Biologia Plantarum 63: 287-297, 2019 | DOI: 10.32615/bp.2019.033

Chl a fluorescence and proteomics reveal protection of the photosynthetic apparatus to dehydration in tolerant but not in susceptible wheat cultivars

M. Nykiel1, P. Lisik1, J. Dębski2, B. Florea3, K. Rybka4,*
1 Department of Biochemistry, Warsaw University of Life Sciences, PL - 02776 Warsaw, Poland
2 Institute of Biochemistry and Biophysics, IBB-PAN, PL - 02106 Warsaw, Poland
3 Leiden Institute for Chemistry, NL - 2333CC Leiden, the Netherlands
4 Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, PL -05870 Błonie, Poland

Seedlings of spring wheat (Triticum aestivum L.) cultivars, Ethos and Zebra, differing in drought tolerance were dehydrated to reach a water saturation deficit (WSD) in leaves ~15, 30, and 50 %. Ethos, the drought tolerant cultivar, dried slower in comparison with Zebra and regrew in 70 % upon rehydration. The effect of dehydration on photosystem II was evaluated by Chl a fluorescence (OJIP transients). The inflection point of double normalized curves (ΔWOJ) calculated for Ethos was negative for seedlings with 15 % WSD, nearly zero for those with 30 % WSD, and about +0.05 for those with 50 % WSD. In case of Zebra, the 15 % WSD already induced a positive ΔWOJ (+0.05) and 50 % WSD maximized it to +0.10, which is a sign of drought susceptibility. The proteomic studies revealed, that among identified 850 spots, 80 protein spots were differentially expressed during dehydration. The differentially expressed proteins of the drought tolerant cultivar indicated the protection of the photosynthetic apparatus and proteome rebuilding in response to drought. In the drought susceptible cultivar, protection of proteins and membranes and partial scavenging reactive oxygen species appeared.

Keywords: 2D electrophoresis, drought, Kautsky effect, OJIP, polyphasic fluorescence transient, Triticum aestivum

Accepted: December 8, 2018; Prepublished online: December 8, 2018; Published online: January 19, 2019Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Nykiel, M., Lisik, P., Dębski, J., Florea, B., & Rybka, K. (2019). Chl a fluorescence and proteomics reveal protection of the photosynthetic apparatus to dehydration in tolerant but not in susceptible wheat cultivars. Biologia plantarum63, 287-297. doi: 10.32615/bp.2019.033.
Download citation

Supplementary files

Download fileNYKIEL5722Suppl.pdf

File size: 423.4 kB

References

  1. Araujo, W.L., Nunes-Nesi, A., Nikoloski, Z., Sweetlove, L.J., Fernie, A.R.: Metabolic control and regulation of the tricarboxylic acid cycle in photosynthetic and heterotrophic plant tissues. - Plant Cell Environ. 35: 1-21, 2011. Go to original source...
  2. Berth, M., Moser, F.M., Kolbe, M., Bernhardt, J.: The state of the art in the analysis of two-dimensional gel electropho-resis images. - Appl. Microbiol. Biotechnol. 76: 1223-1243, 2007. Go to original source...
  3. Blum, A.: Drought resistance - is it really a complex trait? - Funct. Plant Biol. 38: 753-757, 2011. Go to original source...
  4. Burke, J.J.: Evaluation of source leaf responses to water-deficit stresses in cotton using a novel stress bioassay. - Plant Physiol. 143: 108-121, 2007. Go to original source...
  5. Bykova, N.V., Moller, I.M., Gardeström, P., Igamberdiev, A.U.: The function of glycine decarboxylase complex is optimized to maintain high photorespiratory flux via buffering of its reaction products. - Mitochondrion 19: 357-364, 2014. Go to original source...
  6. Cabrera-Bosquet, L., Crossa, J., Von Zitzewitz, J., Serret, M.D., Araus, L.J.: High-throughput phenotyping and genomic selection. - J. Integr. Plant Biol. 54: 312-320, 2012. Go to original source...
  7. Charron, J.-B.F., Breton, G., Danyluk, J., Muzac, I., Ibrahim, R.K., Sarhan, F.: Molecular and biochemical characte-rization of a cold-regulated phosphoethanolamine N-methyltransferase from wheat. - Plant Physiol. 129: 363-373, 2002. Go to original source...
  8. Curtis, B.: Wheat in the world. - In: Curtis B., Rajaram S., Gómez-Macpherson H. (ed.): Bread Wheat  Improvement and Production. Pp. 1-16, FAO, Rome 2002.
  9. Demidchik, V.: Mechanisms of oxidative stress in plants: from classical chemistry to cell biology -. Environ. exp. Bot. 109: 212-228, 2015. Go to original source...
  10. Florea, B.I., Verdoes, M., Li, N., Van der Linden, W.A., Geurink, P.P., Van den Elst, H., Hofmann, T., De Ru, A., Van Veelen, P.A., Tanaka, K., Sasaki, K., Murata, S., Den Dulk, H., Brouwer, J., Ossendorp, F.A., Kisselev, A.F., Overkleeft, H.S.: Activity-based profiling reveals reactivity of the murine thymoproteasome-specific subunit β5t. Chem. Biol. 17: 795-801, 2010. Go to original source...
  11. Foyer, C.H., Noctor, G.: Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. - Physiol. Plant. 119: 355-364, 2003. Go to original source...
  12. Foyer, C.H., Noctor, G.: Ascorbate and glutathione: the heart of the redox hub. - Plant Physiol. 155: 2-18, 2011. Go to original source...
  13. Geigenberger, P., Fernie, A.R.: Metabolic control of redox and redox control of metabolism in plants. - Antiox. Redox Signal. 21: 1389-1421, 2014. Go to original source...
  14. Gietler M., Nykiel M., Orzechowski S., Fettke J., Zagdańska B.: Proteomic analysis of S-nitrosylated and S-glutathionylated proteins in wheat seedlings with different dehydration tolerances. - Plant Physiol. Biochem. 108: 507-518, 2016. Go to original source...
  15. Goltsev V.N., Kalaji H.M., Paunov M., Bąba W., Horaczek T., Mojski J., Kociel H., Allakhverdiev S.I.: Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. - Russ. J. Plant Physiol. 63: 869-893, 2016. Go to original source...
  16. Grudkowska, M., Zagdanska, B. Acclimation to frost alters proteolytic response of wheat seedlings to drought. - J. Plant Physiol. 167: 1321-1327, 2010. Go to original source...
  17. Grudkowska, M., Zagdańska, B., Rybka, Z.: [Tolerance of spring wheat to soil drought at a heading phase.] - Biul. IHAR 228: 51-60, 2003. [In Polish, ab: E.]
  18. Habash, D.Z., Baudo, M., Hindle, M., Powers, S.J., Defoin-Platel, M., Mitchell, R., Saqi, M., Rawlings, C., Latiri, K., Araus, J.L., Abdulkader, A., Tuberosa, R., Lawlor, D.W., Nachit, M.M.: Systems responses to progressive water stress in durum wheat. - PLoS ONE 9: e108431, 2014. Go to original source...
  19. Igamberdiev, A.U.: Control of rubisco function via homeostatic equilibration of CO2 supply. - Front. Plant Sci. 6: 106, 2015. Go to original source...
  20. Jogaiah S., Govind S.R., Tran L.S.P.: Systems biology-based approaches toward understanding drought tolerance in food crops. - Crit. Rev. Biotechnol. 33: 23-39, 2013. Go to original source...
  21. Kalaji, H.M., Rastogi, A., Živčák, M., Brestic, M., Daszkowska-Golec, A., Sitko, K., Alsharafa, K.Y., Lotfi, R., Stypiński, P., Samborska, I.A., Cetner, M.D. Prompt chlorophyll fluorescence as a tool for crop phenotyping: an example of barley landraces exposed to various abiotic stress factors. - Photosynthetica 56: 953-961, 2018. Go to original source...
  22. Kochetov, G.A., Solovjeva, O.N.: Structure and functioning mechanism of transketolase. - Biochim. Biophys. Acta 1844: 1608-1618, 2014.
  23. Kopczewski, T., Kuźniak, E.: Redox signals as a language of interorganellar communication in plant cells. - Centr. Eur. J. Biol. 8: 1153-1163, 2013.
  24. Krzywińska E., Bucholc M., Kulik A., Ciesielski A., Lichocka M., Dębski J., Ludwików A., Dadlez M., Rodriguez P.L., Dobrowolska G. Phosphatase ABI1 and okadaic acid-sensitive phosphoprotein phosphatases inhibit salt stress-activated SnRK2.4 kinase. BMC Plant Biology 16: 136, 2016. Go to original source...
  25. Levitt, J.(ed.): Responses of Plants to Environmental Stresses. Vol. II. Water, Radiation, Salt and Other Stresses. 2nd Ed. - Academic Press, New York - San Francisco - London 1980.
  26. Marín, D., Martín, M., Serrot, P.H., Sabater, B.: Thermo-dynamic balance of photosynthesis and transpiration at increasing CO2 concentrations and rapid light fluctuations. - Biosystems 116: 21-26, 2014. Go to original source...
  27. Miazek, A., Nykiel, M., Rybka, K.: Drought tolerance variation depends on the age of the spring wheat seedlings and results in differentiated pattern of proteinases on zymography gels. - Russ. J. Plant Physiol. 64: 333-340, 2017. Go to original source...
  28. Miller, G., Suzuki, N., Ciftci-Yilmaz, S., Mittler, R.: Reactive oxygen species homeostasis and signalling during drought and salinity stresses. - Plant Cell Environ. 33: 453-467, 2010. Go to original source...
  29. Moller, I.M.: Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. - Ann. Rev. Plant Physiol. Plant mol. Biol. 52: 561-591, 2001. Go to original source...
  30. Musrati, R.A., Kollarova, M., Mernik, N., Mikulasova, D.: Malate dehydrogenase: distribution, function and properties. - Gen. Physiol. Biophys. 17: 193-210, 1998.
  31. Nagy, Z., Nemeth, E., Guoth, A., Bona, L., Wodala, B., Pecsvaradi, A.: Metabolic indicators of drought stress tolerance in wheat: glutamine synthetase isoenzymes and Rubisco. - Plant Physiol. Biochem. 14: 48-54, 2013. Go to original source...
  32. Nishiyama, Y., Allakhverdiev, S.I., Murata, N.: Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II. - Physiol. Plant. 142: 35-46, 2011. Go to original source...
  33. Noctor, G., Mhamdi, A., Foyer, C.H.: The roles of reactive oxygen metabolism in drought: not so cut and dried. - Plant Physiol. 164: 1636-1648, 2014. Go to original source...
  34. Olinares, P.D.B., Kim, J., Van Wijk, K.J.: The Clp protease system: a central component of the chloroplast protease network. - Biochim. biophys. Acta 1807: 999-1011, 2011.
  35. Oliver, M.J., Jain, R., Balbuena, T.S., Agrawal, G., Gasulla, F., Thelen, J.J.: Proteome analysis of leaves of the desiccation-tolerant grass, Sporobolus stapfianus, in response to dehydration. - Phytochemistry 72: 1273-84, 2011. Go to original source...
  36. Oukarroum A., Madidi S.E., Schansker G., Strasser R.J.: Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. - Environ. exp. Bot. 60: 438-446, 2007. Go to original source...
  37. Park, C.-J., Seo ,Y.-S.: Heat shock proteins: a review of the molecular chaperones for plant immunity. - Plant Pathol. J. 31: 323-333, 2015 Go to original source...
  38. Paunov, M., Koleva, L., Vassilev, A., Vangronsveld, J., Goltsev, V.: Effects of different metals on photosynthesis: cadmium and zinc affect chlorophyll fluorescence in durum wheat. - Int. J. mol. Sci. 1: 787, 2018. Go to original source...
  39. Pinheiro, C., Chaves, M.M.: Photosynthesis and drought: can we make metabolic connections from available data? - J. exp. Bot. 62: 869-882, 2011. Go to original source...
  40. Portis, A.R.: The regulation of Rubisco by Rubisco activase. - J. Exp. Bot. 46: 1285-1291, 1995. Go to original source...
  41. Prokopiuk, K., Żurek, G., Rybka, K. Turf covering for sport season elongation cause no stress for grass species as detected by Chl a fluorescence. - Urban Forestry and Urban Greening 2018 in press. Go to original source...
  42. Rapacz, M., Sasal, M., Kalaji, H.M., Kościelniak, J.: Is the OJIP test a reliable indicator of winter hardiness and freezing tolerance of common wheat and triticale under variable environments? - PLoS ONE 10: e0134820, 2015. Go to original source...
  43. Rollins, J.A., Habte, E., Templer, S.E., Colby, T., Schmidt, J., von Korff, M.: Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.). - J. exp. Bot. 64: 3201-3212, 2013. Go to original source...
  44. Rybka, K., Nita, Z.: [Modern phenotypes of cereals for growing in areas endangered with drought.] - Biul. IHAR 273: 55-72, 2014. [In Polish, ab: E.]
  45. Sadanandom, A., Bailey, M., Ewan, R., Lee, J., Nelis, S.: The ubiquitin-proteasome system: central modifier of plant signalling. - New Phytol. 196: 13-28, 2012. Go to original source...
  46. Scheibe, R., Zachgo, S., Hanke, G.T.: Plant cell microcompartments: a redox-signaling perspective. - Biol. Chem. 394: 203-216, 2013.
  47. Semenov, M.A., Stratonovitch, P., Alghabari, F., Gooding, M.J.: Adapting wheat in Europe for climate change. - J. Cereal Sci. 59: 245-256, 2014. Go to original source...
  48. Stirbet, A., Govindjee: On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: basics and applications of the OJIP fluorescence transient. - J. Photochem. Photobiol. B: Biol. 104: 236-257, 2011. Go to original source...
  49. Stirbet, A., Lazár, D., Kromdijk, J., Govindjee. Chlorophyll a fluorescence induction: can just a one-second measurement be used to quantify abiotic stress responses? - Photosynthetica 56: 86-104, 2018. Go to original source...
  50. Strasser R.J., Srivastava A., Govindjee: Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. - Photochem. Photobiol. 61: 32-42, 1995. Go to original source...
  51. Szklarczyk, D., Morris, J.H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., Santos, A., Doncheva, N.T., Roth, A., Bork, P., Jensen, L.J., Von Mering C.: The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. - Nucl. Acids Res. 45: D362-D368, 2017. Go to original source...
  52. Voss, I., Sunil, B., Scheibe, R., Raghavendra, A.S.: Emerging concept for the role of photorespiration as an important part of abiotic stress response. - Plant Biol. 15: 713-722, 2013. Go to original source...
  53. Wang, W., Vignani, R., Scali, M., Cresti, M.: A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis. - Electrophoresis 27: 2782-2786, 2006. Go to original source...
  54. Wang, Y., Zeng, L., Xing, D.: ROS-mediated enhanced transcription of CYP38 promotes the plant tolerance to high light stress by suppressing GTPase activation of PsbO2. - Front. Plant Sci. 6: 777, 2015. Go to original source...
  55. Wojtera-Kwiczor, J., Gross, F., Leffers, H.-M., Kang, M., Schneider, M., Scheibe, R.: Transfer of a redox-signal through the cytosol by redox-dependent microcompartmen-tation of glycolytic enzymes at mitochondria and actin cytoskeleton. - Front. Plant Sci. 3: 284, 2012.
  56. Xu, L., Yu, J., Han, L., Huang, B.: Photosynthetic enzyme activities and gene expression associated with drought tolerance and post-drought recovery in Kentucky bluegrass. - Environ. exp. Bot. 89: 28-35, 2013. Go to original source...
  57. Yadav K.N.S., Semchonok D.A., Nosek L., Kouřil R., Fucile G., Boekema E.J., Eichacker L.A.: Supercomplexes of plant photosystem I with cytochrome b6f, light-harvesting complex II and NDH. Biochim. Biophys. Acta 1858: 12-20, 2017.
  58. Zhao, Z., Assmann, S.M.: The glycolytic enzyme, phosphoglycerate mutase, has critical roles in stomatal movement, vegetative growth, and pollen production in Arabidopsis thaliana. - J. exp. Bot. 62: 5179-5189, 2011. Go to original source...
  59. Zivcak, M., Brestic, M., Olsovska, K., Slamka, P.: Performance index as a sensitive indicator of water stress in Triticum aestivum L. - Plant Soil Environ. 54: 133-139, 2008. Go to original source...
  60. Żurek, G., Rybka, K., Pogrzeba, M., Krzyżak, J., Prokopiuk, K.: Chlorophyll a fluorescence in evaluation of the effect of heavy metal soil contamination on perennial grasses. - PLoS ONE 9: e91475, 2014.