Photosynthetica, 2018 (vol. 56), issue 4

Photosynthetica 2018, 56(4):1212-1217 | DOI: 10.1007/s11099-018-0814-8

Photosynthesis and leaf development of cherry tomato seedlings under different LED-based blue and red photon flux ratios

X. Y. Liu1, X. L. Jiao1, T. T. Chang1, S. R. Guo2, Z. G. Xu1,*
1 College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
2 College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China

We investigated the photosynthesis and leaf development of cherry tomato seedlings grown under five different combinations of red and blue light provided by light-emitting diodes (LEDs). Fresh biomass increased significantly under treatments with blue light percentages of 50, 60, and 75%, with 50% blue-light-grown seedlings accumulating significantly more dry mass. The 25% blue-light-grown seedlings were obviously weaker than those from the other LED treatments. An increase in net photosynthetic rate upon blue light exposure (25-60%) was associated with increases in leaf mass per unit leaf area, leaf area, leaf density, stomatal number, chloroplast and mesophyll cell development, and chlorophyll contents. Our results imply that photosynthesis and leaf development in cherry tomato seedlings are associated with both the proportion and quantity of blue light.

Keywords: chloroplasts; leaf density; mesophyll cell; morphology; stomata

Received: April 18, 2017; Accepted: December 12, 2017; Prepublished online: December 1, 2018; Published: November 1, 2018Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Liu, X.Y., Jiao, X.L., Chang, T.T., Guo, S.R., & Xu, Z.G. (2018). Photosynthesis and leaf development of cherry tomato seedlings under different LED-based blue and red photon flux ratios. Photosynthetica56(4), 1212-1217. doi: 10.1007/s11099-018-0814-8.
Download citation

Supplementary files

Download filephs-201804-0025_S1.pdf

File size: 198.09 kB

References

  1. Chang T.T., Liu X.Y., Xu Z.G. et al.: [Effects of light spectral energy distribution on growth and development of tomato seedlings.]-Sci. Agri. Sinica 43: 1748-1756, 2010. [In Chinese]
  2. Cope K.R., Snowden M.C., Bugbee B.: Photobiological interactions of blue light and photosynthetic photon flux: effects of monochromatic and broadspectrum light sources.-Photochem. Photobiol. 90: 574-584, 2014. Go to original source...
  3. Duan Y.F., Wang Y.N., Li X.: [A simplified method for observing stomata by shaving off mesophyll cells to obtain epidermis from leaf and its application.]-Acta Agricult. Boreal. Sin. 23: 73-76, 2008. [In Chinese]
  4. Fan X.X., Xu Z.G., Liu X.Y. et al.: Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light.-Sci. Hortic.-Amsterdam 153: 50-55, 2013a. Go to original source...
  5. Fan X.X., Zang J., Xu Z.G. et al.: Effects of different light quality on growth, chlorophyll concentration and chlorophyll biosynthesis precursors of non-heading Chinese cabbage (Brassica campestris L.).-Acta Physiol. Plant. 35: 2721-2726, 2013b. Go to original source...
  6. Gonçalves B., Correia C.M., Silva A.P. et al.: Leaf structure and function of sweet cherry tree (Prunus avium L.) cultivars with open and dense canopies.-Sci. Hortic.-Amsterdam 116: 381-387, 2008.
  7. Gutu A., Nesbit A.D., Alverson A.J. et al.: Unique role for translation initiation factor 3 in the light color regulation of photosynthetic gene expression.-P. Natl. Acad. Sci. USA 110: 16253-16258, 2013. Go to original source...
  8. Hernández R., Kubota C.: Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs.-Environ. Exp. Bot. 121: 66-74, 2016. Go to original source...
  9. Hogewoning S.W., Trouwborst G., Maljaars H. et al.: Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light.-J. Exp. Bot. 61: 3107-3117, 2010. Go to original source...
  10. Lawson T., von Caemmerer S., Baroli I.: Photosynthesis and stomatal behaviour.-In: Lüttge U., Canóvas F.M., Matyssek R. (ed.): Progress in Botany, Vol. 72. Pp. 265-304. Springer, Heidelberg 2011. Go to original source...
  11. Liu X.Y., Guo S.R., Xu Z.G. et al.: Regulation of chloroplast ultra-structure, cross-section anatomy of leaves and morphology of stomata of cherry tomato by different light irradiations of LEDs.-HortScience 46: 217-221, 2011.
  12. Liu X.Y., Xu Z.G., Chang T.T. et al.: Growth and photosynthesis of cherry tomato seedling exposed to different low light of led light quality.-Acta Bot. Boreal. Occident. Sin. 30: 725-732, 2010.
  13. Matos F.S., Wolfgramm R., Cavatte P.C. et al.: Phenotypic plasticity in response to light in the coffee tree.-Environ. Exp. Bot. 67: 421-427, 2009. Go to original source...
  14. Matsuda R., Ohashi-Kaneko K., Fujiwara K. et al.: Analysis of the relationship between blue-light photon flux density and the photosynthetic properties of spinach (Spinacia oleracea L.) leaves with regard to the acclimation of photosynthesis to growth irradiance.-Soil Sci. Plant Nutr. 53: 459-465, 2007. Go to original source...
  15. Miao Y.X., Wang X.Z., Gao L.H. et al.: Blue light is more essential than red light for maintaining the activities of photosystem II and I and photosynthetic electron transport capacity in cucumber leaves.-J. Integr. Agr. 15: 87-100, 2016. Go to original source...
  16. Nanya K., Ishigami Y., Hikosaka S. et al.: Effects of blue and red light on stem elongation and flowering of tomato seedlings.-Acta Hortic. 956: 264-266, 2012. Go to original source...
  17. Paul M.J., Pellny T.K.: Carbon metabolite feedback regulation of leaf photosynthesis and development.-J. Exp. Bot. 54: 539-547, 2003. Go to original source...
  18. Samuoliene G., Brazaityte A., Urbonaviciute A. et al.: The effect of red and blue light component on the growth and development of frigo strawberries.-Zemdirbyste 97: 99-104, 2010.
  19. Schuerger A.C., Brown C.S., Stryjewski E.C.: Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emitting diodes supplemented with blue or far-red light.-Ann. Bot.-London 79: 273-282, 1997. Go to original source...
  20. Su N.N., Wu Q., Shen Z.G. et al.: Effects of light quality on the chloroplastic ultra-structure and photosynthetic characteristics of cucumber seedlings.-Plant Growth Regul. 73: 227-235, 2014. Go to original source...
  21. Terashima I., Fujita T., Inoue T. et al.: Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green.-Plant Cell Physiol. 50: 684-697, 2009. Go to original source...
  22. Vogelmann T.C.: Plant tissue optics.-Annu. Rev. Plant Phys. 44: 231-251, 2003.
  23. Wang X.Y., Xu X.M., Cui J.: The importance of blue light for leaf area expansion, development of photosynthetic apparatus, and chloroplast ultra-structure of Cucumis sativus grown under weak light.-Photosynthetica 53: 213-222, 2015. Go to original source...
  24. Xu W.D., Liu X.Y., Jiao X.L. et al.: [Effect of blue light quantity on growth and quality of lettuce.]-J. Nanjing Agr. Univ. 38: 890-895, 2015a. [In Chinese]
  25. Xu D.Q., Gao W., Ruan J.: [Effects of light quality on plant growth and development.]-Plant Physiol. J. 51: 1217-1234, 2015b. [In Chinese]
  26. Yao Y.C., Wang S.H., Kong Y.: [Characteristics of photosynthetic mechanism in different peach species under low light intensity.]-Sci. Agricult. Sin. 40: 855-863, 2007. [In Chinese]