Biologia plantarum 59:245-252, 2015 | DOI: 10.1007/s10535-015-0497-y

ICE genes in Arabidopsis thaliana: clinal variation in DNA polymorphism and sequence diversification

A. Kurbidaeva1,*, M. Novokreshchenova1, T. Ezhova1
1 Department of Genetics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia

Natural accessions of Arabidopsis thaliana exhibit a clinal variation in freezing tolerance following temperature changes across the natural habitat. Here we performed molecular evolution and population genetic analyses of homologous INDUCER OF CBF EXPRESSION1 (ICE1) and ICE2 genes, the master regulators of plant cold response. A study of ICE genes polymorphism was performed using 60 A. thaliana ecotypes grouped according to their geographic origin. The genetic diversity of ICE2 was characterized by a high number of haplotypes and an overall high diversity. The levels of nonsynonymous nucleotide polymorphism increased from a northern group southward. On the contrary, the ICE1 gene sequence was less diverse and there was no clinal variation in the sequence polymorphism. Thus, different selection forces acting on the ICE2 gene might be one of the reasons of clinal variation in freezing tolerance. This clinal variation also indicates that ICE2 is more important for a cold response than ICE1. The study of the ratio of numbers of nonsynonymous to synonymous substitutions (Ka/Ks) between A. thaliana paralogs shows that the sequence diversification and emergence of two new ICE2-specific motifs could contribute to the functional diversification of the duplicates. The Ka/Ks for ICE2 of A. thaliana and A. lyrata orthologs was an order of magnitude greater than that for the ICE1 orthologs, which suggests that the protein sequence of ICE2, an early duplicate, evolved under a weaker selective constraint. A relaxed selection on ICE2 in southern populations and more stringent in northern populations also confirmed its role in a cold resistance. The selection pressure on ICE1 might be caused by its role in the control of more essential than cold response functions.

Keywords: cold acclimation; natural selection; transcription factor
Subjects: ICE genes; clinal variation; DNA polymorphism; sequence diversification
Species: Arabidopsis thaliana

Received: June 3, 2014; Revised: October 31, 2014; Accepted: November 10, 2014; Published: June 1, 2015Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Kurbidaeva, A., Novokreshchenova, M., & Ezhova, T. (2015). ICE genes in Arabidopsis thaliana: clinal variation in DNA polymorphism and sequence diversification. Biologia plantarum59(2), 245-252. doi: 10.1007/s10535-015-0497-y.
Download citation

Supplementary files

Download filebpl-201502-0006_S1.pdf

File size: 347.19 kB

References

  1. Aguadé, M.: Nucleotide sequence variation at two genes of the phenylpropanoid pathway, the FAH1 and F3H genes, in Arabidopsis thaliana. - Mol. Biol. Evol. 18: 1-9, 2001. Go to original source...
  2. Al-Shehbaz, I.A., O'Kane, S.L.: Taxonomy and phylogeny of Arabidopsis (Brassicaceae). - In: Somerville, C.R., Meyerowitz, E.M. (ed.): The Arabidopsis Book [Internet; doi: 10.1199/tab.0001]. Amer. Soc. Plant Biol., Rockville 2002. Go to original source...
  3. Achard, P., Gong, F., Cheminant, S., Alioua, M., Hedden, P., Genschik, P.: The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growthrepressing DELLA proteins via its effect on gibberellin metabolism. - Plant Cell. 20: 2117-2129, 2008. Go to original source...
  4. Ba, A.N.N., Pogoutse, A., Provart, N., Moses, A.M.: NLStradamus: a simple hidden Markov model for nuclear localization signal prediction. - BMC Bioinformatics 10: 202, 2009.
  5. Beck, J.B., Schmuths, H., Schaal, B.A.: Native range genetic variation in Arabidopsis thaliana is strongly geographically structured and reflects Pleistocene glacial dynamics. - Mol. Ecol. 17: 902-915, 2008. Go to original source...
  6. Blanc, G., Hokamp, K., Wolfe, K.H.: A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. - Genome Res. 13: 137-144, 2003. Go to original source...
  7. Bowers, J. E., Chapman, B. A., Rong, J., Paterson, A. H.: Unraveling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. - Nature 422: 433-438, 2003. Go to original source...
  8. Chinnusamy, V., Ohta, M., Kanrar, S., Lee, B.H., Hong, X., Agarwal, M., Zhu, J.K.: ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. - Genes Dev. 17: 1043-1054, 2003. Go to original source...
  9. Dellaporta, S.L., Wood, J., Hicks, J.B.: A plant DNA minipreparation: version II. - Plant mol. Biol. Rep. 1: 19-21, 1983. Go to original source...
  10. Ermolaeva, M.D., Wu, M., Eisen, J.A., Salzberg, S.L.: The age of the Arabidopsis thaliana genome duplication. - Plant mol. Biol. 51: 859-866, 2003. Go to original source...
  11. Fursova, O.V., Pogorelko, G.V., Tarasov, V.A.: Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana. - Gene 429: 98-103, 2009. Go to original source...
  12. Hall, T.A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. - Nucl. Acids Symp. Ser. 41: 95-98, 1999.
  13. Hannah, M.A., Wiese, D., Freund, S., Fiehn, O., Heyer, A.G., Hincha, D.K.: Natural genetic variation of freezing tolerance in Arabidopsis. - Plant Physiol. 142: 98-112, 2006. Go to original source...
  14. He, X., Zhang, J.: Rapid subfunctionalization accompanied by prolonged and substantial neofunctionalization in duplicate gene evolution. - Genetics 169: 1157-1164, 2005. Go to original source...
  15. Kanaoka, M.M., Pillitteri, L.J., Fujii, H., Yoshida, Y., Bogenschutz, N.L., Takabayashi, J., Zhu, J-K., Torii, K.U.: SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading to Arabidopsis stomatal differentiation. - Plant Cell 20: 1775-1785, 2008. Go to original source...
  16. Koornneef, M., Alonso-Blanco, C., Vreugdenhil, D.: Naturally occurring genetic variation in Arabidopsis thaliana. - Annu. Rev. Plant Biol. 55: 141-172, 2004. Go to original source...
  17. Kurbidaeva, A., Ezhova, T., Novokreshchenova, M.: Arabidopsis thaliana ICE2 gene: phylogeny, structural evolution and functional diversification from ICE1. - Plant Sci. 229: 10-22, 2014. Go to original source...
  18. Le Corre, V., Roux, F., Reboud, X.: DNA polymorphism at the FRIGIDA gene in Arabidopsis thaliana: extensive nonsynonymous variation is consistent with local selection for flowering time. - Mol. Biol. Evol. 19: 1261-1271, 2002. Go to original source...
  19. Liu, H., Han, H., Li, J., Wong, L.: DNAFSMiner: a web-based software tool box to recognize two types of functional sites in DNA sequences. - Bioinformatics 21: 671-673, 2005. Go to original source...
  20. McDonald, J.H.: Detecting non-neutral heterogeneity across a region of DNA sequence in the ratio of polymorphism to divergence. - Mol. Biol. Evol. 13: 253-260, 1996. Go to original source...
  21. McDonald, J.H.: Improved tests for heterogeneity across a region of DNA sequence in the ratio of polymorphism to divergence. - Mol. Biol. Evol. 15: 377-384, 1998. Go to original source...
  22. McKhann, H.I., Gery, C, Bérard, A, Lévêque, S, Zuther, E, Hincha, D.K., De Mita, S., Brunel, D., Téoulé, E.: Natural variation in CBF gene sequence, gene expression and freezing tolerance in the Versailles core collection of Arabidopsis thaliana. - BMC Plant Biol. 8: 105, 2008. Go to original source...
  23. Medina, J., Catalá, R., Salinas, J.: The CBFs: three arabidopsis transcription factors to cold acclimate. - Plant Sci. 180: 3-11, 2011. Go to original source...
  24. Mitchell-Olds, T., Schmitt, J.: Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. -. Nature 441: 947-952, 2006. Go to original source...
  25. Nordborg, M., Hu, T.T., Ishino, Y., Jinal, J., Christopher, T., Zheng, H., Bakker, E., Calabrese, P., Gladstone, J., Goyal, R., Jakobsson, M., Kim, S., Morozov, Y., Padhukasahasram, B., Plagnol, V., Rosenberg, N.A., Shah, C., Wall, J.D., Wang, J., Zhao, K., Kalbfleisch, T., Schulz, V., Kreitman, M., Bergelson, J.: The pattern of polymorphism in Arabidopsis thaliana. - Plos Biol. 3: 1289-1299, 2005. Go to original source...
  26. Okonechnikov, K., Golosova, O., Fursov, M.: Unipro UGENE: a unified bioinformatics toolkit. - Bioinformatics 28: 1166-1167, 2012. Go to original source...
  27. Rahman, M.A., Moody, M.A., Nassuth, A.: Grape contains 4 ICE genes whose expression includes alternative polyadenylation, leading to transcripts encoding at least 7 different ICE proteins. - Environ. exp. Bot. 106: 70-78. 2014. Go to original source...
  28. Rogers, S.W., Wells, R., Rechsteiner M.: Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. - Science 234: 364-368, 1986. Go to original source...
  29. Rozas, J., Sanchez-DelBarrio, J.C., Messeguer, X., Rozas, R.: DnaSP, DNA polymorphism analyses by the coalescent and other methods. - Bioinformatics 19: 2496-2497, 2003. Go to original source...
  30. Saitou, N, Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. - Mol. Biol. Evol. 4: 406-425, 1987.
  31. Schmid, K.J., Ramos-Onsins, S., Ringys-Becktein, H., Weisshaar, B., Mitchell-Olds, T.: A multilocus sequence survey in Arabidopsis thaliana reveals a genome-wide departure from a neutral model of DNA sequence polymorphism. - Genetics 169: 1601-1615, 2005. Go to original source...
  32. Stinchcombe, J.R., Weinig, C., Ungerer, M., Olsen, K.M., Mays, C., Halldorsdottir, S.S., Purugganan, M.D., Schmitt, J.: A latitudinal cline in flowering time in Arabidopsis thaliana modulated by the flowering time gene FRIGIDA. - Proc. nat. Acad. Sci. USA 101: 4712-4717, 2004. Go to original source...
  33. Tajima, F.: Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. - Genetics 123: 585-595, 1989.
  34. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S.: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum Parsimony methods. - Mol. Biol. Evol. 28: 2731-2739, 2011. Go to original source...
  35. Thomashow, M.F.: Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. - Annu. Rev. Plant. Physiol. Plant. mol. Biol. 50: 571-599, 1999. Go to original source...
  36. Thompson, J.D., Higgins, D.G., Gibson, T.J.: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. - Nucl. Acids Res. 22: 4673-4680. 1994. Go to original source...
  37. Yamaguchi-Shinozaki, K., Shinozaki, K.: A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. - Plant Cell 6: 251-264, 1994. Go to original source...
  38. Yoshida, K., Kamiya, T., Kawabe, A., Miyashita, N.T.: DNA polymorphism at the ACAULIS5 locus of the wild plant Arabidopsis thaliana. - Genes. Genet. Syst. 78: 11-21, 2003. Go to original source...
  39. Zhen, Y., Ungerer, M.C.: Clinal variation in freezing tolerance among natural accessions of Arabidopsis thaliana. - New Phytol. 177: 419-427, 2008.
  40. Zuther, E., Schulz, E., Childs, L.H., Hincha, D.K.: Clinal variation in the non-acclimated and cold-acclimated freezing tolerance of Arabidopsis thaliana accessions. - Plant Cell Environ. 35: 1860-1878, 2012.