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ABSTRACT. Our aim in this article is to contribute to the theory
of Lipschitz free p-spaces for 0 < p < 1 over the Euclidean spaces
R? and Z¢. To that end, on one hand we show that F,(R?) ad-
mits a Schauder basis for every p € (0, 1], thus generalizing the
corresponding result for the case p = 1 by Hajek and Pernecka
[19, Theorem 3.1] and answering in the positive a question that
was raised in [6]. Explicit formulas for the bases of both F,(R%)
and its isomorphic space F, ([0, 1]¢) are given. On the other hand
we show that the well-known fact that F(Z) is isomorphic to ¢;
does not extend to the case when p < 1, that is, F,(Z) is not
isomorphic to £, when 0 < p < 1.

1. INTRODUCTION AND BACKGROUND

Suppose 0 < p < 1. Given a pointed p-metric space M it is possible
to construct a unique p-Banach space F,(M) in such a way that M
embeds isometrically in F,(M) via a canonical map denoted d4, and
for every p-Banach space X and every Lipschitz map f: M — X
with Lipchitz constant Lip(f) that maps the base point 0 in M to
0 € X extends to a unique linear bounded map Ty: Fp(M) — X
with ||T%|| = Lip(f). The space F,(M) is known as the Lipschitz free
p-space over M. This class of p-Banach spaces provides a canonical
linearization process of Lipschitz maps between p-metric spaces: any
Lipschitz map f from a p-metric space M; to a p-metric space M
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which maps the base point in M to the base point in M extends to
a continuous linear map Ly: Fp(M;) = Fp(My) with ||Ly|| < Lip(f).

Lipschitz free p-spaces were introduced in [3], where they were used
to provide for every for 0 < p < 1 a couple of separable p-Banach
spaces which are Lipschitz-isomorphic without being linearly isomor-
phic. These spaces constitute a new family of p-Banach spaces which
are easy to define but whose geometry is difficult to grasp. This task
was undertaken by the authors in [5] and continued in the articles [6,7].

Within this subject, it is specially interesting and challenging to
understand the structure of Lipschitz free p-spaces over subsets of the
metric space R (or more generally over R? for d € N) endowed with
the Euclidean distance (see [5, Comments at the end of section §5]).
Although the papers [6,7] do not focus on this kind of Lipschitz free
p-spaces, they contain results that apply in particular to them. Let
us gather the most significant advances concerning the geometry of
Lipschitz free p-spaces over Euclidean spaces achieved in those papers.
Some of them are explicitly stated in the articles [6,7] (in which case we
provide the reference), while others are straightforward consequences
of more general results. In the list below we assume 0 < p < 1.

(A.1) For every d € N and every net N in RY F,(N) ~ F,(Z%)
([6, Proposition 3.6]).

(A.2) The space F,([0,1]) has a Schauder basis ([6, Theorem 5.7]).

(A.3) For every d € N, the space F,(Z?%) has a Schauder basis ([6,
Theorem 5.3)).

(Ad) Fo(RY) = ([0, 1) = Fy(RL) = Fy(SY) = (,(F,(RY) for
every d € N ([7, Theorem 4.15, Corollary 4.17 and Theo-
rem 4.21]).

(A.5) F,(Z%) ~ F,(N?) ~ (,(F,(Z%)) for every d € N ([7, Theorems
5.8 and 5.12]).

(A.6) The spaces F,(Z?) and F,(R?), despite being non-isomorphic,
have the same local structure ([7, Corollary 5.14]).

(A.7) For every d € N there is a constant C' = C(p, d) such that for
every M C N C R? the space F,(M) is C-complemented in
Fp(N) ([7, Corollary 5.3]).

(A.8) For every 0 < p < 1, every d € N and every M C R?, F,(M)
has the m-property ([7, Corollary 5.3]).

(A.9) For every M C R? infinite, there is N' C M such that F,(N) ~
¢, (|7, Theorem 3.2]).

Combining (A.7) with (A.4), and using Pelczyniski’s decomposition
method (see, e.g., [4, Theorem 2.2.3]), yields that F,(N) ~ F,(R%)

whenever the subset N of R? has non-empty interior. So, the research
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on Lipschitz free p-spaces over subsets of Euclidean spaces reduces to
the following two main topics (with non-empty intersection).

(Q.a) The study of the geometry of the spaces F,(R?).
(Q.b) To contrast the spaces JF,(N) for different subsets N' C R?
with empty interior.

As far as the topic (Q.a) is concerned, the main question suggested
by the previous work on the subject is whether (A.2) extends to higher
dimensions. Within the scale of approximation properties, the exis-
tence of a Schauder basis is the most demanding one. Thus, this ques-
tion also connects with (A.8), which states in particular that F,([0, 1]%)
has the m-property.

The approximation properties of Lipschitz free spaces (i.e., Lipschitz
free p-spaces for p = 1) has attracted a lot of attention from the special-
ists from the upsurge of interest in the theory back 2003. We refer the
reader to [8,10,11,13-17,22,25] for a non exhaustive list of papers con-
taining positive answers to this question within different frameworks.
In contrast, determining whether a given Lipschitz free space has a
Schauder basis has shown to be a somewhat elusive task. To the best
of our knowledge, the list of papers that achieve positive answers in
this direction reduces to [9,12,18,19].

As far as Lipschitz-free spaces over Euclidean spaces is concerned,
it is known that F(R?) has a Schauder basis (see [19, Theorem 3.1]).
One of the goals of this paper is to see whether analogous statements
hold for the more general case of Lipschitz-free p-spaces for p € (0, 1].
In this spirit, here we extend this result by proving that F,(R?) admits
a Schauder basis for every p € (0, 1], thus answering in the positive
6, Question 6.5]. Moreover, exact formulas for the basis of both F,(R?)
and its isomorphic space F,([0,1]?) are provided. Section 3 will be
devoted to take care of this (see Theorem 3.8 and Theorem 3.9).

As for the topic (Q.b), it is natural to initiate the study with uni-
formly separated subsets. Note that if M C R? is uniformly separated,
then it is contained in a net N'. Consequently, by (A.1), (A.9) and
(A.7), ¢, is complemented in F,(M) and F,(M) is complemented in
Fp(Z%). Hence, if F,(Z?) were isomorphic to ¢,, applying Pelczytiski’s
decomposition method would give ¢, ~ F,(M). So, our first task
should be to determine whether F,(Z%) is isomorphic to £, or not. It
is known ([24]) that, for d > 2, F(Z%) is not isomorphic to ¢;. Tak-
ing envelopes yields F,(Z%) # (¢, for any 0 < p < 1 and d > 2 (see
[5, Corollary 4.2]). On the other hand, it is known and easy to prove,
that F(Z) ~ ;. More generally, we have F(M) ~ ¢; whenever M is
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the closure of a zero-measure subset of R (see [9]). This result was ex-
tended to 0 < p < 1 by the authors replacing the Euclidean distance |- |
on R with its anti-snowflaking |-|/P. That is, we have F,(Z, |-|'/?) ~ ¢,
for every 0 < p < 1. A question that implicitly arose from [5] is whether
the same holds for the Euclidean distance, i.e., whether F,(Z) is iso-
morphic to ¢, or not for 0 < p < 1. Section 2 is devoted to providing
a negative answer to this problem.

1.1. Terminology. Through this article we use standard facts and
notation from quasi-Banach spaces and Lipschitz free p-spaces over
quasimetric spaces as can be found in [5]. Nonetheless, we will record
the notation that is most heavily used. A quasi-norm on a vector space
X over the real field R is a map || - ||: X — [0, 00) satisfying ||z|| > 0
unless © = 0, ||t x| = |t] |[|z]| for all t € R and all x € X, and

[z +yll < wllell +llyl), 2 ye X (1.1)

for some constant x > 1. The optimal constant such that (1.1) will be
called the modulus of concavity of X.
Let 0 < p < 1. If || - || fulfils the condition

e +yll” < [l +[lyl, = yeX,

we say that ||| is a p-norm. Any p-norm is a quasi-norm with modulus
of concavity at most 2'/P~1. A quasi-norm induces a Hausdorff vector
topology on X. If X is a complete topological vector space, we say
that (X, | - ||) is a quasi-Banach space. A p-Banach space will be a
quasi-Banach space equipped with a p-norm.

A quasi-Banach space X is said to have the bounded approximation
property (BAP for short) if there exists a net (Ty)aca consisting of
finite-rank linear operators with

sup ||T.|| < oo
acA

that converges to Idy uniformly on compact sets. If, moreover, each
operator T, is a projection we say that X has the w-property.

A Schauder basis of a quasi-Banach space X is a sequence (x,)3,
in X such that for every x € X there is a unique sequence (a,)%°

n=1

with = Y7 a, x,. Associated to the Schauder basis (x,)22, the

partial-sum projections P,,: X — X, m € N, given by

oo m
T = Zana:n — Ppn(x) = Zana:n,
n=1

n=1
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are uniformly bounded. Therefore, if a quasi-Banach space X has a
Schauder basis, then it has both the BAP and the m-property. Con-
versely, given a sequence (F,,)>_; of linear maps from X into X such
that sup,, ||Pnl < oo, U®_; P, (X) is dense in X, dim(P,,(X)) = m,
and P, o P, = Pyinfnm) for all n, m € N, there is a Schauder basis
whose associated projections are (P,,)%°_;. Namely, if for each n € N
we pick an arbitrary non-zero vector x, in the one-dimensional space
P,(X)NKer(P,-1), then (z,)92, is such a Schauder basis.

We say that a quasi-Banach space X is K-complemented in Y if there
are bounded linear maps S: X — Y and P: Y — X with Po S = Idy
and ||[S||||T]| < K. If, moreover, S o P = Idy, the spaces X and Y
are said to be K-isomorphic. In the case when S is the inclusion map,
that is, P is a projection onto X, we say that X is a K-complemented
subspace of Y. If the constant K is irrelevant, we simply drop it from
the notation. We can define similar notions replacing the quasi-Banach
spaces X and Y with metric, or quasi-metric, spaces M and N, and
replacing bounded linear maps with Lipschitz maps. In the “metric
case”, we will say that M is a Lipschitz retract of N” with constant K,
or that M and N are Lipschitz isomorphic with distortion at most K,
respectively.

A subset V of a metric space (M, d) is said to be uniformly separated
if

inf{d(z,y): x,y e N,x #y} > 0.
A net is a uniformly separated set N with sup ¢\ d(z,N') < oc.

We use the symbol N, to denote the set consisting of all non-negative
integers, i.e., N, = NU{0}. Given n € N we will put N,, =Z N[0, n].

2. THE p-BANACH SPACE F,(Z%) 1S NOT ISOMORPHIC TO {,

Once we conjecture that two quasi-Banach spaces are not isomorphic,
the best strategy for substantiating our guess is to come up with a
feature that tells apart them. We find this wished-for property within
the theory of locally complemented subspaces and .Z},-spaces developed
by Kalton in [20]. A subspace X of a quasi-Banach space Y is said to
be locally K-complemented in Y for some K > 0, if for every finite-
dimensional space V' C Y and every € > 0 there is P: V — X with

|P|| < K and ||P(z) —z|| <eljz|, z€eVNX.
If the constant K is irrelevant, we say that X is locally complemented
inY.
A quasi-Banach space X is a .Z},-space, 0 < p < oo, if it is isomor-
phic to a locally complemented subspace of L, () for some measure .
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This notion was introduced in [20] with the aim of developing an at-
tractive definition of a .Z),-space for 0 < p < 1 as it is not clear whether
L,(0 < p < 1) would satisfy the analogue of the classical Lindenstrass-
Pelczynski definition. For p = 1, the above definition is equivalent to
the classical one, while for 1 < p < oo the only exception to the equiv-
alence is that, with the definition used in this paper, Hilbert spaces
become .Z),-spaces.

Lemma 2.1. Let 0 < p < o0, let X be a quasi-Banach space and let
(Vi)aea be an increasing net consisting of finite-dimensional subspaces
of X with UyeaV, = X. Suppose that there is K € (0,00) such that
for every a € A and every € > 0 there is S: Vo = £, and T: £, - X
with

IS < K and |T(S(z)) — 2| <ellzll, =€ Va.
Then X is an Z,-space.

Proof. Let V' be a finite-dimensional subspace of X and let € > 0. Set

, £
Ep = IMin {]_, m} .
A standard argument yields & € A and J: V — V, with ||J(z) —
z|| < eo||z| for all z € V. By hypothesis, there are S: V,, — ¢, and
T: ¢, — X such that ||T]| ||S]| < K and || T(S(z)) — z|| < eol/z|| for all
z € V,. We have

||| = ||J —Idy + 1dy || < k(eo + 1) < 2k.
Hence ||T[|[[S o JI| < [T ISIH[J]| < 26K Itz €V,
1T(S(J(2))) — || < k(IT(S(J(2))) = J(@)]| + || (x) — =[])
< w(ol[J (@) + eoll])
< ko (26| ]| + [lz]]) = ell].
Appealing to [20, Theorem 6.1] finishes the proof. O

It is known that complemented subspaces inherit the property of
being .Z,-spaces (see [20, Proposition 3.3]). For the sake of clarity, we
state and prove the quantitative version of this result, which is the one
we will need.

Lemma 2.2. Let X be an Z,-space and let X € [1,00). There is
a constant K = K(X,\) such that for every quasi-Banach space Y
which is \-complemented in X, every finite-dimensional subspace V' of

Y, and every € > 0 there are bounded linear maps S:V — {, and
T: 4, — Y with ||S|||T|| < K and |To S —Idy|| <e.
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Proof. Let J: Y — X and P: X — Y be such that ||[J|||P] < A
and P o J = Idy. By [20, Theorem 6.1] there are S: J(V) — ¢, and
T: ¢, — X with ||S||||T|| < Ko and |T o S — Id;)|| < /A, where
Ky € [1,00) depends only on X. We have

[S o Jlv|[|[PoT| < S|P IT] < AKo
and

|[PoToSolJly—Idy||=||Po(ToS—1Idyy))oJ| <e. O

Given a quasi-Banach space X and 0 < ¢ < 1 the ¢g-Banach enve-
lope of X is a pair (X.,, Ex,), where X, is a ¢-Banach space and
Exq: X — X4 is a linear contraction, defined by the following uni-
versal property: for every bounded linear map T7: X — Y, where YV
is a g-Banach space, there is a unique linear map 7": X., — Y with
IT'|| < ||T)| and T'=T" 0 Ex,. If X and Y are quasi-Banach spaces
and T: X — Y is linear and bounded, there is a unique bounded lin-
ear map I q: Xcq —+ Ycq such that T, , 0 Ex, = Ey,0T. Moreover,
| Teqll < ||T||. For background on envelopes, see e.g. [1, §9].

Banach envelopes inherit BAP. For further reference, we record this
result.

Lemma 2.3. Let X be a quasi-Banach space with the BAP. Then X,
has the BAP for 0 < q < 1.

Given 0 < p < 1, a subset C of a vector space V is said to be
absolutely p-convez if for any x and y € C and any scalars A and p
with AP+ |p[? <1 we have Az + py € C. We will denote by co,(2)
the p-conver hull of Z C V, i.e., the smallest absolutely p-convex set
containing Z.

Lemma 2.4. Let Z be a g-Banach space and K C Z be relatively
compact. Then the absolutely q-convex hull co,(K) of K is relatively
compact.

Proof. Since the map (¢,x) +— tx is continuous and the unit sphere
of the scalar field is compact, we can suppose that tx € K whenever
x € K and [t| = 1. If suffices to prove that co,(K’) possesses a finite
e-net for every ¢ > 0. Let Aj be a finite (271/%)-net for K. Then

m m
Nl = {Zakxk: T GN(), Q. Z 0, ZCLZ S 1}
k=1 k=1

is a (271/9¢)-net for co,(K)
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Enumerate Ny = {y;: 1 < j < n}, and let s € N be such that
2nsup; [|y;]|? < e92°9. We will conclude the proof by showing that

{2_sibjyji bj S N*, ib? S 2$q}
j=1 j=1

is a (finite) (27%/9¢)-net for N;. Let x € N. There is (aj)j L in [O 0)
such that z = 27_1 a;y; and Z <1 Foreachj=1,...,n,let
b; € N, be such that b; < 2°a; < b + 1. Then,

n q
T =27 by,
j=1

Theorem 2.5. Let T': X — Y be a compact linear operator between
quasi-Banach spaces X and Y. Then the operator 1t , is compact for
any 0 < g <1.

e
< n2sup s < 5 =
J

Proof. Since the space of compact operators forms an ideal, we can
assume that Y is g-Banach, so that Tt ; is a map from X, into Y with
Tcq0 Eqx =T. Then, by construction,

chq(BXc,q) = Tc,q(coq<Eq,X(BX))>

which is compact by Lemma 2.4. U

Let X be a subspace of a quasi-Banach space Y. We say that X has
the compact extension property (CEP for short) in Y if every compact
operator T': X — Z, where Z is a quasi-Banach space, extends to a
compact operator 1T:Y — Z. Let 0 < ¢ < 1. We say that X has
the compact extension property for q-Banach spaces (g-CEP for short)
in Y if the compact extension property holds when Z is a g-Banach
space. If, moreover, we can ensure that ||T|| < K||T|| for some constant
K € [1,00) (depending on X, Y and ¢), we say that X has the ¢-CEP
in Y with constant K. Notice that, by the Aoki-Rolewicz theorem,
X has the CEP in Y if and only if X has the ¢-CEP in Y for every
0 < ¢ < 1. We have the following results in this respect.

Theorem 2.6. Let X be a subspace of a quasi-Banach space Y. Sup-
pose that X has the g-CEP in'Y for some 0 < g < 1. Then there is
a constant K € [1,00) for which X has the ¢-CEP in'Y with constant
K.
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Proof. Although the proof of [23, Theorem 2.2] was done for Banach
spaces, the arguments therein apply to our case without any important
modifications. O

Theorem 2.7. Let 0 < g < 1 and Y be a q-Banach space with the
BAP. Let X be a closed subspace of Y. The following are equivalent.

(i) X is locally complemented in'Y .
(i1) X has the BAP and the CEP in'Y'.
(1) X has the BAP and the g-CEP in'Y.

Proof. Although [20, Theorem 5.1] only establishes the equivalence be-
tween (i) and (ii), the very same proof gives that (iii) implies (i). So,
taking into account Theorem 2.6, (iii) is equivalent to (i) and (ii). O

Theorem 2.8. Let X be a subspace of a quasi-Banach spaceY . Denote
by J the inclusion of X into Y. Suppose that X has the BAP and that
X has the g-CEP in'Y for some 0 < q < 1. Then J.4 is an isomorphic
embedding and J. ,(Xc,) has the g-CEP in Y.

Proof. Use Theorem 2.6 to pick K such that X has the ¢-CEP in Y
with constant K. Let Z be a ¢-Banach space and let T: X., — Z be a
compact operator. Since T o Ex , is also compact, the compact exten-

sion property and Theorem 2.5 yield a compact operator S: Y., — Z
with ||S|| < K||T'|| and such that the diagram

E
Yy —2Y,,
N
J

commutes. Since Ex ,(X) is dense in X ,, merging this commutative
diagram with

Eygq

}/C7q

— = X
EX,q C7q

yields that the diagram
Y,

c?q

S\

Xc,q T> Z
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commutes. It remains to show that J, is an isomorphic embedding.
To that end, use Lemma 2.3 to pick C' such that X, has that BAP
with constant C'. Let x € X., and € > 0. There is a linear operator
T: X., — X, with finite-dimensional range such that ||z —T'(z)|| < e
and ||T]] < C. Since T is compact, there is S: Y., — X, such
SodJe,=Tand ||S|| < CK. We have

2]l <z =T (@)[[* + [[S(Jeqg (@) | < e + CU|Je ()],
Letting € tend to zero we obtain ||z|| < CK||J.,(2)]|- O

Theorem 2.9. Let 0 <p < ¢ <1 and X be a separable £,-space with
the BAP. Then X., is isomorphic to a locally complemented subspace
of {4 and has a Schauder basis.

Proof. By [20, Theorem 6.4], X is isomorphic to a locally complemented
subspace Y of £,, and Y has a Schauder basis. By Theorem 2.7, Y has
CEP in ¢,. Hence, by Theorem 2.8, X, is isomorphic to a subspace
Z of ¢, and has the ¢-CEP in ¢,. As it is clear that Y, (and so X,)
has a Schauder basis, applying once again Theorem 2.7 completes the
proof. U

The following straightforward consequence of Theorem 2.9 partially
solves [2, Question 4.18].

Corollary 2.10. Let 0 < p < g < 1 and X be a separable Z,-space
with the BAP. Then X, is a Z,-space.

We are ready to prove the main results of this section.

Theorem 2.11. Let M be a p-metric space, 0 < p < 1. Suppose
that there is a constant C' such that N,, is a Lipschitz retract of M
with constant C for all n € N. Then F,(M) is not an Z,-space. In
particular, Fp(M) % L.

Theorem 2.12. Let M be a metric space. Suppose that there is a con-
stant K such that, for all n € N, N,, Lipschitz-isomorphically embeds
in M with distortion at most K. Then F,(M) is not an £,-space. In
particular, F,(M) % £,

Proof of Theorems 2.11 and 2.12. Since R is a doubling metric space,
there is D > 1 such that every subset of R, in particular N,, for all
n € N, is a doubling metric space with doubling constant D. Thus,
under the assumptions in Theorem 2.12; applying [7, Theorem 5.1]
yields a constant K such that F,(N,,) is K-complemented in F,(M)
for all n € N. By [5, Lemma 4.19], this holds under the assumptions
in Theorem 2.11 as well. Since

Dy = {z € [k, k]: 2"x € Z}
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is a doubling metric space with constant D for all £ € N, applying again
[7, Theorem 5.1] yields a constant C' such that the linearization of the
inclusion of Dy into R is a C-isomorphic embedding for all £ € N.
Taking into account that Dy is Lipschitz isomorphic to Njor+1 with
distortion 1 we infer the existence of a constant K; such that the finite-
dimensional subspace

Vi := span(dgr(x): x € Dy,)

of F,(R) is K;-complemented in F,(M) for all k € N.

Suppose by contradiction that F,(M) is an .Z,-space. Then, by
Lemma 2.2, there is a constant K5 such that for all K € N and € > 0
there are linear bounded maps S: Vi, — ¢, and T: £, — Vi, C F,(R)
with ||S||||T|| < K2 and ||T'0 S —1Idy, || < e. Since the set D consisting
of all dyadic rationals is dense in R,

Up Vi = span(dg(z): « € D)

is a dense subspace of F,(R). Applying Lemma 2.1 yields that F,(R)
is an .Z,-space. Since F,(R) has the BAP (see (A.8)) combining The-
orem 2.9 with [5, Proposition 4.20] yields that F(R) is isomorphic to
a subspace of ¢;. Using that F(R) is isometric to L;(R) and that {5 is
a subspace of L;(R), we obtain that ¢, is isomorphic to a subspace of
/1, an absurdity.

For the last part of the statements, we just need to note that ¢, is
an .Z,-space. O

Corollary 2.13. Let M be a metric space containing a subset which
is Lipchitz isomorphic either to [0,1] or to N. Then F,(M) is not a
Z,-space for any 0 < p < 1.

Proof. Just notice that {k/n: k € N} C [0, 1] is Lipschitz isomorphic
to N,, with distortion 1, and apply Theorem 2.12. O

Corollary 2.14. Let X be a p-Banach space (0 < p < 1) with non-
trivial dual. Then F,(X) is not a £,-space.

Proof. By Corollary 2.13, F,(R) is not a .Z,-space. Since, by assump-
tion, R is a complemented subspace of X, by [5, Lemma 4.19] it fol-
lows that F,(R) is a complemented subspace of F,(X). Consequently,
F,(X) is a not an .Z),-space either. O

3. SCHAUDER BASES IN F,([0,1]¢) AND F,(R?)

The basic idea for building Schauder bases for F,([0,1]%) and F,(R?)

comes, on one hand, from [22], where the authors present a canonical
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way of extending linearly Lipschitz functions on d-dimensional hyper-
cubes, and on the other hand from [6], where a method for building
linear projections on F,([0, 1]) is given.

Fix d € N. Given R > 0 and w € Z% we denote by Qme, the
hypercube having edge-length R and with vertices in the points

Vg ={Rw+ Re: e €{0,1}"},

That is, if w = (w;)%;,
d
ilu,R = CO[Vj,R] = H[Rwi> Rw; + R).

i=1
For R > 0 fixed, the set of hypercubes
Qf ={Q4 z: we Z%}
tessellates the space RY. If Q € Q% we denote by V(Q) its set of
vertices, that is V(QY ) = V¢ for every w € Z?. We have
U V(Q) = Vi = {Rw: w € 7.
QeQd

We shall define a fuzzy pull back of R? into the set of vertices V4.
Given x € [0,1] and w € Z we set

x ifw=1,
2@ =1z ifw=0,
0 if wez\{0,1}.

Given x = (z;)4, € [0,1]¢ and w = (w;), € Z? we put

Lemma 3.1. Let d € N and R > 0. There is a mapping
d
A= (A(U> '))UEV}%: Rd — [07 1]VR
such that A(Ru, Rw+ Rx) = 2~ for every x € [0,1]% and u,w € Z.

Proof. Since the function z + Rw + Rz maps [0, 1]¢ onto va’ R, if such
a function A exists, it is unique. By dilation, it suffices to consider the
case R = 1. If A is as desired in the one-dimensional case, then

A, ) =Aup, )@ @ A(ug, ) @ @ A(ug,-), u= (ui)le ez,
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is as desired in the d-dimensional case. Hence, we can also assume that
d = 1. To prove the result in this particular case, we must check that,
given w € Z, the function given for x € R by

r (z—w) " ifucZand w<r<w+1

is well-defined. Suppose that w < z < w+1landv <z < v +1
with v, w € Z. Assume without lost of generality that v < w. Then
v =w=wv+1 Since x —w = 0, we have (z — w)® ™) = 0 unless
u —w = 0, in which case (z — w)® %) = 1. Since x — v = 1, we have
(z —v)®™) = 0 unless u — v = 1, in which case (z —v)®™) = 1. Since
u—w=u—uv—1 for every u € Z, we are done. O

Definition 3.2. Given R > 0 and d € N, we define
AL = (A, )uevs

as the function provided by Lemma 3.1.

If d =1 we simply put Ag = A} and Vg = V}. Given a finite
set A C N we can carry out the above construction replacing the set
{1,...,d} with the set A. We will denote by V4 the corresponding
set of vertices and by V4 the corresponding function defined as in
Definition 3.2.

Let us give an auxiliary lemma followed by some properties of the
function A%.

Lemma 3.3. Let x = (x;)%,, y = (y;), € [0,1]%. Then

d d
Lo~ TI
i=1 =1

Proof. We proceed by induction on d. For d = 1 the result is obvious.
Assume that d € N and that the result holds for d — 1. Then

< |z —yl.

d d d d—1 d—1 d
Hxi — Hyz < Hﬂﬁz —ydnﬂﬂi + de%‘ — Hyi
=1 i=1 =1 d_lzzl o =1 . =1
= |$d—yd|H$z‘ + Ya H% - Hyi
z:ld_l =1 i=1
§|$d—yd’+Z|$i—yi|:’l’—y’1- O

=1
Lemma 3.4. Letd € N and S > R > 0 with S/R € Z. We have:

(i) Ab(v,2) =0 if r € Q € Q% and v ¢ V(Q).
(i1) A% (v,u) = 8, for every u, v € V4.
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(i) 3 ey, AR(v,2) =1 for every x € R%.
(iv) If there is Q € Q% such that x, y € Q, then
’A%(U,Q}) - Ajl%(v,y)| < Rillx - y|1
for every v € V4.
(v) Let (A, B) be a partition of {1,...,d}. Then
AG((u,0), (z,y)) = AR(u, 2) AR (v, y)
for everyu € Vi, v € VE € RY and y € RP.
(vi) A& (v, z) = Zue% A (v, u)A%(u, ) for every x € R? and v € V2.

Proof. (i) is clear from the definition. (ii) follows from the equality
0© = 1. A straightforward induction on d yields

d a =1 zel0,1),
wEZ

and (iii) is clear from this identity. (iv) is a consequence of Lemma 3.3.
(v) is clear from the definition. In light of (v), in order to prove (vi) it
suffices to consider the case d = 1. Given x € R there are ug, u; € Vg
and vy, v1 € Vg with ug < vy <z < v; < uq, and we have v; = vy + R
and w; = up + S. Suppose that u € Vg \ {ug,u1}. Then Ag(u,v) =0
for v € {vg,v1}. Since Ag(v,x) =0 for v € Vg \ {vo, v1} we have

D(u,z) = Z As(u,v)Ag(v,2) =0 = Ag(u, x).

Hence, considering also the symmetry x — —z, if suffices to prove the
result in the case when u = u;. We have

C(uy, z) = As(uq, v0)Ar(vo, ) + Ag(ur, v1)Ag(v1, x)
B U —UgU — T UL — Ug T — Vg
=) =T g S R
Since n(ug) = 0 we have n(y) = y(y — up) for all y € R, where

N _’UO—UO+U1—'LLO _l
7T\ TSR SR )~ S

Since Ag(uy,z) = (z — ug)/S we are done. O

Although the previous auxiliary results are stated in terms of the
¢,-norm, in this section we will consider R? and its subsets equipped
with the supremum norm || - |-

Theorem 3.5. Let d € N and 0 < p < 1. There is a constant C =
C(p,d) such that for every R > 0 and every R C Q%, if we denote
K = Uger@ and V = UgerV(Q), and we choose an arbitrary point
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of V as base point of both metric spaces, there is a C-Lipschitz map
r=rgv: K — F,(V) such that

r(z) = Ap(v,2)dy(v), €K

veV

Proof. Let Q € R and z, y € Q. Pick u € V(Q). By Lemma 3.4,

p
oy (v) — oy (u
) =P = B3 (Ahon) — Aoy 20
veV(Q)\{u} -
<R Y M) - Ayl
veV(Q)\{u}

< (2= Dlz -yl
Let z = (z)4, € K and y = (y;)_, € K. Pick v = (w;)L, and
w = (w;)%; € Z* such that 2 € Q% , and y € Q} . Define
F={ie{l,....d}: u; = w;}.

For each i € G = {1,...,d} \ F there is m; € {u;,u; + 1} and n; €
{w;, w; + 1} such that

lyi — x| = |yi — Bn;| + |Rn; — Rmy| + |Rm; — x4].
Suppose that n; = m; for every i € G. Define z = ()4, by
€T; if i € F,
Ri = e
Rn; = Rm; 1ified.
We have z € Q%,, N Q%,,. Consequently,
lr(z) =P < llr(z) = r)IF + lr(z) = r@)]?
< @' =D(lz =2l + 12— yl)
< 2920 — 1)z — 2 + | — )
= 2720 = 1) — .
Suppose that m; # n; for some i. Define 2/ = ()%, and v/ = (y})L,
by
, Ru; = Rw; if1 € F, , Ru; = Rw; ifi € F,
€Tr. = .=
i =\ Rm, itiea, VT \Rn ifi e G
We have 2’ € Vi§ . ' € Vi, and 1 < pi := max;eq |m; — n;|. Hence
[r(2) = r(y)l”
< |r(z) = r@)PP + lIr(@") = r@)I” + [Ir(y) = r@)”
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<@ =Dz =27 + ]2 =y B+ 2 = D]y —y'[V
< 2(2% — 1)dRP + pP R?

< (1+2d(2% — 1))’ RP

< (1+2d(2% — 1)|2 — Yoo

This way the result holds with C(p,d) = (1 + 2d(2¢ — 1))'/?. O
Next, we show that F,(R?) has a Schauder basis for every d € N.

Lemma 3.6. Let M and N be quasi-metric spaces. For i =1, 2, let
fi: My C M — N be a Lipschitz function. Assume that

(i) M =My UMs,
(“) f1|MmM2 = fQ‘MlmMQ, and
(1it) There is a constant C such that d(z1, M1 NMs) < Cd(xq, x2) for

every (z1,x2) € My X Ms.
Then, the map f: M — N defined by flp, = fi fori =1, 2 is

Lipschitz. Moreover, if kn and kaq are the quasi-metric constanst of
N and M, respectively, we have

Lip(f) < kar(C + kaq + Cky) max Lip(fi).

Proof. Put L = max;—1 5 Lip(f;). Let (x1,22) € My x My and pick
x € My N Ms. Since fi(x) = fo(x) we have

dyn (fi(z1), f2(22)) < ka(dn(fi(21), fi(2)) + dn(fa(2), f2(22)))
< knL(dp(x1, ) + dpg(z, 22))
< kyL((1 4 kp)dpa (1, 2) + kagdaq (21, 29)).

Since the element = can be chosen so that da(xy, z) is arbitrarily close
to dpy(x1, M1 N Msy), using the assumption (iii) yields the desired re-
sult. O

The following lemma exhibits a situation in which Lemma 3.6 is
useful that will occur several times throughout this section,.

Lemma 3.7. Let M and N be quasi-metric spaces. For i = 1, 2,
let fi: M; € M — N be a Lipschitz function. Assume that M =
My U My and that fi|pame = falmyinm,-  Suppose that there are
constants A > 0 and C' > 1 such that

(1) M is \-separated, and
(11) d(z1, M1 N My) < C for every x1 € M.
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Then, the map f: M — N defined by flpm, = fi fori =1, 2 is
Lipschitz. Moreover, if kn and knaq are the quasi-metric constanst of
N and M, respectively,

C
Lip() < b 01+ hao) + e ) mcLin( ).
Proof. Let (z1,22) € My x My with x1 # xo. We have
C
Xd(xl, SCQ).
Hence, the result follows from Lemma 3.6. 0

d(Q}l, ./\/ll N MQ) S

Theorem 3.8 (cf. [6, Theorem 5.7]). Let 0 <p <1 and d € N. Then
Fp([0,1]%) has a Schauder basis. In fact, if V,, = [0,1]9N27"Z% for all
n € N, and V_y = {0}, and we put a(x) = n if v € V, \ V.1, then,
any arrangement (f(z;))32, of the family

f@)=0pna() = Y AJ i (v,2)004(v) n €N, € Vo \ Vo

vEVL 1

such that (a(x;))32, is non-decreasing is a Schauder basis of F,([0,1]7).

Proof. Set § = dj91)a and 6, = 9y, for n € N,. By Theorem 3.5, there

exist a constant C' and linear maps T},: F,([0,1]?) — F,(V,) such that
IT,|| < C and

T.(0(x)) = > A§ (v, 2)0,(v), x€0,1]

Let m, n € N, with m < n. Since V,, C V,,, we can consider the
canonical map Ly, ,,: Fp(Vin) — F,(V,) associated to the inclusion.
Consider also the canonical map L,: F,(V,) — F,([0,1]%) associated
to the inclusion of V;, into [0, 1]¢. Applying Proposition 3.4 (vi) yields

e I,oL,oT,=1T,andT,0L,, 0T, = Ly, oT,,.
Moreover, since UV}, is dense in [0, 1]¢,
o if X, = L,(T,,(F,(0,1]%))), U X, is dense is F,([0, 1]%).
Since, with the convention L_; 0oT_; =0,

Y,={x— L, 1(Th-1(2)): z € X, },

and X,, = span{d(x): = € V,,}, the family of nonzero vectors

By = (f(%))acvi\viy

generates the space Y,. We shall prove that B, is an unconditional
basis of Y,, with uniformly bounded unconditional basis constant. Let
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F C V, \ Vs_1. We define r,, : V,, = F,([0, 1]¢) by

)Ly 0T a(6(z)) ifxeV,\F,
() = 5(z) if v € F.

If 2z € V,_q, then L, 1(T,-1(6(2))) = Lp—1(0n-1(2)) = 0(2). For ev-
ery x € V, there is z € V,,_; such that |z — z|c = 27", and V,,
is 27"-separated. By Lemma 3.7, r, r is Cj-Lipschitz with C; =
(1 + 21/7)2V/P=1C. We infer that there is U, r: Fp(V,) — F»(]0,1]%)
such that ||U, r| < Cy and U, g 00, = 1y p. Put Qur = Unr o T,ly,.
We have ||Q, r|| < CC; and

f(z) ifxePF,

Qur (@) = {0 itz e (Vo \ Vo) \F.

Thus, the mappings (Qn,r)rcv,\v,_, are commuting projections satis-

tying Q. r(Y,) = span{f(x): x € F'} and Q;}F(O) = span{f(z): x €
(Vo \ Vie1) \ F'}, which implies that B, is unconditional basis of Y,
with basis constant at most C'C}. ]

We have explicitly constructed a Schauder basis of F,([0,1]%). Us-
ing the isomorphism F,([0,1]%) ~ F,(R?) we infer that F,(R?) has a
Schauder basis, but now our proof is not constructive. So, it is worth
to mention that an argument slightly more involved than the one we

have used to prove Theorem 3.8 yields an explicit Schauder basis of
Fp(RY).

Theorem 3.9. Let0 < p < 1 andd € N. Given an increasing sequence
of natural numbers (k,)>> _,, put

Vi, ={z € R |2 < kn} N27"Z%, and
W, ={z € R |z|o < kn_1}N27"Z7

if n € Ny, and set V_; = {0}. Define

sn(2) = (min {27 + [2]oo, 23] } sgn(e)) L, 2 = (2)L, € Vi \ Wi,

and put n(x) = (n, || — kn-1) if x € V, \ Wy, and n(z) = (n,0) if
x € Wy \ V1. Define f(x) for x € U2V, by

f2) = Opa(x) — Opa(sn(2)) if v € Vi, \ W,
Opa(2) = D ey, Agna (0, 2)0pa(v)  if 2 € Wy, \ Vi
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Let (x5)32, be an arrangement of Up2,V;, such that (n(x;))32, is non-
decreasing with respect to the lexicographical order. Then (f(x;))52, is

a Schauder basis of F,(R?).
Proof. Given t € (0,00), for d =1 define r;: R — R by

t
r¢(z) = min {1, H} x, x€eR.
x
In general, we define r,: RY — RY by

ri((za)isy) = (re(za) s

The map r; is 1-Lipschitz and its range is B; := {z € R?: ||z]| < t}.
Let Si: Fp(R?) — F,(B;) be obtained by linearization of ;. Given
R > 0 such that t/R € N, denote V, g = V&N By, and let Tx: F,(RY) —
Fp,(V4) and Ty g: Fp(B:) — Fp(Vir) be the linear maps provided by
Theorem 3.5. Notice that Theorem 3.5 yields a constant C' be such
that || T}, g|| < C for every t > 0 and R with ¢t/R € N. Let L denote
the linearization of the inclusion of M into A/, and put L = Lv;; R
Lir = Ly, B, and Ly p = Ly, , ga. We shall prove that

t
Lt7ROE7ROSt:StOLROTR, E € N. (32)
Set § = (SRd, 5t = 5Bt’ and 5t,R = 5Vt,R'
By Proposition 3.4 (v) a similar argument works for the general case,
hence for notational ease we will deal with the case d = 1. Let x € R.
In the case when |z| < t, we have ri(z) = x and Ag(v,z) = 0 unless

|| <'t, in which case 1(v) = v. Consequently,

Se(Lr(Tr(8(x))) = Y Ar(v,2)d(r:(v))

veEVR

=Y Ag(v,2)6(v)

vEVR

= Ly r(Ti,r(0:(1)))
= Lir(T,r(0:(r:())))-
In the case when |z| > t we have Ag(v,z) = 0 unless |v| > t and

sgn(v) = sgn(z), in which case r(v) = (). Then we have

SULR(TR(3(2))) = Y Ar(v,2)8,(r:(v))

vEVR

= Z Ar(v,2)0¢(r(x))

vEVR

= 0¢(re(z))
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= Lir(T1,r(0:(ri())))-
Since &;(r¢(x)) = Si(d(x)) and {d(z): x € R} spans F,(R), (3.2) holds.
Note that the range of U g := T g0 Sy is span{d; g(z): € V; g}. Put
P g =L, poT,groS:. By (3.2), for every x € R? we have

t
Pp(8(x)) = Y (v, 2)6(r(v)), = €N (3.3)
vEVﬁ

Thus, for every v € V4 we have P; g(5(v)) = d(r;(v)), which in combi-
nation with (3.3) implies that P, g is a projection with range equal to
span{d(z): x € Vi g}. We infer that
R t t
—,—,—eN,t'>t>0. (34
RE R (34)
Indeed, Py g o P, rp = P, g follows from the fact that the range of P,
is contained in the range of Py r and we have

Piro Py p = L;,R oTiro S0 LBt/,]Rd 0SyoLr oTw
= L;,R oT,goSioLp oTg
= Pir,
where in the first equality we used (3.2), in the second we used the
observation that S; o Lg, ga © Sy = S, and the third equality follows

from Proposition 3.4 (vi).
Hence, if for n € N, we put

Py, = Pkn,rn and P, = Pkn,1,2*"7

we have P; o Py = Pj o Pj = P; whenever —1 < j < j'. Therefore,
there is Schauder decomposition (Y};)32 ;| of F»(R?) whose associated
projections are (P;)32_;. Moreover, for all n € N, the range of P, is
span{d(z): x € V,,} and the range of Py, ; is span{o(z): z € W, }.

Similar arguments as in the proof of Theorem 3.8 show that there is
a constant C' = C(p, d) such that

(f(x))zewn\\/yhl

is a C-unconditional basis of this Y5, for all n € N,. Let n € N,.
Note that ri(z) = ry(s,(z)) for all ¢t with 2"t € N and all x € V,, \ W,
with ||z||o > t. In particular,

Thp_1 (Z‘) = rknfl(sn(a:))? reV, \ Wi

Therefore, Po,_1(f(x)) = 0 for every z € V,, \ W,, which in turn
implies that f(x) € Ys,. An inductive argument yields that for every

x €V, \ Wy,
g9(x) :=6(x) — 6(ry,_,(z))

Pt,R o Pt’,R’ = Pt’,R’ o Pt,R = Pt,R>
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is a linear combination of the family (of nonzero vectors)

B, = (f(y))yevi\w,-

Since, by an argument similar to that used in the proof of Theorem 3.8,
(9(2))zev,\w, generates Y,, B, also generates Ya,. Let FF C V,, \ W,
be such that

Vicgnon \W, CF CVign \W,
for some t € (kn_1,k,] N27"Z. Set a = (t,27") and let & be the
“predecesor” of a given by @ = (t —27",27"). Define 7, p: V,, — R?
by

T if x € F.

If v € Vg then 1, _9-n(z) = z. Given z € V,, there is z € V5 with
|z — z|o = 27", and V, is 2 "-separated. Hence, by Lemma 3.7, r, r is
C,-Lipschitz, where C,, = (1+2?). Let U, r: Fp(Va) = F,(R%) be the
linear map defined by d,(x) — d(z) if z € F and 6,(x) — §(ri_o-—n(z))
ifeeV,\F. Set U, =1, oSt. We infer that, if

QaF — Ua,F o U |Y2n7
then ||Qar| < CC,. Note that U,(d(z)) = du(x) for all z € V,
and that U,(d(z)) —U(( n(2))) for all x € V, \ V,. If z € V,,
then s,(z) € Vi, and so Q. r(f(x)) = f(x) for every f € F. 1If
x €V, \ Va, then s,(z) = r;_s-n(x). Consequently, Q. r(f(x)) = 0 for
every x € V, \ F. Finally, we deduce that Q. r(f(x)) = 0 for every
x € V,\ V,. We infer that, if (a:j)pial*'w”' is an arrangement of V, \ W,
with (|x]|)|V"‘ Wl hon-decreasing, then (f(:z:]))‘v"ll Wnl'is a Schauder
basis of Ys,_; with basis constant at most C'C,,. O

Ti_g-n(T iteeV,\F,

4. OPEN PROBLEMS

By [21, Theorem 5.2], there exists a subspace Z of ¢, whose Banach
envelope is isomorphic to Ly, so we would like to know whether F,(R)
is different from the subspace Z, whose existence is guaranteed by a
general abstract construction.

Question 4.1. Let p € (0,1). Is F,(R) isomorphic to a subset of £,?

Once we have told apart F,(N) from ¢, for p < 1, it is natural to go on
with the topic (Q.b) by trying to determine how many non-isomorphic
Lipchitz free p-spaces one can obtain from subsets of N. Note that if
N is a subset of N then F,(N) is a complemented subspace of F,(N)
by (A.7). So, this problem connects with that of characterizing the
complemented subspaces of F,(N). Let us illustrate the question with
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an example. Suppose that N C N contains arbitrarily long chains of
consecutive integers. Then, there is (ay)32, in N such that ay+Nyx_; C
N and 2(ay, +2F — 1) < agy; for all k € N,. Set

No = U ar + Ny _;.
k=0
Combining [6, Lemma 2.1] with [7, Theorem 5.8] yields F,(Ny) =~
Fp(N). Then, by (A.7), F,(N) is complemented in F,(N) and, the
other way around, F,(N) is complemented in F,(N). Taking into
account (A.5), Pelezyniski’s decomposition method yields F,(N) ~

Fp(N).

Question 4.2. Let 0 < p < 1. Does there exist N' C N such that F,(N)
is neither isomorphic to ¢, nor to F,(N)?

A well-known problem in Geometric Functional Analysis is whether
F(N?) is isomorphic to F(N?) or, more generally, whether F(N¢) is
isomorphic to F(N¢1) for d > 2. As, by [5, Proposition 4.20], if
Fp(N?) ~ F, (N1 for some p < 1 then F(N9) ~ F(N) investigat-
ing in more depth the geometry of F,(N?) for p < 1 and d > 2 could
shed some light into this important question. Similarly, telling apart
Fp(R?) from F,(R*!) for p < 1 could be easier than telling apart
F(R?Y) from F(R™'). By [7, Theorem 4.21] the latter is equivalent
to proving that Lipschitz p-free spaces over Euclidean spaces are not
isomorphic to Lipschitz p-free spaces over its spheres.

Question 4.3. Let 0 < p < 1 and d > 2. Is F,(N?) is isomorphic to
Fp(NEH1)?

Question 4.4. Let 0 < p < 1 and d > 3. Is F,(R?) is isomorphic to
fp(SRd)?
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