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Abstract

We consider a compressible Navier-Stokes system for a barotropic
fluid with density dependent viscosity in a three-dimensional time-
space domain (0,7) x €. where . = (0,)? x (0,1). We show that
the weak solutions of the 3D system converges to the strong solution
of the respective 1D system as € — 0.
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1 Introduction

The present paper is devoted to the problem of the limit passage from three-
dimensional to one-dimensional geometry. In a three-dimensional time-space
domain (0,7") x €2, where

Q. = (0,6)% x (0,1), >0, (1.1)

we consider the following compressible Navier-Stokes system with density
dependent viscosity coefficients

Oro + div(pu) = 0, (1.2)

9 (ou) + div(eu ® u) + Vp(e) — div(2u(e) D(u)) — V(A(o)divu) =0, (1.3)

supplemented with the initial conditions

0= Q<07 ')7 ou = Qu(ov ) (14)
and the mixed boundary conditions

ufgpon=0, (D(u)lsgaon) 7=0, (1.5)
u(t,.’l','l,xg,()) = u(t7$17$27 1)7 Q(t7x17w270) - Q(t,l'l,.’L'Q, 1)7 .

where n is outer unit normal vector, 7 denotes an arbitrary tangential vector
and
9182 = ((0,€) x {0,¢} x (0,1)) U ({0,¢} x (0,¢) x (0,1)).  (1.6)

and the second boundary condition holds for all ¢ € (0,7T") and all (z1,z3) €
(0,¢)2.

The above boundary conditions are a mix of the full-slip boundary con-
ditions on the "long walls" and the periodic boundary conditions on the
"shrinking walls". The full-slip boundary conditions are the only relevant
for the dimension reduction as the use of no-slip boundary conditions gives
only trivial result. On the other hand, the periodic boundary condition helps
to handle certain boundary terms involving pressure (see Section 3, relation
(3.20)).

Here, o = o(t,x) and u = u(t, x) stand for the density and the velocity
field of the fluid. The quantity D(u) = (Vu + V'u)/2 represents the strain
tensor. We denote by p(p) and A(g) the viscosity coefficients functions of
the fluid density. We consider a pressure p of the type p(0) = ag? where
a>0and vy >1.



In the context of thin-domains limit analysis for compressible fluids with
density dependent viscosity coefficients, a recent paper of Zhang [24] provides
a reduction from two to one dimension. For a fluid confined in a domain
Q. = I. x (0,1), with I. = (0,e) € R, the author analyzed the case where
the viscosity coefficients have the following form

0 < p=const., \p)= boP, (1.7)

for b > 0 and 8 > 3, obtaining the convergence of the strong solution of the
2D system to the strong solution to the 1D system in the limit of ¢ — 0
through the use of a relative entropy inequality method. Existence results
for strong solutions can be found in [21] and [11] respectively for 2D and 1D
fluids. For other recent results concerning the dimension reduction analysis
for compressible fluids the reader can refer, for example, to [1], [8], [10], [12],
[13], [20], [23].

In our paper, we consider viscosity coefficients of the following form
w(o) = po, with g > 0 constant, and A\(¢) = 0, and we extend the re-
sult of Zhang |24| showing that the weak solutions of the 3D system (1.2) -
(1.3) converges to the strong solution of the respective 1D system as £ — 0.
Our result considers, in particular, the so-called augmented version of the
Navier-Stokes system (1.2) - (1.3), see [7], for which, recently, a new rel-
ative entropy inequality has been derived (see [5], [6]). This new relative
entropy inequality seems a suitable tools in order to perform a dimension
reduction analysis for the density dependent viscosity case and, in general,
for weak-strong uniqueness problems (see e.g. [4], [9]).

2 Weak/k-entropy solutions, augmented version of
the Navier-Stokes system and main result

In the following section we introduce the x-entropy solutions and the aug-
mented version of the compressible Navier-Stokes system, and we present
the main result.

2.1 k-entropy solutions

In [7], the authors introduced the so-called k-entropy solutions for the system
(1.2) - (1.3).

Definition 1. Let 7' > 0 and & be such that 0 < k < 1. The couple (g, u) is
called a global k-entropy solution to the compressible Navier-Stokes system
(1.2) - (1.3) if the following conditions are satisfied.



(1) Equations.

The continuity equation is satisfied in the following sense

_ /OT /Egatﬁdxdt__ /OT /Egu.ngxdt: / 0Oz (2

for all £ € C2°([0,T) x ).

The momentum equation is satisfied in the following sense

//Qu -Oppdxdt— / / ou®u) : V¢dmdt+/ / 2u(o : Vodzdt
// d1vud1v¢d:1:dt—// o)divpdzdt = /QE ou(0) - ¢(0)dz

(2.2)
for all ¢ € (C°([0,T) x ©.))3.

(2) Entropy estimate.

(0, u) satisfies, for all ¢ € [0, T], the following k-entropy estimate

lu +26V(p) |2\/ﬁV<p\2
sup [/Qg Q< 5 ) dw—i—/e .Q€(Q)(t>d$]

te[0,7
+2k / / 0)|A(u) 2dzdt + 2x / / yvngdxdt
2(1— m/ / 0)|D(n)|?dzdt+2(1— m/ / 0))|divu|?dzdt

2 2,/(1 — k)kVp|?
</ Q(’u+ V(e | wladd ) da:+/ oe(0)(0)dx
Q. Q.

- 2
(2.3)
with ¢'(0) = p(0)/e and the internal energy e(p) defined by

o*de(o)
do

= p(0).



Remark 2. The inequality (2.3) is a generalization of the well known BD-
entropy introduced by Bresch and Desjardins in [2] (see also [3]) in the case
k = 1. Moreover, it generalizes the one obtained in [16] (see also [15]), taking
k=1/2 and ¢(p) = log p.

The existence of k-entropy solutions for the compressible Navier-Stokes
equations with p(p) = pe, with g > 0 constant, and A(g) = 0 without
extra terms (capillary, drag, singular pressure) have been recently proved in
[19] and [22]. More precisely, the authors in [19] and [22]| proved the global
existence of weak solutions. However, as remarked in |7] (see Remark 2), a
global weak solution of the system (1.2) - (1.3) is therefore a global k-entropy
solution. The converse is however not clear.

2.2 Augmented Navier-Stokes system

As observed in [7], the system (1.2) - (1.3) can be reformulated through an
augmented version. Indeed, for a coefficient x € (0, 1), defining the velocity
v =u+2kuVlogpand w = 2/k(1 — kK)uV log o, the augmented version of
the Navier-Stokes system reads as follows

Or0 + div(pu) = 0, (2.4)

d¢(ov) + div(pv ® u) + Vp(o)
= pdiv(20(1 — k)D(v)) + pdiv(2k0A(v) — pdiv (2\//1(1 — H)QVW) (2.5)

Ot(ow) + div(pw ® u)
= pdiv(2kpVw) — pdiv (2 k(1 — K;)Q(VVT)) . (2.6)

As the authors remarked in [4], is important to mention that a global weak /-
entropy solution (g,u) of the compressible Navier-Stokes system is also a
solution of the augmented version.

2.2.1 1D case

In the one-dimensional case, we have
015 + 0, (@) = 0, (2.7)

01(2®) + 0, () = 2, (\/(1 — R)20,7) + ud, (2k30,@),  (2.8)



0y (0v) + 0, (0var) + 9yp(0) = (1 — k)200y(00) — V1 — kv/k200y (00,W), (2.9)

where all unknowns are overlined in order to distinguish them from their 3D
counterparts. This system is considered on a time-space (0,7) x (0, 1) and,
as in the previous case, it holds that

U = U+ 2rk10y log o, w = 2/ k(1 — K)pdy log o. (2.10)
The assumed boundary conditions are of the form w(-,0) = w(-,1) and

Hereinafter, we assume that the solution (g, u) to the 1D-case fulfills
Oy, dylogo, 0;logp € L=((0,T) x (0,1)). (2.11)

The existence of solution which satisfies 8, 92, dyo € C*((0,T)%(0,1)) is
known for the initial conditions satisfying %(0,-) € C1t%(0,1) and 2(0,) €
C?*te. This was extensively studied — we refer to the works by Kawohl
|17| or Kazhikhov and Shelukhin [18|. Although they worked with different
boundary condition we do not expect any problem when adopting his method
to the considered periodic boundary condition. Nevertheless, we need to
know further estimates concerning also 82@ — this remains an open question.

2.3 Relative entropy

In the following we introduce a relative entropy inequality between a global
weak /k—entropy solution (g, v,w) to the system (2.4) - (2.6) and another
state of the fluid (r, V, W) specified below. Let us note that the functions
(0,v,w) also depend on e, however this dependency is not emphasized in
case we avoid any misunderstandings.

Inspired by [5], we define an entropy functional, E, for any triple of
smooth functions 7, V, W : (0,T) x Q. + (0,00) x R x R? by the following
relation

E(o,v,w|r,V, W)

= ;/ﬂ o(jw=W+[v=V[?) da:—i—/ (P(0)—P(r)—P'(r)(o—7)) dz (2.12)

€

where P denotes a pressure potential given by

P(p) = Q/lé’ pg) ds. (2.13)



Now, assuming that r, r~!, V and W are continuously differentiable up to
the boundary, is possible to derive the following entropy inequality (for the
details of the derivation see [6])

E(o,v,wlr,V,W)(7) — E(g,v,w|r, V,W)(0)
+2ku/T/ Q|A(V—V)|2dfcdt+2u/OT /Q ol D(V/(1 = k) (v=V)—V/k(w—W)|? dzdt
+2,w/ / o)V log o — p/(r)Vlogr] - [Vlog o — Vlogr] dadt
g/ /EQ((u-VW)-(W—v)+(u-VV)-(V—v)) dadt
/ / (OW - (W —w) + 8V - (V —v)) dadt

+/ O P'(r)(r — o) dadt — / VP'(r)-[ou—rU] dzdt
0 JQ. 0 JQ.

/ / ) divU dadt

- /OT [ viove: [ - ﬁwl s

+2M/T D/ RV) = V(/aW)) : (DW= m(V ~v)) ~ V(/a(W — w)) dadt

+21<;,u/ / 0A(V) : A(V—v dxdt—|—2/<c,u/ / 9 (Vr — VQ) dxdt
< c 0

2 1—w/ / AV — V) — Alw — W) : A(V)] d:;d;)

for every 7 € (0,T), where we used the identities

w, U=V-,-" w (2.15)
— K



2.4 Main result
Our main result reads.

Theorem 3. Let 9, U, W be a classical solution to (2.7) - (2.9) emanating
from the initial data 9y, Vo and wy which posses the regularity properties
mentioned in (2.11). Further, let o., ve, W: be a global weak/k—entropy
solution to (2.4) - (2.6) emanating from oo, Voe, Woe. Let, moreover, the
mitial data satisfy

1
a1 L gemelwo: — ol + Ivae —Tf?) da
€ €

1
‘Qs‘ Qe

P(00.) — P(29) — P'(20) (00, — @) dz — 0 (2.16)

Then
(0e,Ve,W:) = (0,0,W) as € =0 (2.17)

in the following sense

1 _min{2,
€SSSUP¢e (0,7 7’9 | los — Q||$$E2$ — 0,
3

. (2.18)
esssuptE(O,T)m|/Q 0 (|[we —w|* + |[v. — @|2) dz — 0.
€ €

Remark 4. We would like to mention that the convergence (2.9) does not
imply u. — @, strictly speaking. However, we can redefine w, namely w —

wk/+/k(1l — k). Consequently, u. = u =7 — w.

3 Proof of the Theorem 3

We set x3 = y and we use (2.14) with

r(z1,x2,23) =0
Vi(z1,22,23) =0, Va(xi,22,23) =0, V3(z1,22,23) =7
Wi(z1,22,23) =0, Wa(z,22,23) =0, W3(x1,22,23) = W(x3).

Consequently, (2.14) may be rewritten as

E(o,v,w|r,V,W)(1) — E(o,v,w|r, V, W)(0)
+2ku/ / olA(v—V) |2dxdt—|-2,u/ / ol D(V/ (1 = k) (v—=V)—V/k(w—W)|? dzdt

8



+2/£,u/ / 0)Vlogo—p'(o )Vlog@] -[Vlogo— Vlogp| dxdt
/ / ((u30,w) (W — v3) + (u30,0) (U — v3)) dadt

+/ / 0 (OT(W — w3) + 0T - (T — v3)) dedt

//at )@ o) dmdt—//c’?P %) - [ous — 7] dudt
// )0y ddt

2u— -

_R//

+2M/0 /Q ( mv—fw)( ( (1—5)(@—v3)—\/ﬁ(@—w3))) dadt

+2/<cu/ / gp’(@@y@ <8yg - 8553@) dzdt. (3.2)
0 Ja. @ 0 0

We multiply (2.8) by £(w — ws) and (2.9) by £(v — vs) to deduce

/ (00w + oudyw) (W — ws3) + (00,0 + ou0yv) (v — v3) do =
Qe

= /Q 2u0 (V1 — k0,0 — VkOyw) (VEDy(W — ws) — V1 — k(T — v3)) da

AL

SIS

> (V1 = kdyv — VKO W) (VEW — ws) — V1 — k(0 — v3)] dz
—/ 0,p(2) (@ — v3)2 dz. (3.3)
Qe 0



We plug this into (3.2) to get
E(o,v,w|r,V,W)(1) — E(p,v,w|r, V,W)(0)
+2k:u/ / olA(v)|? dxdt—l—2u/ / o|D(v/ (1 = k) (v=V)—V/r(w—W)|? dzdt

+2/£,u/ / 0)Vlogo—p'(o )Vlog@] -[Vlogo— Vlogp| dxdt

/ / ((us —w)0yw) (W — v3) + ((ug —@)0yv) (U — v3)) dadt

+/ 0,P'(0)(0 — o) dadt — / / 0y P'(0) - [ous — ou] dxdt
0 Qe

/ / )) Oyt dadt

+Kfﬂ%mm@(§) (VT = Ry — \ROyD) (VR — ws) ~ VT = R(T — vs)] dadt.
(3.4)

Since

2
<c(|vs— 72 + |ws — W\Q) ,

(3.5)

lug — 7l =

K I K _
V3 — — W3 — U — W
3 1—r ° 1—x

we deduce with help of the Holder inequality

/ / ((uz —w)0yw) (W — w3) + ((ug —w)0yv) (T —v3)) dz
¢ (10,00 + Hayvuoo)/o E(o.v, wlr, V.W)(t) dt. (3.6)
By definition of w and w, we get

0,(£) = (0,080~ 0,100 - £ (ws—m). ()

1
E2M\/E\/1 — K

10



Consequently, the following estimate is obtained by a similar computation
as the previous one.

oy G

(V1 = kOyv — VEOyW)(VE(W — w3) — V1 — k(T — v3)] dzdt
< ¢([|9ywlloc + ||57ﬂf||oo)/0 E(e,v,w|r,V, W) dt. (3.8)

Note that the second and the third term on the left hand side of (3.4) are
positive and thus they can be neglected. As a result, (3.4) yields

E(Q7V7W’T7V7W)(T) - E(97V7W|T7V7W)(O)
+2/£,u/ / 0)Vlogo—p'(o )Vlog@] -[Vlogo— Vlogp| dxdt

<[ [ ar@e-o - /0 anyP’@ngg—m dadt

// )) Oy dzcdt
9y0 1 _

- By W | dudt
of, [ eome [“ m“’] '
+m//p (5 5)

_ / / 0,0(8)(® — va)2 dadt
0 . 0

ro (10l + 10,71) [ Blevwln VW) (39
We will continue similarly as in [6]. As P”(s) =E /gs), we get
Oyp(0)(v — Vg)g = gaygp ;Q) (v—v3) = gﬁyP'(E)(@ —Vv3). (3.10)
We multiply (2.7) by P”(2) to get
9 P'(0) + 9,P'(0)u = —P"(0)20,u = —p'(2)0,T. (3.11)

11



We collect the previous two estimate and we use (2.15) in order to deduce
that

/ / P (@)(T— o) - ayP’@)(gug—@—ayp@(w—vw% dzdt

/ / &P ()(@ — 0) + 0, P (2)u(z — o) + 0, P' (7)o — u)
— 00y P'(0)(v — v3) dadt

//_p 10,12 — 0) — f A 00,P () (@ — ws) dadt. (3.12)

Consequently, (3.9) becomes
E(o,v,w|r,V,W)(7) — E(o,v,w|r,V,W)(0)

+2/w/ / 0)Vlogo—p/(8)Vloga] - [Viege - Viega] dadt
< [ [ 6@ -p0)-r@@- o) o s
[ A=
ol pom !]
|, o (5552 e

+c (||0yw]| o0 + ||3yv||oo)/ E(o,v,w|r,V, W) dt. (3.13)
0

g@ P'(0)(w — ws) dxdt

s

Since (see [14, Section 4|)

(0 — o) for min(g) < o < 2max(0),

P(o) — P(0) — P'(2)(e —0)~ { (1+ ¢7) otherwise.

(3.14)
we get

p(e) —p(@) —p'(2)(e —2) ~ P(o) — P(2) — P'(2)(¢ — 0) (3.15)

and consequently

/Q (p(2) —p(e) —p'(2)(2— )0yt dz < c[| 0yl E(o, v, w|r, V, W). (3.16)

12



Due to the definition of w, we have

; ————w =0. 3.17
p— T (3.17)
Further, we have
VE o
mgaypl(g)(w - Wg)
JE o1 B
= mgp’(g)ﬁygg (2 k(1 — k)p (0ylogo — 9, log g))

- 2w%p/(@)ay@(ay logo — dylog o). (3.18)

Consequently, the sum of the second and fourth term on the right hand side
of (3.13) is zero. It remains to deal with the second term on the left hand
side. Here, we use the fact that p(g¢) = ¢” (assuming a = 1 without loss of
generality). We have,

o(p'(0)9ylog 0 — p'(2)0y log 0) (9, log 0 — 0, log )

= 0/ (0)9y log 0 — 9, log 0” + o(¥'(0) — 1'(2))8y log 2(9y log 0 — 9, log 0)

= 0v'(0)|9y log 0 — 9y log 0> + 8y (p(e) — p(2) — ¥'(2)(¢ — )9y log o
— (e(¥'(0) = P'(2)) —p"(@)(0 — 0)2)|9y log 7*. (3.19)

The first term on the right hand side is definitely positive and thus it can be
neglected in (3.13). For the rest, by integration by parts, we have

0 dy(p(0) — p(2) — p'(2)(0 —0))dylog o — (0(p'(0) — 1'(0))
p"(2)(0 — 2)0)|9y log2* da

<e /Q (0(0) - p(@) — #(2)(0 — 8)]|82log 7] dx
e /Q o (o) — P'(3)) — 1" (3) (0 — D)310, log B2 da. (3.20)
We end up with
E(o.v, wlr,V,W)(r) — E(o,v, wlr, V,W)(0)
< (18,1001 18, o+ 18y 108 loo- 92 10g loc) /0 E(o.v, wlr, V, W)(t) dt.

(3.21)

13



Now the dependency on £ matters and thus we use a index € to denote it.
By the Gronwall inequality and dividing by 1/|€2|, we deduce that

1

0c, Ve, We|r, V, W
e ve Wl VW)

(10|, 19yTlloc, 19y log 2lloc, 105 log 2llc, T) E e, Ve, Welr, V, W)(0).

(3.22)
for every 7 € [0,7] and for some constant ¢ independent of €. Due to
assumptions, we have

1
€]

\Q\

E(0z,ve,we|r, V,W)(0) - 0, as ¢ — 0. (3.23)

Consequently, (3.22) yields the demanded convergencies and Theorem 3 is
proved.
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