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Abstract

We propose a new concept of (S)–convergence applicable to numerical methods as well
as other consistent approximations of the Euler system in gas dynamics. (S)–convergence,
based on averaging in the spirit of Strong Law of Large Numbers, reflects the asymptotic
properties of a given approximate sequence better than the standard description via Young
measures. Similarity with the tools of ergodic theory is discussed.
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1 Introduction

As illustrated by numerous recent results, the Euler system describing the motion of an invis-
cid fluid in the framework of continuum mechanics is (mathematically) ill–posed. This rather
pessimistic conclusion applies to models of both incompressible and compressible fluids, see Bres-
san, Murray [3], Buckmaster, Vicol [4], Chiodaroli [5], DeLellis, Székelyhidi [7], Wiedemann [22],
among many others. Accordingly, solutions of the Euler system should be perceived as limits of
physically grounded and mathematically well posed approximations, among which various types
of zero dissipation limits. A prominent example are approximations by numerical schemes, where
the numerical viscosity mimics the physical viscosity present in real fluids.

∗The work of E.F. was partially supported by the Czech Sciences Foundation (GAČR), Grant Agreement
18–05974S. The Institute of Mathematics of the Academy of Sciences of the Czech Republic is supported by
RVO:67985840.
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To study the properties of approximate solutions, we introduce the concept of consistent ap-
proximation borrowed from numerics, where the underlying equations are satisfied modulo small
consistency errors vanishing in the asymptotic limit. We focus on the case where the approximate
solutions are only bounded, meaning they may exhibit oscillations (called wiggles in numerics)
and/or concentrations. In view of the results shown in [2], [11], oscillations and/or concentration
appear if, simultaneously,

• the limit Euler system does not admit a regular solution – a consequence of the general
weak–strong uniqueness principle stated e.g. in Gwiazda et al. [17];

• all accumulation points of the approximate sequence are not smooth, see [2];

• accumulation points of the approximate sequence are not (weak) solutions of the limit system
as otherwise the convergence would be strong, see [11].

Anticipating the above scenario we recall the work of DiPerna and Majda [8], [9] on measure–valued
solutions, where suitable solutions of the Euler system are identified with the Young measure
generated by an approximating sequence. More recently, there has been a series of attempts to
compute and visualize the measure–valued solutions to the Euler system, see Fjordholm et al. [15],
[16] or [14].

The main aim of the present paper is to propose a different strategy based on statistical
averaging, inspired by the concept of K–convergence, cf. Balder [1], Komlós [18]. To illuminate
the main idea, consider a simple sequence of functions:

Un = 1 if n is odd, Un = 0 if n is even.

Of course, more sophisticated and physically relevant examples can be produced. Consider the
asymptotic limit of {Un}∞n=1 for n → ∞. A naive but natural solution would be that the “limit”
is a convex combination of Dirac masses, specifically,

Un →
1

2
δ1 +

1

2
δ0, (1.1)

where δX denotes the Dirac mass at X. However, the standard approach based on the theory of
Young measures provides a different conclusion: Unk → 1 for a suitable subsequence (nk odd), or
Unl → 0 for another suitable subsequence (nl even). Choosing a “suitable” subsequence we get
either

Unk → 1 as k →∞,

or
Unl → 0 as l→∞.

Intuitively, the limit (1.1) reflects better the asymptotic properties of {Un}∞n=1, however, it is never
seen if the standard Young measure based theory is applied. The goal of this paper is to introduce
the concept of statistical limit that will identify (1.1) as the only eligible option.
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We claim that convergence “up to a subsequence”, that may be useful in theoretical studies, is of
no practical use in numerical experiments, where unconditional convergence is implicitly assumed.
What is more, the weak convergence, meaning convergence in the sense of integral averages, is
difficult to visualize as well. The same applies to Young measures that are necessarily objects
resulting from a weak limit.

Our goal is to introduce a concept of statistical (S)–convergence of approximate solutions,
where the limit is identified with a parametrized measure representing a generalized solution of
the target problem. The convergence is strong (a.a) with respect to the physical space and in the
Wasserstein metric on the space of probability measures. In particular, all observable quantities
like the barycenter, deviation, variance as well as higher order moments of the limit measure can
be identified as limits of strongly converging sequences. Moreover, (S)–convergence is robust with
respect to statistical perturbations of the approximate sequence.

A sufficient but definitely not necessary condition for a sequence to be (S)–convergent is its
asymptotic stationarity. This means, very roughly indeed, that statistical distribution of observ-
able quantities features certain ergodicity. In particular, for strongly (S)–convergent sequences of
measurable functions {Un}∞n=1, the limit of ergodic averages

1

wN

N∑
n=1

w
( n
N

)
b(Un)→ b(U) in L1 as N →∞, wN ≡

N∑
n=1

w
( n
N

)
,

exists for any bounded continuous function b and any weight function w ∈ C1[0, 1], w ≥ 0,∫ 1

0
w(z) dz = 1. The mapping V : b 7→ b(U) can be identified with a (parametrized) measure – the

(S)–limit of {Un}∞n=1.
Our working plan is as follows:

• In Section 2, we introduce the concept of (S)–convergence and discuss its basic properties.

• In Section 3 we show that (S)–convergence is stable with respect to statistical pertur-
bations.

• Furthermore, we discuss several examples of (S)–converging sequences, in particular pertur-
bations of stationary approximations in Section 4. We also establish several sufficient
conditions for a sequence to be (S)–convergent in terms of asymptotic stationarity.

• Finally, in Section 5, we apply the abstract theory to approximate sequences of the isen-
tropic Euler system.

2 Statistical limit, (S)–convergence

Let Q ⊂ RM denote the physical space. In the context of fluid mechanics, we usually consider

Q =
{

(t, x)
∣∣∣ t ∈ (0, T ), x ∈ Ω

}
,
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where t denotes the time, and x ∈ Ω ⊂ Rd, d = 1, 2, 3, is the space coordinate confined to a
physical domain Ω occupied by the fluid. The state of the system will be denoted by U = U(t, x).
For the Euler system, the vector U contains the basic state variables, for instance U = [%,m, S],
where % is the mass density, m is the momentum, and S is the total entropy. Accordingly, {Un}∞n=1

denotes a sequence of approximate solutions.
We introduce the basic concept of (S)–convergence inspired by the theory of stationary stochas-

tic processes, see e.g. Krylov [20, Chapter 4], and the approach developed by Das and Yorke [6].

Definition 2.1 ((S)–convergence). Let Un : Q → RD, n = 1, 2, . . . be a sequence of measurable
functions.
(i) We say that {Un}∞n=1 is weakly (S)–convergent if for any b ∈ Cc(RD) there holds:

• Weak correlation limit

lim
N→∞

1

N

N∑
n=1

∫
Q

b(Un)b(Um) dy exists (2.1)

for any fixed m;

• Weak correlation disintegration

lim
N→∞

N∑
n,m=1

1

N2

∫
Q

b(Un)b(Um) dy = lim
M→∞

1

M

M∑
m=1

[
lim
N→∞

1

N

N∑
n=1

∫
Q

b(Un)b(Um) dy

]
. (2.2)

(ii) We say that {Un}∞n=1 is strongly (S)–convergent if for any b ∈ Cc(RD) and any

w ∈ W =

{
w ∈ C1[0, 1]

∣∣∣ w ≥ 0,

∫ 1

0

w(z) dz = 1

}
there holds:

• Strong correlation limit

lim
N→∞

1

wN

N∑
n=1

∫
Q

w
( n
N

)
b(Un)b(Um) dy, wN ≡

N∑
n=1

w
( n
N

)
, exists (2.3)

for any fixed m and is independent of w;

• Strong correlation disintegration

lim
N→∞

N∑
n,m=1

1

w2
N

w
( n
N

)
w
(m
N

)∫
Q

b(Un)b(Um) dy

= lim
M→∞

1

wM

M∑
m=1

w
(m
M

)[
lim
N→∞

1

wN

N∑
n=1

w
( n
N

)∫
Q

b(Un)b(Um) dy

] (2.4)

for any w ∈ W .
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Obviously strong ⇒ weak as the choice w ≡ 1 yields the desired conclusion. Conditions (2.1),
(2.2) are rather mild, and, as we shall see below, allow for a large class approximate sequences
that comply with a generalized form of Strong Law of Large Numbers:

lim
N→∞

1

N

N∑
n=1

b(Un) exists for any b ∈ Cc(RD),

see Theorem 2.4 below. Note that (2.1) and even (2.3) hold as soon as the sequence {Un}∞n=1

generates a Young measure, specifically,

b(Un)→ b(U) as n→∞ for any b ∈ Cc(RD),

The opposite implication in general fails. Indeed it is easy to construct a sequence of functions
(real numbers) that give rise to (infinitely many) different Young measures generated by different
subsequences for which (2.1), (2.2) or even (2.3), (2.4) still hold.

2.1 Limit of an (S)–convergent sequence

Our next goal is to associate a limit to an (S)–convergent sequence – a parametrized measure

V ∈ L∞weak−(∗)(Q;M+(RD))

that can be seen as an analogue of the Young measure for weakly converging sequences. To this
end, a few preliminary observations are needed.

Lemma 2.2. Let b ∈ Cc(RD) and w ∈ W be given.
The following is equivalent:

• the correlation limit (2.3) exists for any m;

•
1

wN

N∑
n=1

w
( n
N

)
b(Un)→ b(U) weakly-(*) in L∞(Q) as N →∞. (2.5)

Moreover, if the correlation limit is independent of w, then so is the weak limit b(U).

Proof. Obviously (2.5) ⇒ (2.3) for any m; whence it is enough to show the opposite implication.
Write the Hilbert space L2(Q) as

L2(Q) = Y ⊕ Y ⊥,

where

Y ≡ span
{
b(Um)

∣∣∣ m = 1, 2, . . .
}L2(Q)
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Denote

BN ≡
1

wN

N∑
n=1

w
( n
N

)
b(Un).

Obviously BN ∈ Y , and, by virtue of (2.3),

lim
N→∞

∫
Q

BN φ dy exists for any φ ∈ Y.

On the other hand, ∫
Q

BN v dy = 0 whenever v ∈ Y ⊥.

Writing any u ∈ L2(Q) as u = φ⊕ φ⊥ we may infer that

BN → b(U) weakly in L2(Q) as N →∞.

As b(Un) are uniformly bounded, this yields (2.5).

The strong correlation limit postulated in (2.3) may seem difficult to check. It can be simplified
as stated in the following assertion.

Lemma 2.3. Let {Un}∞n=1 be a sequence of measurable functions, Un : Q→ RD. Let b ∈ Cc(RD)
be given.

Then the following is equivalent:

• the strong correlation limit (2.3) exists and is independent of w ∈ W ;

• the limit

1

β − α
lim
N→∞

1

N

∑
αN≤n≤βN

∫
Q

b(Un)b(Um) dy (2.6)

exists for any fixed m, any 0 ≤ α < β ≤ 1, and is independent of α, β.

Proof. Consider the function

BN(z, φ) =

∫
Q

b(Un)φ dy for z ∈
[
n− 1

N
,
n

N

)
, 1 ≤ n ≤ N, z ∈ [0, 1)

In accordance with Lemma 2.2, the existence of the strong correlation limit (2.5) can be equivalently
stated as ∫ 1

0

w(z)BN(z, φ) dz →
∫ 1

0

w(z)

∫
Q

b(U)φ dy dz for any φ ∈ L1(Q), w ∈ W.
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In other words

BN(z, φ)→
∫
Q

b(U)φ dy weakly-(*) in L∞(0, 1), (2.7)

where the hypothesis that the correlation limit is independent of w is reflected by the fact that the
weak limit

∫
Q
b(U)φ dy is independent of z. In fact, relation (2.7) is equivalent with (2.3) which

yields the desired conclusion.

We are ready to define a limit for an (S)–convergent sequence. Identifying

L∞weak−(∗)(Q;M(RD)) with the dual
[
L1(Q;C0(R

D))
]∗

we define

〈V ;ϕ b〉 =

∫
Q

ϕ b(U) dy for ϕ ∈ L1(Q), b ∈ Cc(RD),

where b(U) is the (unique) limit identified in (2.5). This defines a unique linear functional on
L1(Q;C0(R

D)) via standard density argument. Obviously, the limit measure is bounded non–
negative,

V ∈ L∞weak−(∗)(Q;M+(RD)).

The measure V will be termed (S)–limit of the sequence {Un}∞n=1, and we shall write

Un
(S)→ V . (2.8)

2.2 Equivalence with convergence of ergodic means

To give a more specific meaning to (2.8), we need the following result.

Theorem 2.4 (Equivalence principle).
(i) The following is equivalent:

• {Un}∞n=1 is weakly (S)–convergent;

•
1

N

N∑
n=1

b(Un)→ b(U) (strongly) in L1(Q) (2.9)

for any b ∈ Cc(RD).

(ii) The following is equivalent:

• {Un}∞n=1 is strongly (S)–convergent;
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•
1

wN

N∑
n=1

w
( n
N

)
b(Un)→ b(U) (strongly) in L1(Q) (2.10)

for any b ∈ Cc(RD), and any w ∈ W , where the limit is independent of w.

Proof. It is enough to show the equivalence for strongly (S)–convergent sequences. As (2.10) clearly
implies strong (S)–convergence, we focus on the opposite implication. By virtue of Lemma 2.2, we
have

BN ≡
1

wN

N∑
n=1

w
( n
N

)
b(Un)→ b(U) weakly-(*) in L∞(Q),

where the limit is independent of the weight function w. Accordingly, relation (2.10) can be
reformulated as ∫

Q

|BN |2 dy →
∫
Q

|b(U)|2dy as N →∞,

which is nothing other than (2.4).

Remark 2.5. As b is bounded and |Q| <∞, the convergence in (2.10) can be replaced by

1

wN

N∑
n=1

w
( n
N

)
b(Un)→ b(U) in Lq(Q)

for any 1 ≤ q <∞.

Going back, we may rewrite (2.8) in the form

Un
(S)→ V ⇔

∫
Q

∣∣∣∣∣dweak−(∗)
[

1

N

N∑
n=1

δUn(y);Vy

]∣∣∣∣∣ dy → 0 as N →∞, (2.11)

where δ is the Dirac mass, and dweak−(∗) denotes the metric on a bounded ball inM(RD) endowed
with the weak-(*) topology.

Here, the relation
(S)→ is considered for weakly (S)–convergent sequences. If, in addition, the

convergence is strong, we may identify the limit measure in (2.11) through∫
Q

∣∣∣∣∣dweak−(∗)
[

1

wn

N∑
n=1

w
( n
N

)
δUn(y);Vy

]∣∣∣∣∣ dy → 0 as N →∞ (2.12)

choosing arbitrary weight function w. As observed by Krengel [19], the rate of convergence for
(S)–converging sequences can be rather slow, which may be embarassing in numerical applications.
Das and Yorke [6] therefore proposed to introduce the weights w and obtained super convergence

8



for certain quasiperiodic sequences. The possibility of choosing suitable w can possibly improve
the rate of convergence of numerical approximations.

Although the analogy between V and the Young measure is obvious, we note that an (S)−convergent
sequence may not generate any Young measure. Still the following result holds:

Proposition 2.6. Let {Un}∞n=1 be uniformly integrable, meaning∫
Q

F (|Un|) dy
<∼ 1 uniformly for n→∞,

where F : [0,∞)→ [0,∞) is continuous, limr→∞ F (r) =∞.
Then there is a subsequence {Unk}∞k=1 that is weakly (S)–convergent and generates a Young

measure that coincides with its (S)–limit.

Proof. Using the celebrated Komlós theorem (see Komlós [18]), Balder [1] showed the existence
of a subsequence satisfying (2.9) for any b ∈ Cc(RD); whence the desired conclusion follows from
Lemma 2.4.

2.3 Convergence in Wasserstein distance

Up to now, we did not impose any further hypotheses concerning integrability of the generating
sequence. In applications, integrability is usually assumed to ensure finiteness of the first moments,
and, in particular, to identify the barycenter of the measure V .

Proposition 2.7. Let {Un}∞n=1 be a sequence of measurable functions satisfying∫
Q

|Un|p dy ≤ c uniformly for n = 1, 2, . . . , p ≥ 1.

Let

Un
(S)→ V .

Then

• Vy is a probability measure on RD for a.a. y ∈ Q, with finite moments of order p.

• If p > 1, then ∫
Q

∣∣∣∣∣dWs

[
1

N

N∑
n=1

δUn(y);Vy

]∣∣∣∣∣
s

dy → 0 as N →∞,

where dWs denotes the Wasserstein distance of s−th order.

In particular, the barycenters converge,

1

N

N∑
n=1

Un →
〈
V ; Ũ

〉
≡ U as N →∞,

in Ls(Q), 1 ≤ s < q.
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Proof. The proof is quite standard and can be done in the same way as for the Young measures,
see e.g. [13].

Remark 2.8. If the sequence {Un}∞n=1 in Proposition 2.7 is strongly (S)–convergent, then

1

N

N∑
n=1

may be replaced by
1

wN

N∑
n=1

w
( n
N

)
for any weight w ∈ W .

As a matter of fact, the measure V is a probability measure under very mild assumption of
uniform integrability stated in Proposition 2.6. If s = 1, the celebrated Komlós theorem (see [18])
yields a subsequence {Unk}∞k=1 such that

1

N

N∑
k=1

Unk → UK a.a. in Q.

Moreover, the theory of Balder [1] asserts that this subsequence can be chosen in such a way that

Unk

(S)→ VK as k →∞,

where VK is the Young measure generated by {Unk}∞k=1, cf. Proposition 2.6. Note, however, that
there may be different subsequences generating different limits; whence, in general

UK 6= U, VK 6= V .

To conclude, let us point out, that the strength of the concept of (S)–convergence lies in the
fact there is no need for subsequence, which is particularly relevant in numerical applications.
Moreover, statistical deviations are eliminated and a large class of approximate sequences can be
accommodated as we shall show in the next section.

3 Robustness with respect to statistical perturbations

We start by introducing the concept of statistically equivalent sequences, see e.g. León–Saavedra
et al. [21].

Definition 3.1 (Statistical equivalence). We say that two sequences {Un}∞n=1, {Vn}∞n=1 of mea-
surable functions are statistically equivalent,

{Un}∞n=1

(S)
≈ {Vn}∞n=1,

if for any ε > 0,

#
{
k ≤ N

∣∣∣ ∫Q |Un −Vn| dy > ε
}

N
→ 0 as N →∞. (3.1)
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Next we show that statistical perturbation do not influence the (S)–convergence.

Theorem 3.2 (Statistical perturbation). Suppose that

{Un}n=1

(S)
≈ {Vn}∞n=1,

and that

Un
(S)→ V .

Then

Vn
(S)→ V .

Proof. In view of Lemma 2.4, we have to show that

1

N

N∑
n=1

b(Vn) = b(V) = b(U) =
1

N

N∑
n=1

b(Un) for any b ∈ Cc(RD). (3.2)

Suppose b ∈ Cc(RD) is Lipschitz. Choose ε > 0 and define the set

r(ε) =
{
n positive integer

∣∣∣ ‖Vn −Un‖L1(Q) ≤ ε
}
.

Now, compute

1

N

N∑
n=1

b(Vn) =
1

N

∑
n≤N,n∈r(ε)

b(Vn) +
1

N

∑
n≤N,n/∈r(ε)

b(Vn),

where, in view of (3.1),

1

N

∑
n≤N,n/∈r(ε)

b(Vn)→ 0 in L∞(Q) as N →∞

as b is bounded.
Next,

1

N

∑
n≤N,n∈r(ε)

b(Vn) =
1

N

∑
n≤N,n∈r(ε)

b(Un) +
1

N

∑
n≤N,n∈r(ε)

[
b(Vn)− b(Un)

]
,

where, by the same token as above,

lim
N→∞

1

N

∑
n≤N,n∈r(ε)

b(Un) = lim
N→∞

1

N

N∑
n=1

b(Un) = b(U) in L1(Q).
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Finally, as b is Lipschitz,∥∥∥∥∥∥ 1

N

∑
n≤N,n∈r(ε)

[
b(Vn)− b(Un)

]∥∥∥∥∥∥
L1(Q)

≤ 1

N

∑
n≤N,n∈r(ε)

‖b(Vn)− b(Un)‖L1(Q)

<∼ ε.

As ε > 0 was arbitrary, this shows (3.2) for any Lipschitz b. The rest follows by standard density
argument.

Remark 3.3. Theorem 3.2 refers to weakly (S)–convergent sequences. However, the same argu-
ment can be used to show that if

{Un}n=1

(S)
≈ {Vn}∞n=1,

then
{Un}n=1 strongly (S)–convergent ⇔ {Vn}∞n=1 strongly (S)–convergent.

We immediately get that (S)–convergence accommodates strong convergence as the case may
be.

Corollary 3.4 (Strongly convergent perturbation).

• Suppose that
Un → U in L1(Q).

Then

{Un}∞n=1 is strongly (S)–convergent, and Un
(S)→ δU.

• Suppose that {Un}∞n=1 is weakly/strongly (S)–convergent, and

Vn → 0 in L1(Q).

Then {Un+Vn}∞n=1 is weakly/strongly (S)–convergent, and (S)–converge to the same measure
V.

4 Asymptotically stationary approximations

There is an important class of (S)–convergent sequences called stationary in stochastic terminology.

Definition 4.1 (Stationary sequence). A sequence {Un}∞n=1, Un : Q 7→ RD, is called stationary
if ∫

Q

B(Uk1 , . . . ,Ukj) dy =

∫
Q

B(Uk1+n, . . . ,Ukj+n) dy (4.1)

for any B ∈ Cc(RjD), any 1 ≤ k1 ≤ k2 · · · ≤ kj, j ≥ 1, n ≥ 0.
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It follows from the celebrated Birkhoff–Khinchin ergodic theorem [20, Chapter 4, Section 6,
Theorem 11] that any stationary sequence admits the limit

1

N

N∑
n=1

b(Un)(y)→ b(U)(y) for a.a. y ∈ Q

for any bounded Borel function b : RD → R. In particular, we get (2.9); whence any stationary se-
quence and all its statistical perturbations in the sense of Definition 3.1 are weakly (S)–convergent.

4.1 Weak asymptotic stationarity

In practice, we do not expect the approximate sequences to be stationary, however, some kind of
asymptotic stationarity can be anticipated.

Definition 4.2 (Weak asymptotic stationarity). A sequence {Un}∞n=1, Un : Q 7→ RD, is called
weakly asymptotically stationary if the following holds for any b ∈ Cc(RD):

• Correlation limit

lim
N→∞

1

N

N∑
n=1

∫
Q

b(Un)b(Um) dy exists (4.2)

for any fixed m;

• Asymptotic correlation stationarity∣∣∣∣∫
Q

[
b(Uk1)b(Uk2)− b(Uk1+n)b(Uk2+n)

]
dy

∣∣∣∣ ≤ ω(b, k) (4.3)

for any 1 ≤ k ≤ k1 ≤ k2, and any n ≥ 0, where

ω(b, k)→ 0 as k →∞.

Obviously, any stationary sequence is weakly asymptotically stationary. Definition 4.2 is rem-
iniscent of weak stationarity in the stochastic sense, where expectations, second moments, and
correlations are required to be stationary. Note however, that we require (4.3) to hold for any
b ∈ Cc(RD).

The next result shows that weakly asymptotically stationary sequences are weakly (S)–convergent.

Theorem 4.3. Let {Un}∞n=1 be a weakly asymptotically stationary sequence in the sense of Defi-
nition 4.2.

Then {Un}∞n=1 is weakly (S)–convergent, in particular,

1

N

N∑
n=1

b(Un)→ b(U) as N →∞ in L1(Q)

for any b ∈ Cc(RD).
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Proof. It is enough to show that {Un}∞n=1 enjoys the property (2.2). We know from Lemma 2.2
that

1

N

N∑
n=1

b(Un)→ b(U) as N →∞ weakly-(*) in L∞(Q); (4.4)

whence (2.2) reduces to showing

lim
N→∞

N∑
n,m=1

1

N2

∫
Q

b(Un)b(Um) dy =

∫
Q

|b(U)|2 dy. (4.5)

Fixing k > 0 we first observe that

lim
N→∞

N∑
n,m=1

1

N2

∫
Q

b(Un)b(Um) dy = lim
N→∞

N+k∑
n,m=k

1

N2

∫
Q

b(Un)b(Um) dy. (4.6)

Next, regrouping terms, we get

N+k∑
n,m=k

b(Un)b(Um) =
N∑
n=0

(
N∑
m=0

b(Uk+n)b(Uk+m)

)

=
N∑
n=0

b(Uk)
N∑
m=0

b(Uk+m) +
N∑
n=0

N∑
m=0

(
b(Uk+n)b(Uk+m)− b(Uk)b(Uk+m)

)
.

(4.7)

Furthermore,

N∑
m=0

b(Uk+n)b(Uk+m) =
∑
m≤n

b(Uk+n)b(Uk+m) +
N∑

m=n+1

b(Uk+n)b(Uk+m)

=
∑
m≤n

[
b(Uk+n)b(Uk+m)− b(Uk)b(Uk+n−m)

]
+

n∑
m=0

b(Uk)b(Uk+m)

+
N∑

m=n+1

[
b(Uk+n)b(Uk+m)− b(Uk)b(Uk+m−n)

]
+

N∑
m=n+1

b(Uk)b(Uk+m)

=
∑
m≤n

[
b(Uk+n)b(Uk+m)− b(Uk)b(Uk+n−m)

]
+

N∑
m=n+1

[
b(Uk+n)b(Uk+m)− b(Uk)b(Uk+m−n)

]
+

N∑
m=0

b(Uk)b(Uk+m).
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Going back to (4.7) we obtain

N+k∑
n,m=k

b(Un)b(Um) = (N + 1)b(Uk)
N∑
m=0

b(Uk+m)

+
N∑
n=0

∑
m≤n

[
b(Uk+n)b(Uk+m)− b(Uk)b(Uk+n−m)

]
+

N∑
n=0

N∑
m=n+1

[
b(Uk+n)b(Uk+m)− b(Uk)b(Uk+m−n)

]
(4.8)

As {Un}∞n=1 is asymptotically stationary, it follows from (4.3) that∣∣∣∣∫
Q

[
b(Uk+n)b(Uk+m)− b(Uk)b(Uk+n−m)

]
dy

∣∣∣∣ ≤ ω(k), n ≥ m ≥ 0∣∣∣∣∫
Q

[
b(Uk+n)b(Uk+m)− b(Uk)b(Uk+m−n)

]
dy

∣∣∣∣ ≤ ω(k) m ≥ n ≥ 0

Thus performing the limit in (4.6) we obtain∫
Q

b(Uk)b(U)dy − ω(k) ≤ lim inf
N→∞

N∑
n,m=1

1

N2

∫
Q

b(Un)b(Um) dy

≤ lim sup
N→∞

N∑
n,m=1

1

N2

∫
Q

b(Un)b(Um) dy ≤
∫
Q

b(Uk)b(U)dy + ω(k)

(4.9)

where we have used the weak convergence stated in (4.8).
Finally, summing (4.9) with respect to k, we get

1

M

M∑
k=1

∫
Q

b(Uk)b(U)dy − 1

M

M∑
k=1

ω(k) ≤ lim inf
N→∞

N∑
n,m=1

1

N2

∫
Q

b(Un)b(Um) dy

≤ lim sup
N→∞

N∑
n,m=1

1

N2

∫
Q

b(Un)b(Um) dy ≤ 1

M

M∑
k=1

∫
Q

b(Uk)b(U)dy +
1

M

M∑
k=1

ω(k)

Thus letting M →∞ and using (4.4) once more, we get (2.2).

Remark 4.4. As revealed in the proof of Proposition 4.3, the hypothesis (4.3) can be replaced by
a weaker stipulation:

lim sup
N→∞

1

N2

N∑
n,m=0

∣∣∣∣∫
Q

b(Uk+n)b(Uk+m)− b(Uk)b(Uk+|n−m|)dy

∣∣∣∣ ≤ ω(b, k), (4.10)

ω(b, k)→ 0 as k →∞.
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4.2 Strong asymptotic stationarity

Our final goal in this section is to show a sufficient condition for strong (S)–convergence.

Definition 4.5 (Strong asymptotic stationarity). A sequence {Un}∞n=1, Un : Q 7→ RD, is called
strongly asymptotically stationary if the following holds for any b ∈ Cc(RD):

• Strong correlation limit

lim
n→∞

∫
Q

b(Un)b(Um) dy exists (4.11)

for any fixed m;

• Asymptotic correlation stationarity∣∣∣∣∫
Q

[
b(Uk1)b(Uk2)− b(Uk1+n)b(Uk2+n)

]
dy

∣∣∣∣ ≤ ω(b, k) (4.12)

for any 1 ≤ k ≤ k1 ≤ k2, and any n ≥ 0, where

ω(b, k)→ 0 as k →∞.

We claim the following analogue of Theorem 4.3

Theorem 4.6. Let {Un}∞n=1 be strongly asymptotically stationary in the sense of Definition 4.5.
Then {Un}∞n=1 is strongly (S)–convergent, in particular,

1

wN

N∑
n=1

w
( n
N

)
b(Un)→ b(U) in L1(Q)

for any b ∈ Cc(RD), w ∈ W .

Proof. In view of Lemma 2.4, it is enough to show that {Un}∞n=1 satisfies (2.10). To begin, following
the arguments of the proof of Lemma 2.2 we observe that (4.11) implies

b(Un)→ b(U) weakly-(*) in L∞(Q), (4.13)

which yields

1

wN

N∑
n=1

w
( n
N

)
b(Un)→ b(U) as N →∞ weakly-(*) in L∞(Q). (4.14)

Consequently, it remains to show

lim
N→∞

N∑
n,m=1

1

w2
N

w
( n
N

)
w
(m
N

)∫
Q

b(Un)b(Um) dy =

∫
Q

|b(U)|2 dy. (4.15)
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First,

N∑
n,m=1

1

w2
N

w
( n
N

)
w
(m
N

)∫
Q

b(Un)b(Um) dy −
∫
Q

|b(U)|2 dy

=
N∑

n,m=1

1

w2
N

w
( n
N

)
w
(m
N

)∫
Q

[
b(Un)b(Um)− |b(U)|2

]
dy

= 2
k−1∑
n=1

N∑
m=1

1

w2
N

w
( n
N

)
w
(m
N

)∫
Q

[
b(Un)b(Um)− |b(U)|2

]
dy

+
N∑

n,m=k

1

w2
N

w
( n
N

)
w
(m
N

)∫
Q

[
b(Un)b(Um)− |b(U)|2

]
dy

(4.16)

Now observe that
wN
N

=
1

N

N∑
n=1

w
( n
N

)
→
∫ 1

0

w(z) dz = 1 as N →∞, (4.17)

and, consequently,

k−1∑
n=1

N∑
m=1

1

w2
N

w
( n
N

)
w
(m
N

)∫
Q

[
b(Un)b(Um)− |b(U)|2

]
dy → 0 as N →∞

for any fixed k.
Going back to (4.16), we write the last integral as

N∑
n,m=k

1

w2
N

w
( n
N

)
w
(m
N

)∫
Q

[
b(Un)b(Um)− |b(U)|2

]
dy

=
N∑

n,m=k,|n−m|<l

1

w2
N

w
( n
N

)
w
(m
N

)∫
Q

[
b(Un)b(Um)− |b(U)|2

]
dy

+
N∑

n,m=k,|n−m|≥l

1

w2
N

w
( n
N

)
w
(m
N

)∫
Q

[
b(Un)b(Um)− |b(U)|2

]
dy

Using (4.17) once more, we get∣∣∣∣∣∣
N∑

n,m=k,|n−m|<l

1

w2
N

w
( n
N

)
w
(m
N

)∫
Q

[
b(Un)b(Um)− |b(U)|2

]
dy

∣∣∣∣∣∣ <∼ lN

w2
N

→ 0 as N →∞

for any fixed l.
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Finally,

N∑
n,m=k,|n−m|≥l

1

w2
N

w
( n
N

)
w
(m
N

)∫
Q

[
b(Un)b(Um)− |b(U)|2

]
dy

= 2
N∑

n,m=k,m≥n+l

1

w2
N

w
( n
N

)
w
(m
N

)∫
Q

[
b(Un)b(Um)− |b(U)|2

]
dy

= 2
N∑

n,m=k,m−n≥l

1

w2
N

w
( n
N

)
w
(m
N

)∫
Q

[
b(Uk)b(Um−n+k)− |b(U)|2

]
dy

+ 2
N∑

n,m=k,m≥n+l

1

w2
N

w
( n
N

)
w
(m
N

)∫
Q

[
b(Un)b(Um)− b(Uk)b(Um−n+k)

]
dy

In view of hypothesis (4.12),∣∣∣∣∣
N∑

n,m=k,m≥n+l

1

w2
N

w
( n
N

)
w
(m
N

)∫
Q

[
b(Un)b(Um)− b(Uk)b(Um−n+k)

]
dy

∣∣∣∣∣ ≤ ε(b, k),

where ε(b, k) → 0 as k → ∞, uniformly for any l. Now, in view of (4.13), given k, we can fix
l = l(ε(b, k), k) such that∣∣∣∣∣

N∑
n,m=k,m−n≥l

1

w2
N

w
( n
N

)
w
(m
N

)∫
Q

[
b(Uk)b(Um−n+k)− |b(U)|2

]
dy

∣∣∣∣∣ < ε(b, k).

We strongly believe that asymptotic stationarity is satisfied by consistent approximations of
the Euler system. For relevant numerical evidence, see [13].

5 Applications, convergence of consistent approximations

for the compressible Euler system

Our ultimate goal is to apply the abstract theory to the isentropic Euler system:

∂t%+ divxm = 0, %(0, ·) = %0,

∂tm + divx

(
m⊗m

%

)
+∇xp(%) = 0, m(0, ·) = m0,

(5.1)

with the isentropic EOS p(%) = a%γ, γ > 1. Here % = %(t, x) is the mass density and m = m(t, x)
the linear momentum of a compressible gas in the isentropic regime. For the sake of simplicity, we

18



consider the periodic boundary conditions Ω = Td. We recall the associated energy inequality in
the integrated form ∫

Td
E(%,m)(t, ·) dx ≤

∫
Td
E(%0,m0) dx,

where

E(%,m) =


1
2
|m|2
%

+ P (%) if % > 0,

0 if % = 0, m = 0,
∞ otherwise

5.1 Dissipative solutions

We recall the definition of dissipative solution of the Euler system, see [2]:

• Equation of continuity

∂t%+ divxm = 0 in D′((0, T )× Td);

• Momentum equation

∂tm + divx

(
1%>0

m⊗m

%

)
+∇xp(%) + divxR = 0, in D′((0, T )× Td;Rd),

with the Reynolds stress R ∈ L∞(0, T ;M+(Td;Rd×d
sym));

• Energy balance∫
Td
E(%,m)(t, ·) dx+ min

{
1

2
;

1

γ

}∫
Td

dtr[R](t, ·) ≤
∫
Td
E(%0,m0) dx

for a.a. t ∈ (0, T ).

It follows that

% ∈ Cweak([0, T ];Lγ(Td)), m ∈ Cweak([0, T ];L
2γ
γ+1 (Td;Rd));

whence the initial data are well defined.
If R ≡ 0, the above definition yields the standard (admissible) weak solution. Note that

the Reynolds stress R is a positively definite matrix valued measure that accommodates possible
oscillations/concentration inherited from the approximation process. Although definitely more
general, the dissipative solutions share many important properties with the weak solutions, among
which the weak–strong uniqueness principle. The reader may consult [2] or [10] for other interesting
properties of dissipative solutions.
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5.2 Consistent approximation

The class of dissipative solutions is large enough to accommodate limits of various approximate
schemes that are consistent with the Euler system, cf. [11] for the vanishing viscosity limit, and
[12] for a finite volume numerical scheme.

Definition 5.1 (Consistent approximation). We say that a sequence {%n,mn}∞n=1 is consistent
approximation of the isentropic Euler system if the following holds:

• Approximate equation of continuity∫ T

0

∫
Td

[
%n∂tϕ+ mn · ∇xϕ

]
dx dt = −

∫
Td
%0,nϕ(0, ·) dx+ e1n[ϕ]

for any ϕ ∈ C∞c ([0, T )× Td);

• Approximate momentum equation∫ T

0

∫
Td

[
mn · ∂tϕ +

(
1%n>0

mn ⊗mn

%n

)
: ∇xϕ + p(%n)divxϕ + Rn : divxϕ

]
dx dt

= −
∫
Td

m0,n ·ϕ(0, ·) dx+ e2n[ϕ]

for any ϕ ∈ C∞c ([0, T )× Td;Rd);

• Approximate energy balance∫
Td
E(%n,mn)(t, ·) dx+ min

{
1

2
;

1

γ

}∫
Td

dtr[Rn](t, ·) ≤ En

• Consistency

e1n[ϕ]→ 0 as n→∞ for any ϕ ∈ C∞c ([0, T )× Td),
e2n[ϕ]→ 0 as n→∞ for any ϕ ∈ C∞c ([0, T )× Td;Rd),

%0,n → %0 weakly in L1(Q),

m0,n →m0 weakly in L1(Q;Rd),

lim sup
n→∞

En ≤
∫
Td
E(%0,m0) dx.

Note that the above definition differs from [11], [12] as it allows for “approximate Reynolds
stress” Rn that is set to be zero in [11], [12]. Accordingly, the present definition accommodates a
larger class of consistent approximations than [11], [12]. There are two crucial observations:
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1. Any weak limit of a sequence of consistent approximations {%n,mn}∞n=1 is a dissipative solu-
tion with the initial data (%0,m0). This follows from the general compactness results proved
in [2, Section 3, Proposition 3.1].

2. If {%n,mn}∞n=1 is a consistent approximation, then

%N =
1

N

N∑
n=1

%n, mN =
1

N

N∑
n=1

mn, N = 1, 2, . . .

is another consistent approximation (of the same problem, with the same data). This reflects
a general principle that a convex combination of dissipative solutions is a dissipative solution.
It remains to observe that the error terms satisfy

1

N

N∑
n=1

e1n[ϕ],
1

N

N∑
n=1

e2n[ϕ]→ 0 as N →∞.

Corollary 5.2 (Convergence of (S)–convergent consistent approximations). Suppose that a se-
quence {%n,mn}∞n=1 is a consistent approximations of the Euler system that is weakly (S)–convergent
in the sense of Definition 2.1.

Then

•

1

N

∞∑
n=1

%n → % in Lq((0, T )× Td), 1 ≤ q < γ,

1

N

∞∑
n=1

mn →m in Lq((0, T )× Td), 1 ≤ q <
2γ

γ + 1
,

where (%,m) is a dissipative solution of the Euler system;

• there exists a (unique) parametrized measure (Vt,x)(t,x)∈(0,T )×Td), Vt,x ∈ P(Rd+1), such that

(%n,mn)
(S)→ V ,

and ∫ T

0

∫
Td
dWs

[
1

N

N∑
n=1

δ%(t,x),m(t,x);Vt,x

]s
dx dt→ 0 for any 1 ≤ s <

2γ

γ + 1
;

• If, in addition, the sequence {%n,mn}∞n=1 is strongly (S)–convergent, the

1

N

N∑
n=1

may be replaced by
1

wN

N∑
n=1

w
( n
N

)
for arbitrary weight w ∈ W .
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The parametrized measure V can be seen as a generalized solution of the Euler system. It shares
all fundamental properties with the Young measures generated by (sub)sequences of consistent
approximations. In particular,

V(t,x) = δ[%,m](t,x) for a.a. (t, x) ∈ (0, T )× Td

if either the limit Euler system admits a smooth solution, or the barycenter of V – [%,m] – is of
class C1.

5.3 (S)–convergence to weak solutions

We know that weakly (S)–convergent approximate sequences to the isentropic Euler system gener-
ate the parametrized measure V . Our ultimate goal is to discuss validity of the following statement:

% = 〈V ; %̃〉 , m = 〈V ; m̃〉 is a weak solution to the Euler system

⇒ Vt,x = δ(%,m)(t,x) for a.a. (t, x) ∈ (0, T )× Td.
(5.2)

First observe that if (%,m) is a weak (distributional) solution of the Euler system, then the
Reynolds defect tensor satisfies

divxR = 0 in D′((0, T )× Td;Rd)

from which we easily deduce

divxR(t, ·) = 0 in D′(Td), R ∈M+(Td;Rd×d
sym) for a.a. t ∈ (0, T ). (5.3)

Moreover, the limit Reynolds stress can be written as

R = R1 + R2,

where

R1 = lim
k→∞

1

Nk

Nk∑
n=1

Rn –weak-(*) in L∞(0, T ;M(Td;Rd×d
sym)), R1(t, ·) ∈M+(Td;Rd×d

sym),

R2 = lim
k→∞

1

Nk

Nk∑
n=1

[(
1%n>0

(
mn ⊗mn

%n

)
+ p(%n)I

)
−
(

1%>0

(
m⊗m

%

)
+ p(%)I

)]
–weak-(*) in L∞(0, T ;M(Td;Rd×d

sym)),

where
R2(t, ·) ∈M+(Td;Rd×d

sym) for a.a t ∈ (0, T ).

Thanks to the convexity argument, specified in [11], implication (5.2) follows as soon as we can
show that R = 0 Moreover, as R is positively semi–definite and satisfies (5.3), it is enough to show
that R vanishes in a neighborhood of the boundary of Ω = Td, see [11, Section 4, Proposition 4.3].
As R1 usually vanishes for consistent approximation of the Euler system, we have to make sure
that R2 vanishes in a neighborhood of ∂Ω. Note that here we identify Td with a bounded subset
of Rd. Following step by step the arguments of [11, Section 4], we can show the following result.
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Theorem 5.3. Let {%n,mn}∞n=1 be a consistent approximation of the isentropic Euler system in
the sense of Definition 5.1, with Rn ≡ 0. Moreover, suppose that

(%n,mn)
(S)→ V ,

and

1

N

N∑
n=1

∫ T

0

∫
U
E(%n,mn) dx dt→

∫ T

0

∫
U
E(%,m) dx dt, % = 〈V ; %̃〉 , m = 〈V ; m̃〉 , (5.4)

where U is an open neighborhood of ∂Ω, Ω = Td. Finally, suppose that (%,m) is a weak solution
of the Euler system.

Then
V(t,x) = δ(%,m)(t,x) for a.a. (t, x) ∈ (0, T )× Td.

We finish this part by a short discussion when hypothesis (5.4) can be anticipated. Suppose
that

%0 = % > 0, m = m for |x| ≥ R.

Supposing the finite–speed of propagation for the Euler system, we may infer that

E(%,m) = E(%,m) for all t ∈ (0, T ), |x| ≤ R + ct.

Consistently, we assume that

E(%n,mn)→ E(%,m) in L1 {t ∈ (0, T ), |x| ≤ R + ct} (5.5)

In numerical approximations, (5.5) is usually guaranteed by imposing a (CFL) condition.
Finally, we claim that hypothesis (5.4) can be dropped in the case of complete Euler system,

provided the reference variables are the density %, the momentum m, and the total entropy S. The
interested reader may elaborate the details following [11, Section 2]. With a bit of extrapolation,
we may conclude that if the barycenter of the (S)–limit V is a weak solution of the Euler system,
then V is a (parametrized) Dirac mass.

6 Conclusion

The (S)–convergence provides a tool to study the limits of approximate sequences even in the case
when the weak limit does not exist. This is in particular convenient for numerical schemes, where
the procedure of picking up a suitable subsequence is practically not applicable. The notion is
stable under very general statistical perturbations that may “polute” the approximation procedure.
The limit measure V is attained in the strong topology of the underlying physical space and in the
space of probability measures endowed with suitable Wasserstein distance. In particular, deviation,
variance, barycenter and other parameters of the limit measure can be effectively computed.
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Given a sequence of consistent approximations, it is a hard problem to determine whether or
not it is (S)–convergent. Note that it is possible to construct examples of consistent approxi-
mations that are not (S)–convergent at least for certain class of initial data. Given a consistent
approximation resulting from the vanishing viscosity process or as a limit of a specific numerical
scheme, a rigorous verification of validity of any form (weak or strong) of (S)–convergence remains
an outstanding open problem.
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