Biologia plantarum 57:758-763, 2013 | DOI: 10.1007/s10535-013-0336-y

Effect of chromium and nitrogen form on photosynthesis and anti-oxidative system in barley

S. Ali1,2, M. A. Farooq2, M. M. Jahangir3, F. Abbas2, S. A. Bharwana2, G. P. Zhang1,*
1 Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P.R. China
2 Department of Environmental Sciences, Government College University, Faisalabad, Pakistan
3 Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan

The effect of nitrogen forms on photosynthesis and anti-oxidative systems of barley plants under chromium stress was studied in a hydroponic experiment. The treatments comprised three chromium concentrations (0, 75, and 100 μM) and three N forms (NH4)2SO4, urea, and Ca(NO3)2. In comparison with the urea or (NH4)2SO4 fed plants, the Ca(NO3)2 fed plants had higher net photosynthetic rate, intercellular CO2 concentration, stomatal conductance, transpiration rate, photosynthetically active radiation utilization efficiency, variable to maximum chlorophyll fluorescence ratio, and the content of chlorophylls and carotenoids. Cr toxicity caused oxidative stress in all plants but the Ca(NO3)2 fed plants had the least oxidative stress. Moreover, the Ca(NO3)2 fed plants had higher activities of anti-oxidative enzymes and content of non-enzymatic antioxidants than the urea or (NH4)2SO4 fed plants. In addition, the Ca(NO3)2 fed plants had higher N and lower Cr content in all plant tissues than the urea or (NH4)2SO4 fed plants. The current results indicate that the reasonable choice of N fertilizer is important for barley production on the Cr-contaminated soils.

Keywords: carotenoids; chlorophylls; Hordeum vulgare; oxidative stress; photosynthetic rate; transpiration rate
Subjects: chromium; nitrogen; antioxidants; chlorophyll; carotenoids; net photosynthetic rate; stomatal conductance; transpiration rate; chlorophyll fluorescence; malondialdehyde; hydrogen peroxide; glutathione; ascorbate; ascorbate peroxidase; glutathione reductase; superoxide dismutase; peroxidase; barley

Received: August 31, 2012; Accepted: March 8, 2013; Published: December 1, 2013Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Ali, S., Farooq, M.A., Jahangir, M.M., Abbas, F., Bharwana, S.A., & Zhang, G.P. (2013). Effect of chromium and nitrogen form on photosynthesis and anti-oxidative system in barley. Biologia plantarum57(4), 758-763. doi: 10.1007/s10535-013-0336-y.
Download citation

References

  1. Aebi, H.: Catalase in vitro. - Methods. Enzymol. 105: 121-126, 1984. Go to original source...
  2. Ali, S., Bai, P., Zeng, F., Cai, S., Qiu, B., Wu, F., Zhang, G.P.: Ecotoxicological and interactive effects of chromium and aluminum on growth, oxidative damage and antioxidant enzymes of the two barley cultivars differing in Al tolerance. - Environ. exp. Bot. 70: 185-191, 2011a. Go to original source...
  3. Ali, S., Zeng, F., Cai S., Qiu B., Zhang, G.: The interaction of salinity and chromium in the influence of barley growth and oxidative stress. - Plant Soil Environ. 57: 153-159, 2011b. Go to original source...
  4. Ali, S., Zeng, F., Qiu, L., Zhang, G.P.: The effect of chromium and aluminum on growth, root morphology, photosynthetic parameters and transpiration of the two barley cultivars differing in Al tolerance. - Biol Plant. 55: 291-296, 2011c. Go to original source...
  5. Alia, K.V., Prasad, S.K., Pardha, S.P.: Effect of zinc on free radical and proline in Brassica juncea and Cajanus cajan. - Phytochemistry 39: 45-47 1995. Go to original source...
  6. Beauchamp, C., Fridovich, I.: Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. - Anal. Biochem. 44: 276-287, 1971. Go to original source...
  7. Berta, L., Silvia, F., Pedro, M.A.T., Carmen, L.: Role of glutamate dehydrogenase and phosphoenolpyruvate carboxylase activity in ammonium nutrition tolerance in roots. - Plant Physiol. Biochem. 40: 969-976, 2002.
  8. Britto, D.T., Kronzucker, H.J.: NH4 + toxicity in higher plants: a critical review. - J. Plant Physiol. 159: 567-584, 2002. Go to original source...
  9. Dionisio-Sese, M.L., Tobita, S.: Antioxidant responses of rice seedlings to salinity stress. - Plant Sci. 135: 1-9, 1998 Go to original source...
  10. Ellman, G.L.: Tissue sulfhydryl groups. - Arch. Biochem. Biophys. 82: 70-77, 1959. Go to original source...
  11. Elstner, E.F., Heupel, A.: Inhibition of nitrite formation from hydroxyl ammonium chloride: a simple assay for superoxide dismutase. - Anal. Biochem. 70: 616-620, 1976. Go to original source...
  12. Fleming, A.L.: Ammonium uptake by wheat varieties differing in Al tolerance. - Agron. J. 75: 726-730, 1983. Go to original source...
  13. Gallego, S., Benavides, M., Tomaro, M.: Involvement of an antioxidant defence system in the adaptive response to heavy metal ions in Helianthus annuus L. cells. - Plant Growth. Regul. 36: 267-273, 2002. Go to original source...
  14. Garcia-Limones, C., Hervas, A., Navas-Cortes, J.A., Jimenez-Diaz, R.M., Tena, M.: Induction of an antioxidant enzyme system and other oxidative stress markers associated with compatible and incompatible interactions between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp. ciceris. - Physiol. mol. Plant Pathol. 61: 325-337, 2002. Go to original source...
  15. Hassan, M.J., Shao, G., Zhang, G.: Influence of cadmium toxicity on antioxidant enzymes activity in rice cultivars with different grain Cd accumulation. - J. Plant Nutr. 28: 1259-1270, 2005. Go to original source...
  16. Jana, S., Choudhuri, M.A.: Glycolate metabolism of three submerged aquatic angiosperms during aging. - Aquat. Bot. 12: 345-354, 1981. Go to original source...
  17. Law, M.Y., Charles, S.A., Halliwell, B.: Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. - Biochem. J. 210: 899-903, 1983. Go to original source...
  18. Malmir, A.H.: Comparison of antioxidant enzyme activities in leaves stems and roots of sorghum (Sorghum bicolor L.) exposed to chromium (VI). - Afr. J. Plant Sci. 5: 436-444, 2011.
  19. Monsant, A.C., Wang, Y., Tang, C.: Nitrate nutrition enhances zinc hyperaccumulation in Noccaea caerulescens (Prayon). - Plant Soil 336: 391-404, 2010. Go to original source...
  20. Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. - Plant Cell. Physiol. 22: 867-880, 1981.
  21. Panda, S.K., Chaudhury, I., Khan, M.H.: Heavy metals induce lipid peroxidation and affects antioxidants in wheat leaves. - Biol. Plant. 46: 289-294, 2003. Go to original source...
  22. Pandey, V., Dixit, V., Shyam, R.: Antioxidative responses in relation to growth of mustard (Brassica juncea cv. Pusa Jaikisan) plants exposed to hexavalent chromium. - Chemosphere 61: 40-47, 2005. Go to original source...
  23. Putter, J.: Peroxidases. - In: Bergmeyer, H.U. (ed.): Methods of Enzymatic Analysis: II. Pp. 685-690. Academic Press, New York 1974. Go to original source...
  24. Raven, J.A., Wollenweber, B., Handley, L.H.: A comparison of ammonium and nitrate as nitrogen sources for photolithotrophs. - New Phytol. 121: 19-32, 1992. Go to original source...
  25. Schier, G.A., McQuattie, C.J.: Effect of nitrogen source on aluminum toxicity in nonmycorrhizal and ectomycorrhizal pitch pine seedling. - J. Plant Nutr. 22: 951-965, 1999. Go to original source...
  26. Shanker, A. K., Cervantes, C., Loza-Tavera, H.S.: Chromium toxicity in plants. - Environ. Int. 1: 739-753, 2005. Go to original source...
  27. Van, A.F., Clijsters, H.: Inhibition of photosynthesis by heavy metals. - Photosynth. Res. 7: 31-40, 1985.
  28. Wu, F.B., Zhang, G.P., Dominy, P.: Four barley genotypes respond differently to cadmium: lipid peroxidation and activities of antioxidant capacity. - Environ. exp. Bot. 50: 67-77, 2003. Go to original source...
  29. Zhao, X.Q., Shen, R.F., Sun, Q.B.: Ammonium under solution culture alleviates aluminum toxicity in rice and reduces aluminum accumulation in roots compared with nitrate. - Plant Soil 315: 107-121, 2009. Go to original source...