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Abstract

This paper analyzes the effects of changes in information-processing technology on the efficient
organizational forms of data-processing in decision-making systems. Data-processing in
decision-making is modelled in the framework of the dynamic parallel-processing model of
associative computation with an endogenous duration of operations. In such a model, the
conditions for the efficient organization of information-processing are defined and the
architecture of the efficient structures is considered. It is shown that decreasing returns to scale
of the information-processing function and the information overload of the system are necessary
and sufficient conditions for the decentralized (hierarchical) information-processing, respectively.
Moreover, the analysis shows that the size of the efficient structures is determined exclusively
by their information workload and the existing information-processing technology. In particular,
the results indicate that, for a given information workload, the size of information-processing
structures in decision-making systems is inversely related to the degree of homogeneity of the
information-processing function. Consequently, the organizational restructuring of decision-
making systems towards flatter hierarchical structures can be explained exclusively by those
technological changes which affect economies of scale in information-processing, i.e., which
increase the degree of homogeneity of the information-processing function.

Keywords: Technological changes, organizational restructuring, hierarchy,
decision-making, information-processing.
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Abstrakt

Tato prace analyzuje vlivy zmén v technologii zpracovani informaci na efektivni organiza¢ni
formy zpracovani dat v systémech rozhodovani. Zpracovani dat v systémech rozhodovani je
modelovdno v ramci dynamického paralelniho modelu zpracovéani asociativnich vypoct
s endogennim trvanim operaci. Pro tento model jsou zde zadefinovany podminky pro efektivni
organizaci zpracovani informaci a je zde pojedndno o architektute efektivnich struktur. Je zde
také ukdzano, ze klesajici vynosy z rozsahu zpracovani funkce zpracovani informaci a
informacni pietiZzeni systému jsou nutné a postacujici podminky pro decentralizované, resp.
hierarchické zpracovani informaci. Analyza navic ukézala, Ze velikost efektivnich struktur je
ur¢ovana vyluéné informacnim zatiZenim a stavajici technologii zpracovani informaci. Vysledky
naznacuji, Ze velikost struktur zpracovéani informaci pfi daném informacnim zatiZeni je v
inverznim vztahu se stupném homogenity funkce zpracovdni informaci. Organizacni
restrukturalizace systému rozhodovani smérem k méné¢ ¢lenitym hierarchickym strukturam muze
bytnasledné vysvétlena vyhradné technologickymi zménami ovliviiujicimi uspory ze zvySeného
rozsahu zpracovani informaci, tzn. zvySenim stupné¢ homogenity funkce zpracovani informaci.



1. Introduction

Several leading economists have recognized the importance of informational
structures for the internal organization of business firms and large corporations
(see, e.g., Aoki, 1986, or Milgrom and Roberts, 1990). In particular, decision-
making systems of such enterprises are widely perceived to have complex
informational structures (see, for example, Radner, 1992 and 1993, Radner and
Van Zandt, 1992, or Bolton and Dewatripont, 1994). The architecture of these
structures is often considered as a factor which determines the profitability of the
firm as a whole (see, e.g., Milgrom and Roberts, 1990, or Radner, 1992). An
overview of the contributions made by recent research to understanding the
economic significance of data-processing in the management of modern
enterprises is presented by Radner (1992). In the same paper, however, he
emphasizes that it is still not clear what formal requirements have to be satisfied
in order to observe decentralized (hierarchical) organization of informational
processes.

Taking into account the very limited ability of individuals to handle and process
information (for given information-processing technology), some economists
argue that hierarchical forms have been developed to respond to the growing
problem of handling an increasing flow of information (Chandler, 1966, or Bolton
and Dewatripont, 1994). Not surprisingly, therefore, organizational changes (the
flattening of hierarchical structures) observed in the last decade (see, e.g., Business
Week, 1989) are usually explained by an improvement in information-processing
technology (Schein, 1989, Kennedy, 1994, or Bolton and Dewatripont, 1994).
However, research to date has not provided an adequate economic explanation of
the conditions under which improvements in information-processing technology
might reduce the depth of hierarchical structures. Thus, an examination of the
criteria which have to be satisfied for the restructuring of the information-
processing structures of decision-making systems in response to changes in
information-processing technology is the subject of the analysis below.

The paper is concerned with the analysis of data-processing in the decision-
making sector of the firm. The consideration focuses on the computation of
associative operations' because a number of decision-making paradigms involve
primarily operations of this kind (see Radner, 1992 and 1993).

A binary operation (*) is associative if the following is true: A*(B*C)=(A*B)*C, where
A,B,C denote items of data.



As an example of associative computation in the control and management of the
firm, a decision-making process where actions are chosen using the pattern-
recognition (nearest-neighbor classification) procedure can be considered. In this
decision-making scheme, decision-makers compare sets of data about the
environment with elements of the finite set of reference patterns, and to each
element there corresponds a particular action (decision) to be taken. Thus, the
problem of decision-making consists in the calculation of the closest reference
pattern, i.e., calculating the distances between the reference patterns and data
analyzed and choosing the minimum. Note that calculating the distances and
choosing a minimum are both associative operations (see Radner, 1992, for
details).

Another popular example of associative computations in decision-making is the
linear decision rule, where the value of the linear function ¢ x,+c,x,+... ¢ Xy 1S
computed (c; is a coefficient of a conversion to a common unit and x; is a
numerical data item, i=1,2,...,N), and the decisions are made based on the result
of this computational process. In practice, the items aggregated may not be just
numbers but vectors or matrices. Computations of such a kind are commonly used
in the methods of statistical prediction or statistical control (see Marschak and
Radner, 1972, Aoki, 1986, or Radner and Van Zandt, 1992 and 1993).

Since both addition and choosing a minimum (or maximum) are associative
operations, a dynamic parallel-processing model of associative computation
(Radner, 1992 and 1993, and Radner and Van Zandt, 1992) is frequently used in
the economic literature to describe computational processes in decision-making.

In the present paper, the model of associative computation is extended to include
the assumption that the speed of information-processing in each individual
processor depends upon the capital and labor allocated to it, i.e., the duration of
individual operations is endogenized. Moreover, it is assumed that in order to
produce a flow of decisions, the same computational procedure is repeated again
and again. Consequently, the analysis is restricted to the organization of the single
cohort of data-processing (one-shot mode). In such a model, the conditions for the
efficient organization of data-processing are defined, and the architecture of
efficient structures is determined. We show that the size of the efficient
information-processing structure is determined solely by the existing information-
processing technology and the information workload of the system. Finally,
assuming a fixed information workload, we find that the size of the efficient
structures might vary only in response to those technological changes which affect
returns to scale of the information-processing function and, in particular, that the
flattening hierarchical structures observed recently can be explained only by those
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technological improvements® which increase the degree of homogeneity of the
information-processing function. Technological changes which leave returns to
scale of the information-processing function unaffected decrease the delay in
information-processing but do not influence efficient organizational forms.

The remainder of the paper is organized as follows: In Section 2, the decision-
making sector of the firm is characterized and the model of information-processing
in decision-making is presented; Section 3 analyzes the architecture of efficient
processing networks; Section 4 examines conditions for decentralized information-
processing in decision-making systems. Section 5 discusses the relationship
between the characteristics of the information-processing function and the size of
the efficient structures. Section 6 concludes.

2. Data-Processing in Decision-Making

Empirical studies of the labor market in industrialized countries show that much
more than one-third of employees work full time in the management of firms,
performing activities not directly connected with the production process such as
processing and communicating information, monitoring actions of the other
members of the firm, analyzing the market, planning, training employees, making
decisions, etc. (see Radner, 1992, for a detailed analysis of this issue). The
common feature of all these activities is information-processing, i.e., collecting
and aggregating information, transforming data, presenting them in the appropriate
form, etc. The majority of the activities associated with data-processing in the firm
is carried out by managers with the help of staff, secretaries, or clerks using
computation and telecommunication equipment, buildings, electricity, etc. Thus,
the management (or decision-making) sector of the firm is understood to be a
system which takes signals from the environment and uses the capital and labor
to transform them into decisions. The quality of these decisions is inversely related
to the deviation from the best possible decisions. The difference between decisions
required and decisions made depends, in general, on errors in the computational
process and delays in data-processing. If all members of the decision-making team
have no incentives to report false information and do not make mistakes (i.e.,
errors are not possible), then the quality of the decisions depends solely on the
delay in data-processing (see, e.g., Radner and Van Zandt, 1992).

2 We can consider only technological improvements, because in a world with perfect
information, new technology that reduces output per unit of each input would never be
adopted.



The simplest example of the transformation of data from the environment into
decisions which involves computation of associative operations is a linear decision
rule (see Section 1). Therefore, without loss of generality, we can focus
exclusively on this decision-making paradigm. To simplify the analysis, assume
that conversion to a common unit is not required, i.e., ¢=1, for i=1,2,...,N.
Following Radner (1992, 1993), represent the computational process in the
decision-making sector of the firm as an idealized parallel computer. That is, let
each computational center in the firm be a processor which contains both a
memory for data storage (called a buffer) and a register where summations are
made. Each processor can read a single item of data from its memory and add the
value to the contents of the register resetting it equal to the resulting sum. Loading
and adding a single datum to the contents of the register is called an operation. The
time of operations is assumed to be the same 1) whatever the values of data added
are or 2) when a datum is added to the cleared register (i.e., to zero). Moreover, a
processor can send the contents of its register to an output or to the buffer of any
other processor (through a communication channel) in zero time (see Radner and
Van Zandt, 1992, for details).

Each processor has a limited capacity in that there is a maximum number of
operations it can compute per unit of time. However, the speed of computation in
each individual processor depends upon the capital and labor allocated to it. The
relationship between the resources allocated to a single processor and the number
of operations it can compute in a unit of time is determined by the technology of
information-processing and is given in functional form as an information-
processing function (F(k,l)). This function is understood to be a “production
function” in information-processing and specifies the number of operations per
unit of time that can be made in a single processor to which capital (k) and labor
(I) are allocated. Similarly to the ordinary production function, the information-
processing function is assumed to be technologically efficient in the sense that it
is not possible to get the same output (compute a given number of operations in
a unit of time) using less of one input and no more of the other. The properties of
the information-processing function (such as, for example, returns to scale or
homogeneity) can be defined analogously as in production theory.

The duration of a single operation (d) can be determined as 1/F(k,I). It is also a
function of the capital (k) and labor (I) employed in the processor considered
(d(k,)=1/F(k.,l)). If all processors in the structure are identical (i.e., the structure
is homogeneous) then the du}(at'fn of each1 individual operation can be specified
as ity - 1
PP A KL )
PP (1)



where K and L denote capital and labor allocated to information-processing,
respectively, and P is the number of the processors in the structure.

Assuming that data items are not costly (Radner, 1992 and 1993), the total cost of
the computational process is determined by the costs of the resources (i.e., labor
and capital) involved in the computation.

Each processor adds data items in a serial fashion. Thus, to speed up the
computational process, data-processing can be done in parallel using more than
one processor (i.e., in a decentralized computational structure). However, in the
decentralized structure, the fixed amount of the resources allocated to information-
processing have to be distributed among all the processors. Consequently, the
processing power of each individual processor decreases. It implies that, on the
one hand, parallelization reduces the length of the longest sequence of operations
needed for the computation of the result but, on the other hand, increases the
duration of each individual operation (decreases the computational power of the
processors). Therefore, the delay in computation in the decentralized structure
would not necessarily be smaller than in the original one (i.e., the decentralized
computational structure would not necessarily be better than the original
structure), and, consequently, organizational forms of data-processing have to
analyzed in an economic context.

3. Efficient Organization of Information-Processing in Decision-Making

Following Radner (1992 and 1993), assume that processors in the computational
structure cannot make errors in data analysis. In this case, the value of the
computational service’ is determined solely by the quality of the result computed
which is inversely related to the delay in information-processing (see Radner and
Van Zandt, 1992). The delay in the computation of the cohort of N items of data
(Dy) in any homogeneous structure with P processors is proportional to the
duration of individual operations, d(K/P,L/P), and, consequently, is a decreasing
function of the resources allocated to the computational structure, i.e.,
0D (K,L)/0K<0 and dD(K,L)/3L<0. Thus, in the efficient information-processing
structures the resources allocated to data-processing should be minimized for a

3 The value of the computational service in decision-making is understood to be the
difference between the value of the decisions based on the computational service and the value
of the decisions without the service (Radner and Van Zandt, 1992).
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given delay in computational process and the number of data items processed (or
vice versa, i.e., for a given information workload and amount of resources the
delay in the computational process should be minimized).

Definition 1: Efficient Structures. The information-processing structure is said
to be organized in an efficient way if, for a given number of data items processed
(N), it is not possible to get the same delay in information-processing (D)) using
less of one input to information-processing (i.e., capital or labor) and no more of
the other.

In the model under study, the duration of individual operations is not constant but
is endogenously determined in the model, i.e., it depends on the resources
allocated to information-processing and the number of processors in the structure.
Nevertheless, the architecture of the efficient structures remains the same as in the
original dynamic parallel-processing model of associative computation with an
exogenous duration of operations.

Proposition 1

For any given number of data items processed (N) and any feasible
combination of the resources (K,L), the minimum delay in information-
processing in any computational structure with P processors is given by the
following formula:

{ % + [log,(P+N mod P)l

D\(K.L) = K L ) (2)
F(_z_)
PP

where brackets | | and | | denote rounding down and up to the nearest
integer, respectively.

Proof:

Gibbons and Rytter (1988) show that the minimum delay in the summation
of N data items in the structure with P identical processors (with fixed
processing power and a duration of individual operations d=1) is
determined by the time of computation of C(P) operations, where C(P) is
given as follows:

C\(P) { % + [log,(P+N mod P)| , 3)



In the model under study, the duration of each individual operation (d) is a
function of the resources allocated to information-processing and the size
of the structure (i.e., d=d(K/P,L/P)). Consequently, for a given number of
data items (N) and the resources (K,L), the minimum delay Dy (K,L) that
can be attained by any structure with P identical processors can be
determined as Dy(K,L)=C(P)d(K/P,L/P). Taking into account (3) and using
d(K/P,L/P)=1/F(K/P,L/P) yields (2).

Q.E.D.

Radner (1992 and 1993) shows that the minimum time needed to add N items of
data with the help of P processors is attained by so-called “skip-level reporting”
structures with processors loaded as equally as possible (if 1<P<[N/2J),* or by a
fully centralized structure (if P=1). The term “skip-level reporting” refers to the
practice in an organization whereby a processor in level’ X sends reports (partial
results) to a processor in level X+L (L>1). That is, the processor in level X can
skip one or several levels in reporting to its direct hierarchical superior. An
example of the skip-level reporting structure (with P=8 processors, designed for
the summation of N=40 items of data) is presented in Figure 3.1. In this network
each of the processors receives five numbers. All the processors spend periods 1
through 5 adding numbers. At this point, four of the processors send their total to
the other four, with each processor receiving one number. This is added to the
processor's previous total in period 6. At the end of this period, two of the
processors send their partial results to the other two. These numbers are added to
previous totals in period 7, after which one processor sends its total to the other.
Finally, the result is computed in period 8. The time diagram describing this
computational process is shown in Figure 3.2.

Note that the denominator in (2) always decreases with P while the numerator is
a non-increasing function of P. It follows that the structure of the size P, such that

* The number of processors (P) in any skip-level reporting structure is limited (P<[N/2J)
because at least two data items have to be assigned to each of them.

> The processor belongs to the level

_ { 0, if it does not have any subordinate processors,
x+1, otherwise,

where x denotes the highest level of the hierarchy to which one of its immediate subordinate
processors belongs (see Figure 3.1 for an example).



Figure 3.1
The Skip-Level Reporting Structure (P=8, N=40, Processors Are Represented
As Circles, Triangles Represent Their Information Workload)

Level 3

Level 2

Level 1

Level 0

Figure 3.2
The Time Diagram Corresponding to the Information-Processing Structure
Presented in Figure 3.1

iTimt:
8.1

1 2 3 | 5 b 7 ]
PROCESSO0RS
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IN/(P- 1) Hlog,(P- 1+ N mod(P-1))I = [N/PHlog,(P+ Nmod P)I,  (4)

is surely inefficient—i.e., for any given amount of the resources, a smaller delay
can be attained in the structure with P-1 processors. Consequently, the size of the
efficient structure is in the set Py, = {1,2,...,[N/2]} \ P\, where P, is the set of P for
which the equality (4) is satisfied.

Thus, for any information workload (N), the efficiency frontier (in the model with
an endogenous duration of individual operations) is characterized by the following
expression
g + [log,(P+N mod P)l

D(K,L) = Min ,

&) P K L

F (_:_)
PP

)

where PePy.

Consequently, for a given information workload (N), the size of the efficient
structures (which minimize the delay in data analysis, D(K,L), for a given
combination of the resources to information-processing (K,L)), P*, is determined
solely by the properties of the information-processing function.

4. The Decentralization of Information-Processing in Decision-Making

Although the size of the efficient structure (for a given number of data items
processed) depends on both the amount of resources used and the properties of the
information-processing function, in the case when the information-processing
function faces non-decreasing returns to scale, the centralized structure (P=1)
minimizes delay in data-processing for any feasible combination of the resources
(i.e., is always efficient). This property is formally established by the Proposition
below.

Proposition 2
If the information-processing function exhibits non-decreasing returns to

scale (i.e., constant or increasing), then the efficient information-processing
structure is centralized.
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Proof

For any given number of data items processed (N) and any feasible
combination of the resources (K,L), the minimum delay in information-
processing in any computational structure with P processors is given by the
expression (2). If the information-processing function faces non-decreasing
returns to scale, then the denominator in (2) decreases at least
proportionally with P. At the same time, the numerator in the expression (2)
decreases with P less than proportionally. This implies that the delay in
information-processing increases with the number of processors (P).
Consequently, the efficient structure is the smallest one, i.e., P'=1.
Q.E.D.

Proposition 2 can be illustrated by a simple example. Assume that the information-
processing function has a general Cobb-Douglas form: F(K,L)=K*LP, where
o+P>1. Forany N (N>2) and any feasible combination of the resources (K,L), the
delay in information-processing in the centralized structure equals

Dyp-i(K,L) = N/(K*LP).
The delay in information-processing in the structure with two processors equals
Dy poo(K,L)= 2%P[IN/2] + [log,(2+N mod 2)1/(K“LP)

and is always greater than Dy;_, if a+B>1. Moreover, it can be verified that, for
the information-processing function considered, the delay in information-
processing in any structure with P>1 (PePy) is greater than in the centralized one.

Note that Proposition 2 says nothing about the conditions under which the
decentralization of the information-processing structures would be desirable.
However, it shows that decreasing returns to scale should be considered as a
necessary condition for the decentralization of data-processing.

The next result specifies an additional condition (a sufficient condition) which has
to be satisfied in order to expand (i.e., decentralize) the information-processing
structure.

Proposition 3

If the information-processing function exhibits decreasing returns to scale,
then the decentralization of the information-processing structure with

12



P<IN/2lprocessors up to P' processors ([[N/2|>P'>P) is desirable only if the
information workload (N) is large enough, i.e.,

K L K L
P F(?;)[(YN(P/)—I] - F(F,F)[YN(P)—I]}

v K L. P_KL ©
where
Y,(P) % ];U) - (% - 1) + llog,(P + N mod P)!, 7

and Y (P)® is determined for N>2, Pc{1,2,...IN/2]}.
Proof

It follows from Proposition 1 that the minimum delay in the computation
of N data items in the structure with P (P€{1,2,...IN/2]}) processors is
determined as

% LY (P) - 1
DKL) = ' : (8)
F(_:_)
PP

Thus, for any given information workload (N), it is desirable to decentralize
a structure with P (P€{1,2,...IN/2]-1}) processors if, and only if, there
exists P'e{1,2....,[IN/2]}, such that P'>P and Dyp(K,L)<Dyp(K,L), i.e.,
N
_+N(P/)_1 A]JrYN(P)—I
P’ P
< , )
K L K L
F(—,—) F(—,—)
P’ p/ PP

Rearranging the inequality above yields

® Function Y (P) has the following properties: (a) Yy(P)>1, for each Pe{1,2,...,IN/2]}, and
(b) values of Yy (P) oscillate around certain values (but are bounded) if N increases and P is
fixed (i.e., for any N, 0 <IN/PJ-(N/P-1)<1, and llog,Pl</log,(P+N mod P)I<[log,2P-1)1).
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N_K L KL
—[ (— —) (F’F)] >
> F(F,;)[(YN(P/)—I] - F(%,%)[YN(P)—I] . (10)

Assuming that the information-processing function faces decreasing returns
to scale, the expression

is positive. Dividing (10) by (11) gives (6).

i/ F

K L

QE.D.

It follows that decreasing returns to scale of the information-processing function
is a necessary (but not sufficient) condition for the decentralization of data-
processing in the decision-making systems. Once this condition is satisfied, the
condition for the information workload of the decision-making sector (i.e., a large
number of data items) is sufficient for the decentralized organization of data-
processing. Moreover, Proposition 3 implies that if the information-processing
function exhibits decreasing returns to scale, the size of the efficient information-
processing structures increases with the information workload (N), i.e., it is
desirable to decentralize any information-processing structure with P
(PeP\{IN/2]}) processors if N is sufficiently large.’

Thus, if the information-processing function faces non-decreasing returns to scale,
then the efficient information-processing structure is always centralized (following
from Proposition 2). On the other hand, if the information-processing function
exhibits decreasing returns, then (following from Proposition 3) the size of the
efficient structure (P") is determined by the number of data items processed (N)
and the resources allocated to information-processing. Note, however, that in
general (if the information-processing function is non-homogeneous), for any
fixed N, the size of the efficient structure (P") could be different for various
combinations of the resources allocated to information-processing.

7 Note that if N increases, the left-hand side of inequality (6) increases, but the right-hand
side is bounded (see footnote 6, property (b) of the function Yy (P)). Thus, for any P'
(P < P'<IN/2]) and the decreasing-returns-to-scale information-processing function, there exists
such N which satisfies the inequality (6).
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To simplify the analysis, we restrict our considerations to homogeneous of degree
h information-processing functions—i.e., we assume that for the information-
processing function under study the following is true

B'F(K.L) = F(BKPL) . (12)

where 0<<1 and 0<h<ee. In this case, necessary and sufficient conditions for the
decentralization of information-processing structures can be formulated as
follows:

Proposition 4

If the information-processing function is homogeneous of degree h, then
(for any given information workload, N) it is desirable to decentralize the
information-processing structure with P (P<IN/2l) processors if, and only
if,
(a) theinformation processing function exhibits homogeneity of a degree
less than 1, i.e., 0<h<l;
(b) there exists integer P'c[P+1,IN/2]], such that

PIY(P) - 1 - (L)) - 1]
N> P

, (13)
P h P
(—/) T

where Y(P) is given by (7).

Proof

The information-processing function, F(K,L), faces decreasing returns to
scale if the degree of homogeneity belongs to the interval (0,1). Thus,
following from Proposition 3, if he(0,1), then the decentralization of the
structure with P processing elements is desirable if there exists an integer
P' (P'e[P+1,IN/2]]) such that inequality (6) is satisfied for a given number
of data processed N. Taking into account condition (12), plugging P'=P/[3
(0<P<1) into (6), and rearranging yields (13).

Q.E.D.

One important implication of Proposition 4 is that, for any given information
workload (N), the size of the efficient information-processing structure (P°)
depends solely upon the degree of homogeneity (h) of the information-processing
function and is the same for any feasible inputs combination. Therefore, for any
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given number of data items processed (N), the size of the efficient structure (P")
could vary only in response to changes in the degree of homogeneity (h) of the
information-processing function.

5. Organizational Restructuring of the Efficient Structures

In our simple model, the degree of homogeneity (h) of the information-processing
function reflects the current status of the information-processing technology, and,
consequently, it may change in response to technological progress (note, however,
that not every improvement in information-processing technology changes the
degree of homogeneity of the information-processing function). Therefore, the size
of the efficient information-processing structures can be affected only by those
technological changes in information-processing which affect returns to scale of
the information-processing function (i.e., the degree of homogeneity, h).

The next result explains the pattern of changes in the size of the efficient
information-processing structures of decision-making systems in response to
changes in returns to scale of the information-processing function.

Proposition 5

The size of the efficient information-processing structures (P") of decision-making
systems decreases or doesn't change (increases or doesn't change) if the degree
of homogeneity of the information-processing function increases
(correspondingly, decreases).

Proof

The minimum delay in the summation of N data items that can be attained
by the structure with P processors (assuming that the duration of each
individual operation equals 1) can be specified as®

C\(P) J[ %( + [log,(P + N mod P)l, (14)

Thus, for any givzy, confbiflion of 2;1@ ts £K,Ir8) /El}e} size of the efficient
structures can be gfrl%v%a( fg_ogl)th’e following optimization problem:
PP

8 See Radner (1992 and 1993) or Gibbons and Rytter (1988).
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(15)

If the information-processing function is homogeneous of degree h (h>0),
i.e., (1/P)"F(K,L)= F(K/P,L/P), then the optimization problem above is
equivalent to

Min P"C\(P), Pe {1,2,..[N/2]}, (16)
P

and, consequently, for any given N, the size of the efficient structure (P")
depends only upon the degree of homogeneity of the information-
processing function and doesn't depend on the combination of inputs to
information-processing.

To show the pattern of changes in the size of the efficient structures (P*) in
response to changes in the degree of homogeneity (h) of the information-
processing function, suppose that C\(P) can be approximated by the
continuous, twice differentiable function C(P)’, where Pe[1,IN/2]], such
that Cy(P)>0, dC(P)/dP<0, and d*C(P)/dP>>0, for each Pe[1,IN/2]]. Asan
example, the function C,_;,(P) and its continuous approximation
Crosoo(P)=N/P+log,P are presented in Figure 5.1.

Define continuous function Ry(P,h)=P"C(P), where Pc[1,IN/2]], he(0,),
R, €(C(IN/2]),), and consider the following optimization problem:'’

Min R(P,h=h°), Pe [1)N/2] ], (17)
P

where h° (h°e€(0,)) is a parameter. The first order condition can be
represented as follows:

PP C Py + p"Cl(P) = 0, (18)
. . . hO . R
dividing on P y1e1d§ ¢ (P) . )
h - (-CyP) = 0.
P (19)

° In particular, Radner (1993) argued that the function of the form C(P)= N/P +log,P,
gives a good approximation of Cy(P), if N, P, and N/P are all large.

10 Note that Ry(P,h) is continuously differentiable in P and h.
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Note that the equation above does not necessarily have a solution in
Pe(1,IN/2]), and, consequently, the interior extremum does not necessarily
exist. If there is no such P in (1,IN/2)) which satisfies the equation (19), then
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Figure 5.1
The Minimum Delay C,(P) and Its Continuous Approximation Cy(P)
(Information Workload: N=500, Duration of a Single Operation: d=1)
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the solution to the optimization problem (17) is in one of the corners of the
interval [1,IN/2]], that is, P" = arg{ min Ry(P), where P< {1,IN/2]} }. On the
other hand, if the function C(P) can be represented as C(P)=S(N)P™"
(where S(N) denotes any function of N), then the minimum value of the
objective function does not depend on P, i.e., the objective function is
constant in P. In all other cases, if the solution to (19) exists in the interval
(1,IN/2)), i.e., P'e(1,IN/2]), then it corresponds to the minimum of the
objective function, R(P), if the second derivative of Ry (P) with respect to
P at P=P" is positive (i.e., d*Ry(P,h=h°)/dP?|,_~>0)."" To show the pattern

1 Note that hCN(P)/P and —CN'(P) in (19) are decreasing and strictly convex functions of
P. Consequently, these functions (a) cannot cross each other (in this case neither interior
minimum nor interior maximum exist), (b) can cross once, or (c) can cross at most twice. In
the case (b), the objective function has a maximum or a minimum in the point of the
intersection. In the case (c), in one intersection point there is a maximum and in the second one
the minimum of the objective function. However, in any case, i.e., (a) or (b), if the interior
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of changes in the size of the efficient structures, in response to changes in
parameter h°, represent the first order condition as G(h°,P" (h°))=0, and

define function o marro el (P )
Py = GULLOD) EEED) e pe
P P (20)

Function Q(h°,P’(h°)) is continuously differentiable with respect to
h°e(0,1) and P €(1,IN/2]). Consequently, by the implicit function theorem,
the first derivative of P"(h°) with respect to h° is

90
dP™ _  oh°
oP”
The partial derivative of Q(h°,P"(h°)) with respect to h® equals
Q _ CPY
oh° p* ? (22)

and it is positive for all P*e(1,IN/2]). The partial derivative of Q(h°,P"(h°))
with respect to P* equals

3G(h° P “(h°))
€O _ P pepamGrepikhey . 3D

The second term in the expression above equals zero (because
G(h°,P"(h°))=0). Moreover, dG(h°,P"(h°))/0P" = d’R\(P,h=h°)/dP?*| ,_,* and
is positive if P is the interior minimum. Thus, the second term disappears
and the first term in (23) is greater than zero. Consequently, dP"(h°)/dh°<0,
i.e., the size of the efficient information-processing structure (P") decreases
if the degree of homogeneity (h) of the information-processing function
increases.

This would be a general pattern of changes in the size of the efficient
structures in response to changes in the degree of homogeneity of the
information-processing function, if C(P) were a continuous function of P.
However, C(P) is determined only for integer values of P (i.e., for
Pe{1,2,...,[IN/2]}). In this case, small changes in h could not affect the size

minimum exists, then it is unique.
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of the efficient structures (P"). To show it, assume that for a certain
information workload (N) and the degree of homogeneity of the
information-processing function h=h, (h,e(0,1)), the structure with [N/2]
processors is efficient, i.e., for any Pe{2,...[N/2]-1} there exists P'=[N/2]
such that condition (13) is satisfied."* Note that the right-hand side of the
inequality (13) increases with h when he(0,1). Thus, if h=h, rises a bit, say
to h, (h;>h,, but the difference h,-h, is close to zero), then inequality (13)
could still be satisfied for all Pe{l1,...[N/2]-1}, and the structure with
P'=IN/2] processors would still be efficient. However, if the increase in h is
significant, say to h, close to 1, then the right-hand side of inequality (13)
rises considerably,” and this inequality is not satisfied for at least one
P<P'=[N/2], i.e., there exists a structure with P<P'=[N/2]processing elements
that gives a better result than a fully decentralized one. Consequently, a
substantial increase in the degree of homogeneity of the information-
processing function reduces the size of the efficient structure.

Consider now the case when, for given values of N and h=h, the size of the
efficient structure P* equals P, (P €{2,...,.[N/2/-1})). To show the pattern of
changes of P” in response to changes in h, define the function

PIY (P - 1 - (g)m(m - 1)

(Ph) = Min (24)
P'=P+1,... [N (i)h P

where Pe{1,2,...[N/2]-1}, he(0,1), and Y(P) is given by (7).

Proposition 3 implies that if P, is the size of the efficient structure, then the
following conditions have to be satisfied:

N < Vy(Phy), (25)

and
N>V (P, - s,h), (26)

where s=1,2,...,P - 1.

12 See Proposition 4.

3 In the extreme case, if h goes to 1, then the right-hand side of the inequality (13) goes
to infinity.
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It means that it is always desirable to expand all structures with processors
less than P, (up to P,), but it is surely not desirable to expand the structure
with P_processors (i.e., the delay in information-processing attained by any
bigger structure is greater than the delay attained by the structure with P,
processors). Note that function V(P,h) increases with h when he(0,1).
Thus, if the degree of homogeneity of the information-processing function
increases, then the values of V, also increase for each particular P
(P€{1,2,...IN/2]-1}). It implies that if h rises (i.e., departures from h,), then
conditions (25) and (26) could be violated. However, if the increase in h is
relatively small, say to h, (h;>h,, but Ah,=h,-h, is close to zero), then the
size of the efficient structure remains unchanged, i.e., the following
inequalities are still satisfied: N<V(P,h,+Ah,) and N>V (P,-s,h;+Ah,),
where s=1,2,...,P.— 1. On the other hand, if h increases considerably, say to
h, (h,>h,, but Ah,=h,-h, is significant) then the condition
N>V (P,-s,h,+Ah,),s=1,2,....P.— 1, would be violated at least for one s (i.e.,
P, would no longer be the size of the smallest structure which should not be
expanded). It implies that only a significant increment in the degree of
homogeneity (h) of the information-processing function reduces the size
(P") of the efficient structures.

Q.E.D.

It should be clear that the number of levels in the efficient processing network
(“skip-level reporting”) is proportional to its size, P* (note, however, that the
number of levels could be the same for different numbers of processors).
Consequently, if the number of processors in the efficient structure decreases
(increases), then the depth of the hierarchy either decreases or does not change
(correspondingly, increases or does not change). Since the size of the efficient
structures changes only in response to technological improvements that change the
degree of homogeneity of the information-processing function, the flattening
hierarchical information-processing structures can be explained only by those
technological changes which increase the degree of homogeneity of the
information-processing function.

For example, if the information-processing function is of the form
F(K,L)=A(K*“LP)*, where A, «, B, and p are all positive parameters (the function
is homogeneous with the degree of homogeneity h=(a+p)u), then a neutral
technological change could be represented by an increase in A or in . An increase
in A leaves the returns to scale unchanged while an increase in p increases those
returns (raises the degree of homogeneity, h). Consequently, an increase in A does
not affect the form of the efficient hierarchical structures, whereas an increase in
u might result in a reduction (and flattening) of efficient information-processing
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structures.

Note, however, that changes in information-processing technology which affect
returns to scale do not automatically imply changes in the size (and the depth) of
the efficient hierarchies. To reduce efficient information-processing structures,
changes in the degree of homogeneity of the information-processing function have
to be large enough.

6. Conclusion

The analysis of data-processing in decision-making presented in this paper shows
that organizational forms of the efficient information-processing structures are
determined by properties of the information-processing function and the
information workload of the system. In particular, it has been shown that the
decentralized (hierarchical) organization of information-processing in decision-
making can be observed if, and only if, the information-processing function
exhibits decreasing returns to scale and the information workload of the decision-
making system is large enough. If the information-processing function is
homogeneous, then the size of the efficient structures is determined solely by the
degree of homogeneity of the information-processing function and the information
workload of the decision-making system. Furthermore, if the information
workload remains unchanged, then the size of the efficient structures is inversely
related to the degree of homogeneity of the information-processing function and,
consequently, efficient information-processing structures can be reduced only by
those technological improvements which affect economies of scale in information-
processing, i.e., those which increase the degree of homogeneity of the
information-processing function. It should be emphasized however, that small
changes in the degree of homogeneity of the information-processing function
might not alter the size of the efficient processing networks.

The results above have been derived based on the set of simplifying assumptions
concerning information-processing in the decision-making sector of the firm. The
analysis has been restricted to the simplest case of associative operations in
homogeneous, one-shot structures with perfectly rational processors (it has been
assumed that processors always perform according to specification, i.e., cannot
make errors). However, similar results could be obtained using various
modifications of the dynamic parallel-processing model of associative
computation in which, for example, structures with heterogeneous processors are
considered (Cukrowski, 1995a), the possibility of errors in associative operations
is introduced (Cukrowski, 1995b), or computational processes in repeating

23



structures are studied (Radner and Van Zandt, 1992). These models make the
analysis more difficult, but the general result concerning the pattern of
organizational restructuring in response to changes in information-processing
technology remains the same.

It should be also clear that although the particular subject of the analysis presented
in the paper was the decision-making system inside the firm, the model developed
concerns organizations that may be different from firms. It is relevant for decision-
making systems in large corporations and nonprofit organizations as well as in
public administration. Consequently, organizational changes in these systems can
be justified exclusively by those technological improvements that affect returns
to scale of the information-processing function.
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