X., Xie, B., Ni, P., Ren, Y., Zhu, H., Li, J., Lin, K., Jin, W., Fei, Z., Li, G., Staub, J., Kilian, A., Van der Vossen, E.A., Wu, Y., Guo, J., He, J., Jia, Z., Ren, Y., Tian, G., Lu, Y., Ruan, J., Qian, W., Wang, M., Huang, Q., Li, B., Xuan, Z., Cao, J., Asan, Wu, Z., Zhang, J., Cai, Q., Bai, Y., Zhao, B., Han, Y., Li, Y., Li, X., Wang, S., Shi, Q., Liu, S., Cho, W.K., Kim, J.Y., Xu, Y., Heller-Uszynska, K., Miao, H., Cheng, Z., Zhang, S., Wu, J., Yang, Y., Kang, H., Li, M., Liang, H., Ren, X., Shi, Z., Wen, M., Jian, M., Yang, H., Zhang, G., Yang, Z., Chen, R., Liu, S., Li, J., Ma, L., Liu, H., Zhou, Y., Zhao, J., Fang, X., Li, G., Fang, L., Li, Y., Liu, D., Zheng, H., Zhang, Y., Qin, N., Li, Z., Yang, G., Yang, S., Bolund, L., Kristiansen, K., Zheng, H., Li, S., Zhang, X., Yang, H., Wang, J., Sun, R., Zhang, B., Jiang, S., Wang, J., Du, Y., Li, S.: The genome of the cucumber, Cucumis sativus L. - Nat. Genet. 41: 1275-1281, 2009. Go to original source...
  19. Jiang, B., Lou, Q., Wu, Z., Zhang, W., Wang, D., Mbira, K.G., Weng, Y., Chen, J.: Retrotransposon- and microsatellite sequence-associated genomic changes in early generations of a newly synthesized allotetraploid Cucumis × hytivus Chen & Kirkbride. - Plant mol. Biol. 77: 225-233, 2009.
  20. Jiao, Y.N., Wickett, N.J., Ayyampalayam, S., Chanderbali, A.S., Landherr, L., Ralph, P.E., Tomsho, L.P., Hu, Y., Liang, H.Y., Soltis, P.S., Soltis, D.E., Clifton, S.W., Schlarbaum, S.E., Schuster, S.C., Ma, H., Leebens-Mack, J., De Pamphilis, C.W.: Ancestral polyploidy in seed plants and angiosperms. - Nature 473: 97-100, 2011. Go to original source...
  21. Jones, R.N., Hegarty, M.: Order out of chaos in the hybrid plant nucleus. - Cytogenet. Genome Res. 126: 376-389, 2009. Go to original source...
  22. Kalendar, R., Grob, T., Regina, M., Suoniemi, A., Schulman, A.: IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. - Theor. appl. Genet. 98: 704-711, 1999. Go to original source...
  23. Kalendar, R., Schulman, A.H.: IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. - Nat. Protocols 1: 2478-2484, 2006. Go to original source...
  24. Kashkush, K., Feldman, M., Levy, A.A.: Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. - Genetics 160: 1651-1659, 2002.
  25. Ma, X.F., Fang, P., Gustafson, J.P.: Polyploidization-induced genome variation in triticale. - Genome 47: 839-848, 2004. Go to original source...
  26. Ma, X.F., Gustafson, J.P.: Timing and rate of genome variation in triticale following allopolyploidization. - Genome 49: 950-958, 2006. Go to original source...
  27. Ma, X.F., Gustafson, J.P.: Allopolyploidization-accommodated genomic sequence changes in triticale. - Ann. Bot. 101: 825-832, 2008. Go to original source...
  28. Madlung, A., Tyagi, A.P., Watson, B., Jiang, H.M., Kagochi, T., Doerge, R.W., Martienssen, R., Comai, L.: Genomic changes in synthetic Arabidopsis polyploids. - Plant J. 41: 221-230, 2005. Go to original source...
  29. Ozkan, H., Tuna, M., Galbrainth, D.W.: No DNA loss in autotetraploid of Arabidopsis thaliana. - Plant Breed. 125: 288-291, 2006. Go to original source...
  30. Parisod, C., Salmon, A., Zerjal, T., Tenaillon, M., Grandbastien, M.A., Ainouche, M.: Rapid structural and epigenetic reorganization near transposable elements in hybrid and allopolyploid genomes in Spartina. - New Phytol. 184: 1003-1015, 2009. Go to original source...
  31. Pecinka, A., Fang, W., Rehmsmeier, M., Levy, A.A., Scheid, O.M.: Polyploidization increases meiotic recombination frequency in Arabidopsis. - BMC Biol. 9: 24, 2011. Go to original source...
  32. Peterson-Burch, B.D., Nettleton, D., Voytas, D.F.: Genomic neighborhoods for Arabidopsis retrotransposons: a role for targeted integration in the distribution of the Metaviridae. - Genome Biol. 5: R78, 2004. Go to original source...
  33. Petit, M., Guidat, C., Daniel, J., Denis, E., Montoriol, E., Bui, Q.T., Lim, K.Y., Kovarik, A., Leitch, A.R., Grandbastien, M.A., Mhiri, C.: Mobilization of retrotransposons in synthetic allotetraploid tobacco. - New Phytol. 186: 135-147, 2010. Go to original source...
  34. Pontes, O., Neves, N., Silva, M., Lewis, M.S., Madlung, A., Comai, L., Viegas, W., Pikaard, C.S.: Chromosomal locus rearrangements are a rapid response to formation of the allotetraploid Arabidopsis suecica genome. - PNAS 101: 18240-18245, 2004. Go to original source...
  35. Rakoczy-Trojanowska, M., Bolibok, H.: Characteristics and a comparison of three classes of microsatellite-based markers and their application in plants. - Cell. mol. Biol. Lett. 9: 221-238, 2004.
  36. Renny-Byfield, S., Kovarik, A., Kelly, L.J., Macas, J., Novak, P., Chase, M.W., Nichols, R.A., Pancholi, M.R., Grandbastien, M.A., Leitch, A.R.: Diploidization and genome size change in allopolyploids is associated with differential dynamics of low- and high-copy sequences. - Plant J. 74: 829-839, 2013. Go to original source...
  37. Rocheta, M., Cordeiro, J., Oliveira, M., Miguel, C.: PpRT1: the first complete gypsy-like retrotransposon isolated in Pinus pinaster. - Planta 225: 551-562, 2007. Go to original source...
  38. Saghai-Maroof, M.A., Soliman, K.M., Jorgensen, R.A., Allard, R.W.: Ribosomal DNA spacer-length polymorphisms in barley - Mendelian inheritance, chromosomal location, and population-dynamics. - PNAS 81: 8014-8018, 1984. Go to original source...
  39. Santos, J.L., Alfaro, D., Sanchez-Moran, E., Armstrong, S.J., Franklin, F.C.H.: Partial diploidization of meiosis in autotetraploid Arabidopsis thaliana. - Genetics 165: 1533-1540, 2003.
  40. Shaked, H., Kashkush, K., Ozkan, H., Feldman, M., Levy, A.A.: Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. - Plant Cell 13: 1749-1759, 2001. Go to original source...
  41. Shi, J.Q., Huang, S.M., Fu, D.H., Yu, J.Y., Wang, X.F., Hua, W., Liu, S.Y., Liu, G.H., Wang, H.Z.: Evolutionary dynamics of microsatellite distribution in plants: insight from the comparison of sequenced Brassica, Arabidopsis and other angiosperm species. - Plos One. 8: e59988, 2013. Go to original source...
  42. Sierro, N., Battey, J.N., Ouadi, S., Bovet, L., Goepfert, S., Bakaher, N., Peitsch, M.C., Ivanov, N.V.: Reference genomes and transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis. - Genome Biol. 14: R60, 2013. Go to original source...
  43. Song, K.M., Lu, P., Tang, K.L., Osborn, T.C.: Rapid genome change in synthetic polyploids of Brassica and Its implications for polyploid evolution. - PNAS 92: 7719-7723, 1995. Go to original source...
  44. Stöck, M., Lamatsch, D.K.: Trends in polyploidy research in animals and plants. - Cytogenet. Genome Res. 140: 2-4, 2013. Go to original source...
  45. Yu, Z., Haberer, G., Matthes, M., Rattei, T., Mayer, K.F.X., Gierl, A., Torres-Ruiz, R.A.: Impact of natural genetic variation on the transcriptome of autotetraploid Arabidopsis thaliana. - PNAS 107: 17809-17814, 2010. Go to original source...