Biologia plantarum 60:279-284, 2016 | DOI: 10.1007/s10535-016-0595-5
The B-, G- and S-genomic Chi genes in family Triticeae
- 1 Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- 2 Food Security Research Center, Novosibirsk State University, Novosibirsk, Russia
As result of a close evolutionary relationship between Triticeae B, G, and S genomes, the exchange of genetic material between them is possible and may be beneficial for broadening the genetic diversity of cultivated bread wheat. However, the extent to which regulatory networks are conserved remains poorly researched. Here, the structural organization and transcriptional activity of the B, S, and G genome copies of a gene encoding flavonoid biosynthesis enzyme chalcone-flavanone isomerase (CHI) were explored using introgression lines which differ from the wild type by carrying a non-bread wheat Chi-1 gene. Chi-S1, Chi-G1, and Chi-B1 all mapped to a comparable region of chromosomes 5S, 5G, and 5B, respectively. Nucleotide sequences of Aegilops speltoides Chi-S1 and Triticum timopheevii Chi-G1 were determined and compared with T. aestivum Chi-B1 sequences. The enzymes encoded by these three genes shared the same predicted tertiary structure and active sites. However, the replacement of Chi-B1 by Chi-S1 or Chi-G1 in a wheat background resulted in a significant decrease in the global amount of the Chi-1 transcript present in the seedling shoot indicating divergence in regulation of expression of the orthologous Chi-1 genes among Triticeae ssp.
Keywords: Aegilops speltoides; chalcone-flavanone isomerase; flavonoid biosynthesis; gene cloning and mapping; Triticum aestivum; Triticum timopheevii; wheat genome evolution
Subjects: Chi genes; gene cloning and mapping; flavonoid biosynthesis; chalcone-flavanone isomerase; phylogenetic analysis; wheat
Species: Aegilops speltoides; Triticum aestivum; Triticum timopheevii; Triticum urartu
Received: March 30, 2015; Revised: November 12, 2015; Accepted: November 26, 2015; Published: June 1, 2016Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
Supplementary files
Download file | bpl-201602-0009_S1.pdf File size: 950.53 kB |
References
- Adonina, I.G.: Kharakteristika satellitnyh povtorov vidov Aegilops L. sekcii Sitopsis i ikh ispol'zovanie v kachestve molekulyarnyh markerov. [Characterization of satellite repeats of Aegilops L. Sitopsis section and their application as molecular markers.] - Dissertation, Institute of Cytology and Genetics SB RAS, Novosibirsk 2007. [In Russ.]
- Adonina, I.G., Petrash, N.V., Timonova, E.M., Khristov, Y.A., Salina, E.A.: Construction and study of leaf rust-resistant common wheat lines with translocations of Aegilops speltoides Tausch. genetic material. - Russ. J. Genet. 48: 404-409, 2012. Go to original source...
- Arnold, K., Bordoli, L., Kopp, J., Schwede, T.: The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. - Bioinformatics 22: 195-201, 2006. Go to original source...
- Chalker-Scott, L.: Environmental significance of anthocyanins in plant stress responses. - Photochem. Photobiol. 70: 1-9, 1999. Go to original source...
- Corpet, F.; Multiple sequence alignment with hierarchical clustering. - Nucl. Acids Res. 16: 10881-10890, 1988. Go to original source...
- Dobrovolskaya, O., Boeuf, C., Salse, J., Pont, C., Sourdille, P., Bernard, M., Salina, E.: Microsatellite mapping of Ae. speltoides and map-based comparative analysis of the S, G, and B genomes of Triticeae species. - Theor. appl. Genet. 123: 1145-1157, 2011. Go to original source...
- Dorofeev, V.F., Korovina, O.N. (ed.): Kul'turnaya Flora SSSR. [Flora of Cultivated Plants.] - Kolos Press, Leningrad 1979. [In Russ.]
- Druka, A., Kudrna, D., Rostoks, N., Brueggeman, R., Von Wettstein, D., Kleinhofs, A.: Chalcone isomerase gene from rice (Oryza sativa) and barley (Hordeum vulgare): physical, genetic and mutation mapping. - Gene 302: 171-178, 2003. Go to original source...
- Feldman, M.: The origin of cultivated wheat. - In: Benjean, A.P., Angus, W.J. (ed.): The Wheat Book: a History of Wheat Breeding. Pp. 3-56. Lavoisier Publishing, Paris 2001.
- Goncharov, N.P.: Sravnitel'naja Genetika Pshenic i ikh Sorodichej. [Comparative genetics of wheats and their related species.] - Siberian Un-ty Press, Novosibirsk 2002. [In Russ.]
- Grotewold, E. (ed.): The Science of Flavonoids. - Springer, New York 2008.
- Gustafson, J.P, Sears, E.R.: An effective wheat gene manipulation system: problems and uses. - In: J. Janick (ed.): Plant Breeding Reviews. Vol. 11. Pp. 255-234. John Willey & Sons, New York, 1993. Go to original source...
- Himi, E., Nisar, A., Noda, K.: Colour genes (R and Rc) for grain and coleoptile upregulate flavonoid biosynthesis genes in wheat. - Genome 48: 747-754, 2005. Go to original source...
- Jez, J.M., Bowman, M.E., Dixon, R.A., Noel, J.P.: Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase. - Natur. Struct. Biol. 7: 786-791, 2000.
- Khlestkina, E.K.: The adaptive role of flavonoids: emphasis on cereals. - Cereal Res. Commun. 41: 185-198, 2013. Go to original source...
- Khlestkina, E.K., Salina, E.A.: Genome-specific markers of tetraploid wheats and their putative diploid progenitor species. - Plant Breed. 120: 227-232, 2001. Go to original source...
- Khlestkina, E.K., Röder, M.S., Salina, E.A.: Relationship between homoeologous regulatory and structural genes in allopolyploid genome - a case study in bread wheat. - BMC Plant Biol. 8: 88, 2008. Go to original source...
- Khlestkina, E.K., Shoeva, O.Y.: Intron loss in the chalconeflavanone isomerase gene of rye. - Mol. Breed. 33: 953-959, 2014. Go to original source...
- Khlestkina, E.K., Tereshchenko, O.Y., Salina, E.A.: Anthocyanin biosynthesis genes location and expression in wheat-rye hybrids. - Mol. Genet. Genomics 282: 475-485, 2009. Go to original source...
- Khlestkina, E.K., Tereshchenko, O.Yu., Salina, E.A.: Flavonoid biosynthesis genes in wheat and wheat-alien hybrids: studies into gene regulation in plants with complex genomes. - In: Mothersill, C.E., Korogodina, V., Seymour, C.B. (ed.): Radiobiology and Environmental Security. Pp. 31-41. Springer, Dordrecht 2012. Go to original source...
- Kilian, B., Özkan, H., Deusch, O., Effgen, S., Brandolini, A., Kohl, J., Martin, W., Salamini, F.: Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes. - Mol. Biol. Evol. 24: 217-227, 2007. Go to original source...
- Kimber, G.: A reassessment of the origin of the polyploid wheats. - Genetics 78: 487-492, 1974.
- Kosambi, D.D.: The estimation of map distances from recombination values. - Ann. Eugenet. 12: 172-175, 1944.
- Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M.J., Lincoln, S.E., Newburg, I.: MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. - Genomics 1: 174-181, 1987. Go to original source...
- Leonova, I.N., Röder, M.S., Budashkina, E.B., Kalinina, N.P., Salina, E.A.: Molecular analysis of leaf rust resistant introgression lines obtained by crossing of hexaploid wheat Triticum aestivum with tetraploid wheat Triticum timopheevii. - Russ. J. Genet. 38: 1397-1403, 2002. Go to original source...
- Li, W.L., Faris, J.D., Chittoor, J.M., Leach, J.E., Hulbert, S., Liu, D.J., Chen, P.D., Gill, B.S.: Genomic mapping of defense response genes in wheat. - Theor. appl. Genet. 98: 226-233, 1999. Go to original source...
- McIntosh, R.A., Yamazaki, Y., Dubcovsky, J., Rogers, J., Morris, C., Appels, R., Xia, X.C. (ed.): Catalogue of Gene Symbols for Wheat. - IWGS, Yokohama 2013.
- Mori, N., Liu, Y.-G., Tsunewaki, K.: Wheat phylogeny determined by RFLP analysis of nuclear DNA. 2. Wild tetraploid wheats. - Theor. appl. Genet. 90: 129-134, 1995. Go to original source...
- Nei, M., Gojobori, T.: Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. - Mol. Biol. Evol. 3: 418-426, 1986.
- Plaschke, J., Ganal, M.W., Röder, M.S.: Detection of genetic diversity in closely related bread wheat using microsatellite markers. - Theor. appl. Genet. 91: 1001-1007, 1995. Go to original source...
- Schneider, A., Molnar, I., Molnar-Lang, M.: Utilization of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. - Euphytica 163: 1-19, 2008. Go to original source...
- Shoeva, O.Y., Khlestkina, E.K., Berges, H., Salina, E.A.: The homoeologous genes encoding chalcone-flavanone isomerase in Triticum aestivum L.: structural characterization and expression in different parts of wheat plant. - Gene 538: 334-341, 2014. Go to original source...
- Solovyev, V.V.: Statistical approaches in eukaryotic gene prediction. - In: Balding, D., Cannings, C., Bishop, M. (ed.): Handbook of Statistical Genetics. 3rd Ed. Pp. 97-159. Wiley-Interscience, New York 2007. Go to original source...
- Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S.: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. - Mol. Biol. Evol. 28: 2731-2739, 2011. Go to original source...
- Timonova, E.M., Leonova, I.N., Röder, M.S., Salina, E.: Marker-assisted development and characterization of a set of Triticum aestivum lines carrying different introgressions from the T. timopheevii genome. - Mol. Breed. 31: 123-136, 2013. Go to original source...