Biologia Plantarum 63: 594-600, 2019 | DOI: 10.32615/bp.2019.113

Evaluating the role of wheat histone variant genes in development and response to abiotic stress in Arabidopsis

H. LV1, X. CUI1, P. ZHANG1, Y. LI1, Y. JI2, Y. WANG3, G. XIA1, M. WANG1,*
1 The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Shandong 250100, P.R. China
2 College of veterinary medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China
3 Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang 050041, P.R. China

Histone variants can epigenetically regulate gene transcription through chromatin modulation. This regulation have been occasionally found in responses to abiotic stresses in plants, but their roles are not quite clear. Here, we describe 12 salt-responsive histone variant genes isolated from wheat. There was no sequence polymorphism in these 12 genes between the wheat cultivar 'JN177'and its salinity and drought tolerant derivative 'SR3' indicating that histone variant genes are highly conserved. However, these genes displayed differential patterns of transcription in 'JN177' and 'SR3'. When transformed into Arabidopsis thaliana, eight of the genes were silenced. The heterologous expression of the four active transgenes had no discernible effect on the Arabidopsis phenotype neither under control conditions nor under different abiotic stresses suggesting that histone variants could not be considered as candidate genes for molecular breeding by ectopic expression.

Keywords: chromatin remodeling, transcription regulation, transgenic plants, Triticum aestivum.

Received: September 13, 2018; Revised: December 26, 2018; Accepted: January 2, 2019; Published online: September 9, 2019Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
LV, H., CUI, X., ZHANG, P., LI, Y., JI, Y., WANG, Y., XIA, G., & WANG, M. (2019). Evaluating the role of wheat histone variant genes in development and response to abiotic stress in Arabidopsis. Biologia plantarum63, 594-600. doi: 10.32615/bp.2019.113.
Download citation

Supplementary files

Download fileLv5947 Suppl.pdf

File size: 887.66 kB

References

  1. Chakravarthy, S., Luger, K.: The histone variant macro-H2A preferentially forms "hybrid nucleosomes" - J. biol. Chem. 281: 25522-22531, 2006. Go to original source...
  2. Clough, S.J., Bent, A.F.: Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. - Plant J. 16: 735-743, 1998. Go to original source...
  3. Dong, W., Wang, M., Xu, F., Quan, T., Peng, K., Xiao, L., Xia, G.: Wheat oxophytodienoate reductase gene TaOPR1 confers salinity tolerance via enhancement of abscisic acid signaling and reactive oxygen species scavenging. - Plant Physiol. 161: 1217-1228, 2013. Go to original source...
  4. Gao, X., Liu, S.W., Sun, Q., Xia, G.M.: High frequency of HMW-GS sequence variation through somatic hybridization between Agropyron elongatum and common wheat. - Planta 231: 245-250, 2010. Go to original source...
  5. Guillemette, B., Bataille, A.R., Gévry, N., Adam, M., Blanchette, M., Robert, F., Gaudreau, L.: Variant histone H2A. Z is globally localized to the promoters of inactive yeast genes and regulates nucleosome positioning. - PLoS Biol. 3: e384, 2005. Go to original source...
  6. Guillemette, B., Gaudreau, L.: Reuniting the contrasting functions of H2A.Z. - Biochem. cell. Biol. 84: 528-535, 2006. Go to original source...
  7. He, Y., Li, W., Lv, J., Jia, Y., Wang, M., Xia, G.: Ectopic expression of a wheat MYB transcription factor gene, TaMYB73, improves salinity stress tolerance in Arabidopsis thaliana. - J. exp. Bot. 63: 1511-1522, 2012. Go to original source...
  8. Henikoff, S., Ahmad, K.: Assembly of variant histones into chromatin. - Annu. Rev. cell. dev. Biol. 21: 133-153, 2005. Go to original source...
  9. Huang, X., Madan, A.: CAP3: a DNA sequence assembly program. - Genome Res. 9: 868-877, 1999. Go to original source...
  10. Jin, C., Felsenfeld, G.: Nucleosome stability mediated by histone variants H3.3 and H2A.Z. - Genes Dev. 21: 1519-1529, 2007. Go to original source...
  11. Jin, C., Zang, C., Wei, G., Cui, K., Peng, W., Zhao, K., Felsenfeld, G.: H3. 3/H2A. Z double variant-containing nucleosomes mark 'nucleosome-free regions' of active promoters and other regulatory regions. - Natur. Genet. 41: 941-945, 2009. Go to original source...
  12. Kamakaka, R.T., Biggins, S.: Histone variants: deviants? - Genes Dev. 19: 295-316, 2005. Go to original source...
  13. Kumar, S.V., Wigge, P.A.: H2A. Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. - Cell 140: 136-147, 2010. Go to original source...
  14. Li, C., Lv, J., Zhao, X., Ai, X., Zhu, X., Wang, M., Zhao, S., Xia, G.: TaCHP: A Wheat zinc finger protein gene down-regulated by abscisic acid and salinity stress plays a positive role in stress tolerance. - Plant Physiol. 154: 211-221, 2010. Go to original source...
  15. Liu, C., Li, S., Wang, M., Xia, G.M.: A transcriptomic analysis reveals the nature of salinity tolerance of a wheat introgression line. - Plant mol. Biol. 78: 159-169, 2012. Go to original source...
  16. Liu, S., Liu, S., Wang, M., Wei, T., Meng, C., Wang, M., Xia, G.: A Wheat SRO gene enhances seedling growth and abiotic stress resistance via modulating redox homeostasis and maintaining genomic integrity. - Plant Cell 26: 164-180, 2014. Go to original source...
  17. Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. - Methods 25: 402-408, 2001. Go to original source...
  18. Okamoto, I., Otte, A.P., Allis, C.D., Reinberg, D., Heard, E.: Epigenetic dynamics of imprinted X inactivation during early mouse development. - Science. 303: 644-649, 2004. Go to original source...
  19. Peng, Z., Wang, M., Li, F., Lv, H., L, C., Xia, G.: A Proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat. - Mol. cell. Proteomics 8: 2676-2686, 2009. Go to original source...
  20. Probst, A.V., Dunleavy, E., Almouzni, G.: Epigenetic inheritance during the cell cycle. - Nat Rev. mol. cell. Biol. 10: 192-206, 2009. Go to original source...
  21. Scippa, G.S., Michele, M.D., Onelli, E., Patrignani, G., Chiatante, D., Bray, E.A.: The histone-like protein H1-S and the response of tomato leaves to water deficit. - J. exp. Bot. 55: 99-109, 2004. Go to original source...
  22. Shan, L., Li, C., Chen, F., Zhao, S., Xia, G.: A Bowman-Birk type protease inhibitor is involved in the tolerance to salt stress in wheat. - Plant Cell Environ. 31: 1128-1137, 2008. Go to original source...
  23. Smith, A.P., Jain, A., Deal, R.B., Nagarajan, V.K., Poling, M.D., Raghothama, K.G., Meagher, R.B.: Histone H2A. Z regulates the expression of several classes of phosphate starvation response genes but not as a transcriptional activator. - Plant Physiol. 152: 217-225, 2010. Go to original source...
  24. Song, Y., Seol, J.-H., Yang, J.-H., Kim, H.-J., Han, J.-W., Youn, H.-D., Cho, E.-J.: Dissecting the roles of the histone chaperones reveals the evolutionary conserved mechanism of transcription-coupled deposition of H3.3 - Nucl. Acids Res. 41: 5199-5209, 2013. Go to original source...
  25. Stewart, C.N., Touraev, A., Citovsky, V., Tzfira, T. (ed): Plant Transformation Technologies. - John Wiley & Sons, New York 2011. Go to original source...
  26. Tachiwana, H., Osakabe, A., Kimura, H., Kurumizaka, H.: Nucleosome formation with the testis-specific histone H3 variant, H3t, by human nucleosome assembly proteins in vitro. - Nucl. Acids Res. 36: 2208-2218, 2008. Go to original source...
  27. Talbert, P.B., Henikoff, S.: Histone variants - ancient wrap artists of the epigenome. - Nat. Rev. mol. cell. Biol. 11: 264-275, 2010. Go to original source...
  28. Von Arnim, A.: Subcellular localization of GUS- and GFP-tagged proteins in onion epidermal cells. - Cold Spring Harbour Protocols: doi:10.1101/pdb.prot4689, 2007. Go to original source...
  29. Wang, M., Liu, C., Xing, T., Wang, Y., Xia, G.: Asymmetric somatic hybridization induces point mutations and indels in wheat. - BMC Genomics 16: 807, 2015. Go to original source...
  30. Wang, M.C., Peng, Z.Y., Li, C.L., Li, F., Liu, C., Xia, G.M.: Proteomic analysis on a high salt tolerance introgression strain of Triticum aestivum/Thinopyrum ponticum. - Proteomics 8: 1470-1489, 2008. Go to original source...
  31. Wang, X., Duan, C.G., Tang, K., Wang, B., Zhang, H., Lei, M., Kun Lu, Mangrauthia, S.K., Wang, P., Zhu, G., Zhao, Y., Zhu, J.K.: RNA-binding protein regulates plant DNA methylation by controlling mRNA processing at the intronic heterochromatin-containing gene IBM1. - Proc nat. Acad. Sci. USA 110: 15467-15472, 2013. Go to original source...
  32. West, A.G., van Attikum, H.: Chromatin at the crossroads. Meeting on signalling to chromatin epigenetics. - EMBO Rep. 7: 1206-1210, 2006. Go to original source...
  33. Xia, G.: Progress of chromosome engineering mediated by asymmetric somatic hybridization. - J. Genet. Genomics 36: 547-556, 2009. Go to original source...
  34. Xia, G.M., Xiang, F.N., Zhou, A.F., Wang, H., Chen, H.M.: Asymmetric somatic hybridization between wheat (Triticum aestivum L.) and Agropyron elongatum (Host) Nevishi. - Theor. appl. Genet. 107: 299-305, 2003. Go to original source...
  35. Zhao, Y., Dong, W., Zhang, N., Ai, X., Wang, M., Huang, Z., Xiao, L., Xi, G.: A wheat allene oxide cyclase gene enhances salinity tolerance via jasmonate signaling. - Plant Physiol. 164: 1068-1076, 2014. Go to original source...