Biologia Plantarum 63: 70-77, 2019 | DOI: 10.32615/bp.2019.009

Involvement of proline and non-protein thiols in response to low temperature and cadmium stresses in wheat

N. Repkina*, V. Talanova, A. Ignatenko, A. Titov
Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, 185910, Russia

The aim of this study was to investigate the effects of low temperature (4 °C), cadmium sulphate (100 μM), or their combination on content of free proline (Pro), glutathione (GSH), and phytochelatins (PCs) in wheat (Triticum aestivum L.) leaves. Results revealed an increase in proline and phytochelatins accumulation in leaves of wheat seedlings along with enhanced cold tolerance at the low temperature, CdSO4, and their combination. Moreover, there were increases in mRNA content of TaP5CS and TaPCS1 genes, encoding ∆1-pyrroline-5-carboxylate synthase (P5CS) and phytochelatin synthases (PCS), respectively. A rapid increase in glutathione content was found within 1 h of exposure to the low temperature and its combination with CdSO4, followed by a drop. However, upregulation of the TaGS1 gene, encoding glutathione synthetase (GS), was maintained during 7 d. A significant decrease in glutathione content on the seventh day of exposure to the low temperature, CdSO4, and their combination was most probably due to its involvement in cadmium detoxification and/or in phytochelatin synthesis. Our data suggest that proline, glutathione, and phytochelatins may be important for plant tolerance to low temperature and cadmium stress in wheat.

Keywords: glutathione, glutathione synthetase, phytochelatins, phytochelatin synthases, ∆1-pyrroline-5-carboxylate synthase

Accepted: November 13, 2018; Prepublished online: November 14, 2018; Published online: January 19, 2019Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Repkina, N., Talanova, V., Ignatenko, A., & Titov, A. (2019). Involvement of proline and non-protein thiols in response to low temperature and cadmium stresses in wheat. Biologia plantarum63, 70-77. doi: 10.32615/bp.2019.009.
Download citation

Supplementary files

Download fileREPKINA5521Suppl.pdf

File size: 150.38 kB

References

  1. Anjum, N.A., Ahmad, I., Mohmood, I., Pacheco, M., Duate, A.C., Pereira, E., Umar, S., Ahmad, A., Khan, N.A., Iqbal, M., Prasad, M.N.V.: Modulation of glutathione and its related enzymes in plants responses to toxic metal and metalloids. - Environ. exp. Bot. 75: 307-324, 2012.
  2. Bates, L.S., Waldren, R.P., Teare, I.D.: Rapid determination of free proline for water stress studies. - Plant Soil 39: 205-207, 1973. Go to original source...
  3. Bhargava, P., Srivastava, A.K., Urmil, S., Rai, L.C.: Phytochelatin plays a role in UV-B tolerance in N2-fixing cyanobacterium Anabaena doliolum. - J. Plant Physiol. 162: 1220-1225, 2005. Go to original source...
  4. Chen, A., Komives, E.A., Schroeder, J.I.: An improved grafting technique for mature Arabidopsis plants demonstrates long-distance shoot-to-root transport of phytochelatins in Arabidopsis. - Plant. Physiol. 141: 108-120, 2006. Go to original source...
  5. Delorme-Hinoux, V., Bangash, S.A.K., Meyer, A.J., Reichheld, J.P.: Nuclear thiol redox systems in plants. - Plant Sci. 243: 84-95, 2016. Go to original source...
  6. Diaz-Vivancos, P., De Simone, A., Kiddle, G., Foyer, C.H.: Glutathione - linking cell proliferation to oxidative stress. - Free Radical Biol. Med. 89: 1154-1164, 2015. Go to original source...
  7. Farooq, M.A., Ali, S., Hameed, A., Ishaque W., Mahmood, K., Iqbal, Z.: Alleviation of cadmium toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes; suppressed cadmium uptake and oxidative stress in cotton. - Ecotoxicol. Environ. Safety 96: 242-249, 2013. Go to original source...
  8. Foyer, C.H., Noctor, G.: Managing the cellular redox hub in photosynthetic organisms. - Plant Cell Environ. 35: 199-201, 2012. Go to original source...
  9. Gallego, S.M., Pena, L.B., Barcia, R.A., Azpilicueta, C.E., Iannone, M.F., Rosales, E.P., Zawoznik, M.S., Groppa, M.D., Benavides, M.P.: Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. - Environ. exp. Bot. 83: 33-46, 2012. Go to original source...
  10. Gaveliené, V., Pakalniškyté, L., Novickiené, L.: Regulation of proline and ethylene levels in rape seedlings for freezing tolerance. - Cent. Eur. J. Biol. 9: 1099-1107, 2014. Go to original source...
  11. Gill, S.S., Anjum, N.A., Hasanuzzaman, M., Gill, R., Trivedi, D.K., Ahmad, I., Pereira, E., Tuteja, N.: Glutathione and glutathione reductase: A boon in disguise for plant abiotic stress defense operations. - Plant Physiol. Biochem. 70: 204-212, 2013. Go to original source...
  12. Han, Y., Sa, G., Sun, J., Shen, Z., Zhao, R., Ding, M., Deng, S., Lu, Y., Zhang, Y., Shen, X., Chen, S.: Overexpression of Populus euphratica xyloglucan endotransglucosylase/ hydrolase gene confers enhanced cadmium tolerance by the restriction of root cadmium uptake in transgenic tobacco. - Environ. exp. Bot. 100: 74-83, 2014. Go to original source...
  13. Kaur, G., Asthir, B.: Proline: a key player in plant abiotic stress tolerance. - Biol. Plant. 59: 609-619, 2015. Go to original source...
  14. Kaur, G., Kumar, S., Thakur, P., Malik, J.A., Bhandhari, K., Sharma, K.D., Nayyar, H.: Involvement of proline in response of chickpea (Cicer arietinum L.) to chilling stress at reproductive stage. - Sci. Hort. 128: 174-181, 2011. Go to original source...
  15. Kishor, P.B.K., Sreenivasulu, N.: Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue. - Plant Cell Environ. 37: 300-311, 2013.
  16. Klimov, S.V.: Freezing tolerance of winter wheat plants depends on adaptation of photosynthesis and respiration in different time intervals. - Biol. Bull. 36: 259-266, 2009. Go to original source...
  17. Kovacs, H., Szemmelveisz, K.: Disposal option for polluted plants grown on heavy metal contaminated brownfield lands. - Chemosphere 166: 8-20, 2017. Go to original source...
  18. Li, Q., Lu, Y., Shi, Y., Wang, T., Ni, K., Xu, L., Liu, S., Wang, L., Xiong, Q., Giesy, J.P.: Combined effects of cadmium and fluoranthene on germination, growth and photosynthesis of soybean seedlings. - J. Environ. Sci. 25: 1936-1946, 2013.
  19. Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantative PCR and the 2-ΔΔCt method. - Methods 25: 402-408, 2001. Go to original source...
  20. Nakabayashi, R., Saito, K.: Integrated metabolomics for abiotic stress responses in plants. - Cur. Opin. Plant Biol. 24: 10-16, 2015.
  21. Noctor, G., Mhamdi, A., Chaouch, S., Han, Y., Neukermans, J., Marquez-Garcia, B., Queval, G., Foyer, C.H.: Glutathione in plants: an integrated overview. - Plant Cell Environ. 35: 454-484, 2012. Go to original source...
  22. Pal, R., Rai, J.P.N.: Phytochelatins: peptides involved in heavy metal detoxification. - Appl. Biochem. Biotechnol. 160: 945-963. 2010. Go to original source...
  23. Pivato, M., Fabrega-Prats, M., Masi, A.: Low-molecular-weight thiols in plants: Functional and analytical implications. - Arch. Biochem. Biophys. 560: 83-99, 2014. Go to original source...
  24. Rejeb, K.B., Abdelly, C., Savoure, A.: How reactive oxygen species and proline face stress together. - Plant Physiol. Biochem. 80: 278-284, 2014. Go to original source...
  25. Repkina, N.S., Batova, Yu.V., Titov, A.F., Talanova, V.V.: [Glutathione Synthetase (GS3) gene expression in the leaves and roots of wheat seedlings under cadmium impact] - Trans. Karel. Res. Centre Rus. Acad. Sci. Exp. Biol. 11: 67-75, 2015. [In Russ.]
  26. Sneller, F.E.C., Van Heerwaarden, L.M., Koevoets, P.L.M., Vooijs, R., Schat, H., Verkleij, A.C.: Derivatization of phytochelatins from Silene vulgaris, induced upon exposure to arsenate and cadmium: comparison of derivatization with Ellman's reagent and monobrombimane. - J. Agr. Food Chem. 48: 4014-4019, 2000. Go to original source...
  27. Stein, H., Honig, A., Miller, G., Erster, O., Eilenberg, H., Csonka, L.N., Szabados, L., Koncz, C., Zilberstein, A.: Elevation of free proline and proline-rich protein levels by simultaneous manipulations of proline biosynthesis and degradation in plants. - Plant Sci. 181: 140-150, 2011. Go to original source...
  28. Stewart, R.R.C., Bewley, J.D.: Lipid peroxidation associated with accelerated aging of soybean axes. - Plant Physiol. 65: 245-248, 1980. Go to original source...
  29. Talanova, V.V., Titov, A.F., Boeva, N.P.: Effect of increasing concentrations of lead and cadmium on cucumber seedlings. - Biol. Plant. 43: 441-444, 2000. Go to original source...
  30. Talanova, V.V., Titov, A.F., Topchieva, L.V., Malysheva, I.E., Venzhik, Yu.V., Frolova, S.A.: Expression of WRKY transcription factor and stress protein genes in wheat plants during cold hardening and ABA treatment. - Russ. J. Plant Physiol. 56: 94-99, 2009. Go to original source...
  31. Waśkiewicz, A., Beszterda, M., Goliński, P.: Nonenzymatic antioxidants in plants. - In: Ahmad, P. (ed.): Oxidative Damage to Plants. Antioxidant Networks and Signaling. Pp. 201-234. Academic Press, Amsterdam - Boston - Heidelberg - London - New York - Oxford - Paris - San Diego - San Francisco - Singapore - Sydney - Tokyo 2014. Go to original source...
  32. Zagorchev, L., Seal, C.E., Kranner, I., Odjakova, M.: A central role for thiols in plant tolerance to abiotic stress. - Int. J. mol. Sci. 14: 7405-7432, 2013. Go to original source...