Photosynthetica, 2018 (vol. 56), issue 4

Photosynthetica 2018, 56(4):1147-1153 | DOI: 10.1007/s11099-018-0800-1

The effects of lead on photosynthetic performance of waxberry seedlings (Myrica rubra)

B. He1,*, M. Gu1, X. Wang1, X. He2,*
1 Guangxi Key Laboratory of Agri-environment and Agri-products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi, China
2 College of Agriculture, Guangxi University, Nanning, Guangxi, China

The photosynthesis was investigated 30 d after Pb treatment in Myrica rubra seedlings. The Pb treatment resulted in significantly increased Pb concentrations in shoots. Low Pb concentration exposure (≤2 mM) reduced the net photosynthetic rate (PN), transpiration rate (E), and stomatal conductance (gs) without affecting the intercellular CO2 concentration (Ci), chlorophyll (Chl) content, and Chl fluorescence parameters. At 10 d after severe Pb treatment (≥4 mM), PN was inhibited and accompanied by Chl damage, while at 30 d, the inhibition of PN was followed by an increase of Ci and a decrease of gs, E, Chl content, and Chl fluorescence parameters. M. rubra showed a promising prospect for use in the soil phytoremediation, when Pb concentration is low, but the remediation efficiency of M. rubra is limited if Pb exceeds 2 mM.

Keywords: chlorophyll fluorescence; lead stress; photosynthesis

Received: October 22, 2016; Accepted: July 17, 2017; Prepublished online: December 1, 2018; Published: November 1, 2018Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
He, B., Gu, M., Wang, X., & He, X. (2018). The effects of lead on photosynthetic performance of waxberry seedlings (Myrica rubra). Photosynthetica56(4), 1147-1153. doi: 10.1007/s11099-018-0800-1.
Download citation

References

  1. Ahmad M.S.A., Hussain M., Ijaz S. et al.: Photosynthetic performance of two mung bean (Vigna radiata) cultivars under lead and copper stress.-Int. J. Agr. Bio. 10: 167-172, 2008.
  2. Ali H., Khan E., Sajad M.A.: Phytoremediation of heavy metalsconcepts and applications.-Chemosphere 91: 869-881, 2013. Go to original source...
  3. Arnon D.I.: Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris.-Plant Physiol. 24: 1-15, 1949. Go to original source...
  4. Axelsen K.B., Palmgren M.G.: Inventory of the superfamily of P-Type ion pumps in Arabidopsis.-Plant Physiol. 126: 696-706, 2001. Go to original source...
  5. Björkman O., Demmig B.: Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins.-Planta 170: 489-504, 1987. Go to original source...
  6. Callahan D.L., Baker A.J.M., Kolev S.D. et al.: Metal ion ligands in hyper-accumulating plants.-J. Biol. Inorg. Chem. 11: 2-12, 2006.
  7. Caparròs S., Diaz M.J., Ariza J. et al.: New perspectives for Paulownia fortunei L. valorization of the autohydrolysis and pulping processes.-Bioresource Technol. 99: 741-749, 2008. Go to original source...
  8. Doumett S., Lamperi L., Checchini L. et al.: Heavy metal distribution between contaminated soil and Paulownia tomentosa in a pilot-scale assisted phytoremediation study: influence of different complexing agents.-Chemosphere 72: 1481-1490, 2008. Go to original source...
  9. Drazkiewicz M.: Chlorophyllase: occurrence, functions, mechanism of action, effects of external and internal factors (Review).-Photosynthetica 30: 321-331, 1994.
  10. Fargašová A.: Phytotoxic effects of Cd, Zn, Pb, Cu and Fe on Sinapis alba L. seedlings and their accumulation in roots and shoots.-Biol. Plantarum 44: 471-473, 2001. Go to original source...
  11. Farquhar G.D. Sharkey T.D.: Stomatal conductance and photosynthesis.-Annu. Rev. Plant Physio. 33: 317-345, 1982. Go to original source...
  12. Gajic G., Mitrovic M., Pavlovic P. et al.: An assessment of the tolerance of Ligustrum ovalifolium Hassk. to traffic-generated Pb using physiological and biochemical marker.-Ecotox. Environ. Safe. 72: 1090-1101, 2009. Go to original source...
  13. Gupta D., Nicoloso F., Schetinger M. et al.: Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress.-J. Hazard. Mater. 172: 479-484, 2009. Go to original source...
  14. He B., He J., He X. et al.: [Effects of lead on physiological characteristics of bayberry seedlings.]-RDA J. Agro-Environ. Sci. 28: 1263-1268, 2009. [In Chinese]
  15. He X., Chen L., He B. et al.: [Effect of lead nitrate on the growth of Myrica rubra.]-J. Fruit Sci. 21: 29-32, 2004. [In Chinese]
  16. Hussain M., Ahmad M.S.A., Kausar A.: Effect of lead and chromium on growth, photosynthetic pigments and yield components in mash bean [Vigna mungo (L.) Hepper].-Pak. J. Bot. 38: 1389-1396, 2006.
  17. Jamil M., Rehman S., Lee K.J. et al.: Salinity reduced growth PS2 photochemistry and chlorophyll content in radish.-Sci. Agr. 64: 111-118, 2007. Go to original source...
  18. Karukstis K.: Chlorophyll fluorescence as a physiological probe of the photosynthetic apparatus.-In: Sheer H. (ed.): Chlorophylls. Pp. 769-795. CRC Press, Boca Raton 1991.
  19. Ke S.: Effects of copper on the photosynthesis and oxidative metabolism of Amaranthus tricolor seedlings.-Agr. Sci. China. 6: 1182-1192, 2007. Go to original source...
  20. Koyro H., Hussain T., Huchzermeyer B. et al.: Photosynthetic and growth response of a perennial halophytic grass Panicum turgidum to increasing NaCl concentrations.-Environ. Exp. Bot. 91: 22-29, 2013. Go to original source...
  21. Li X., Bu N., Li Y. et al.: Growth, photosynthesis and antioxidant response of endophyte infected and non-infected rice under lead stress conditions.-J. Hazard Mater. 213-214: 55-56, 2012. Go to original source...
  22. Meneguelli-Souza A.C., Vitória A.P., Vieira T.O. et al.: Ecophysiological responses of Eichhornia crassipes (Mart.) Solms to As5+ under different stress conditions.-Photosynthetica 54: 243-250, 2016. Go to original source...
  23. Mils R.F., Krjiger G.C., Baccarini P.J. et al.: Functional expression of AtHMA4, a P-1B-type ATPase of the Zn/Co/Cd/Pb subclass.-Plant J. 35: 164-176, 2003. Go to original source...
  24. MLRC, MEPC: [Bulletin on national survey of soil contamination.] Reference No. 000014672/2014-00351. Ministry of envrironmental protection of China, Beijing 2014. [In Chinese]
  25. Moustakas M., Lanaras T., Symeonidis L. et al.: Growth and some photosynthetic characteristics of field grown Avena sativa under copper and lead stress.-Photosynthetica 30: 389-396, 1994.
  26. Parys E., Romanowska E., Siedlecka M. et al.: The effect of lead on photosynthesis and respiration in detached leaves and in mesophyll protoplasts of Pisum sativum.-Acta Physiol. Plant. 20: 313-322, 1998.
  27. Prasad M.N.V.: Metal-biomolecule complex in plants: Occurrence, function and applications.-Analysis 26: 25-27, 1998.
  28. Rascio N., Navari-Izzo F.: Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting?-Plant Sci. 180: 169-181, 2011. Go to original source...
  29. Rashid A., Camm E.L., Ekramoddoullah A.K.: Molecular mechanism of action of Pb2+ and Zn2+ on water oxidizing complex of photosystem II.-FEBS Lett. 350: 296-298, 1994. Go to original source...
  30. Sengar R.S., Gautam M., Sengar R.S. et al.: Lead stress effects on physiobiochemical activities of higher plants.-Rev. Environ. Contam. T. 196: 73-93, 2008. Go to original source...
  31. Shahid M., Pinelli E., Pourrut B. et al.: Lead-induced genotoxicity to Vicia faba L. roots in relation with metal cell uptake and initial speciation.-Ecotox. Environ. Safe. 74: 78-84, 2011. Go to original source...
  32. Shakoor M.B., Ali S., Hameed A. et al.: Citric acid improves lead (Pb) phytoextraction in Brassica napus L. by mitigating Pbinduced morphological and biochemical damages.-Ecotox. Environ. Safe. 109: 38-47, 2014. Go to original source...
  33. Sharma P., Dubey R.S.: Lead toxicity in plants.-Braz. J. Plant Physiol. 17: 35-52, 2005.
  34. Skórzynska-Polit E., Baszynski T.: Differences in sensitivity of the photosynthetic apparatus in Cd-stressed runner bean plants in relation to their age.-Plant Sci. 128: 11-21, 1997. Go to original source...
  35. Stefanov K., Seizova K., Popova I. et al.: Effect of lead ions on the phospholipid composition in leaves of Zea mays and Phaseolus vulgaris.-J. Plant Physiol. 147: 243-246, 1995. Go to original source...
  36. Subrahmanyam D., Rathore V.S.: Influence of manganese toxicity on photosynthesis in ricebean (Vigna umbellate) seedlings.-Photosynthetica 38: 449-453, 2000. Go to original source...
  37. Tanyolaç D., Ekmekçi Y., Ünalan S.: Changes in photochemical and antioxidant enzyme activities in maize (Zea mays L.) leaves exposed to excess copper.-Chemosphere 67: 89-98, 2007. Go to original source...
  38. Tzvetkova N., Miladinova K., Ivanova K. et al.: Possibility for using of two Paulownia lines as a tool for remediation of heavy metal contamination soil.-J. Environ. Biol. SN: 145-151, 2015.
  39. van Assche F., Clijsters H.: Effects of metals on enzyme activity in plants.-Plant Cell Environ. 13: 195-206, 1990. Go to original source...
  40. Watanabe M.E.: Phytoremediation on the brink of commercialization.-Environ. Sci. Technol. 31: 182-186, 1997. Go to original source...
  41. Witters N., van Slycken S.V., Ruttens A. et al.: Short-rotation coppice of willow for phytoremediation of a metalcontaminated agricultural area: a sustainability assessment.-Bioenerg. Res. 2: 144-152, 2009. Go to original source...
  42. Wu X., Hong F.S., Liu C. et al.: Effects of Pb2+ on energy distribution and photochemical activity of spinach chloroplast.-Spectrochim. Acta A 69: 738-742, 2008a. Go to original source...
  43. Wu X., Liu C., Qu C. et al.: Effects of lead on activities of photochemical reaction and key enzymes of carbon assimilation in spinach chloroplast.-Biol. Trace Elem. Res. 126: 269-279, 2008b.
  44. Yadav S.K.: Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants.-S. Afr. J. Bot. 76: 167-179, 2010. Go to original source...
  45. Zu Y., Li Y., Schvartz C. et al.: Accumulation of Pb, Cd, Cu and Zn in plants and hyperaccumulator choice in Lanping lead-zinc mine area, China.-Environ. Int. 30: 567-576, 2004.