Photosynthetica, 2017 (vol. 55), issue 2

Photosynthetica 2017, 55(2):231-239 | DOI: 10.1007/s11099-016-0224-8

Tolerance of Mitragyna parvifolia (Roxb.) Korth. seedlings to NaCl salinity

A. Bidalia1,*, M. Hanief1, K. S. Rao1
1 Department of Botany, University of Delhi, Delhi, India

Increase in salinity is predicted to affect plant growth and survival in most arid and semiarid regions worldwide. Mitragyna parvifolia (Roxb.) Korth. is an important medicinal tree species distributed throughout the semiarid regions of India; however, it is facing a threat of its extinction in its natural habitat. We examined the effects of increasing NaCl salinity on two-month-old M. parvifolia seedlings grown in an environment-controlled chamber and exposed to soils of different electrical conductivity (EC) caused by NaCl [0-5 (control), 5-10, 10-15, 15-20, and 20-25 dS m-1)] for 85 days. Seedlings transferred to soil of EC >15 dS m-1 did not survive beyond 1 week. Increase in the Na+ concentration negatively correlated with their height and positively correlated with their water-use efficiency (WUE). However, leaf area, net photosynthetic rate (P N), stomatal conductance, and transpiration rate showed varying correlations and an overall decrease in these parameters compared with the control. At EC of 10-15 dS m-1, the seedling height was reduced by 37% and P N was lowered by 50% compared with those of the control. An increase in the Na+/K+ ratio was observed with increasing salinity. The maximum quantum efficiency of PSII significantly decreased with increasing salinity compared with the control. Our results suggest that the increase in salinity reduced the overall performance of the M. parvifolia seedlings. However, the maintenance of WUE and maximum quantum efficiency of PSII might help M. parvifolia to tolerate NaCl salinity of 15 dS m-1.

Keywords: chlorophyll fluorescence; gas exchange; growth analysis; Kadam; long-term salinity; water-use efficiency

Received: May 8, 2015; Accepted: March 8, 2016; Published: June 1, 2017Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Bidalia, A., Hanief, M., & Rao, K.S. (2017). Tolerance of Mitragyna parvifolia (Roxb.) Korth. seedlings to NaCl salinity. Photosynthetica55(2), 231-239. doi: 10.1007/s11099-016-0224-8.
Download citation

References

  1. Aitken S.N., Yeaman, S., Holliday J.A. et al.: Adaptation, migration or extirpation: climate change outcomes for tree populations. - Evol. Appl. 1: 95-111, 2008. Go to original source...
  2. Allen S.E., Davison W., Grimshaw H. et al.: Chemical Analysis of Ecological Materials. Pp. 46-60. Blackwell Sci. Publ., Oxford 1974.
  3. Ashraf M.: Relationships between growth and gas exchange characteristics in some salt-tolerant amphidiploid Brassica species in relation to their diploid parents. - J. Exp. Bot. 45: 155-163, 2001. Go to original source...
  4. Baker N.R.: Chlorophyll fluorescence: a probe of photosynthesis in vivo. - Annu. Rev. Plant Biol. 59: 89-113, 2008. Go to original source...
  5. Bates B., Kundzewicz Z.W., Wu S. et al.: Climate change and water. Pp. 103. Intergovernmental Panel on Climate Change (IPCC), Geneva 2008. Go to original source...
  6. Belkhodja R., Morales F., Abadia A. et al.: Chlorophyll fluorescence as a possible tool for salinity tolerance screening in barley (Hordeum vulgare L.). - Plant Physiol. 104: 667-673, 1994. Go to original source...
  7. Bohnert H.J.: Abiotic stress. - In: Hetherington A.M. (ed.): Encyclopedia of Life Sciences. Pp. 1-9. John Wiley & Sons Ltd, London 2007. Go to original source...
  8. Borsani O., Valpuesta V., Botella M.: Developing salt tolerant plants in a new century: a molecular biology approach. - Plant Cell Tiss. Org. 73: 101-115, 2003. Go to original source...
  9. Briantais J.M., Vernotte C., Krause G.H.: Chlorophyll a fluorescence of higher plants: chloroplast and leaves. - In: Govindjee, Amesz J., Fork D.C. (ed.): Light Emission by Plants and Bacteria. Pp. 539-583. Academic Press, Orlando 1986. Go to original source...
  10. Chaves M.M., Flexas J., Pinheiro C.: Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. - Ann. Bot.-London 103: 551-560, 2009. Go to original source...
  11. Chelli-Chaabouni A., Mosbah A.B., Maalej M. et al.: In vitro salinity tolerance of two pistachio rootstocks: Pistacia vera L. and P. atlantica Desf. - Environ. Exp. Bot. 69: 302-312, 2010. Go to original source...
  12. Cramer G., Alberico G., Schmidt C.: Leaf expansion limits dry matter accumulation of salt-stressed maize. - Funct. Plant Biol. 21: 663-674, 1994. Go to original source...
  13. Curtis P.S., Läuchli A.: The effect of moderate salt stress on leaf anatomy in Hibiscus cannabinus (kenaf) and its relation to leaf area. - Am. J. Bot. 74: 538-542, 1987. Go to original source...
  14. Debez A., Koyro H., Grignon C. et al.: Relationship between the photosynthetic activity and the performance of Cakile maritima after long-term salt treatment. - Physiol. Plantarum 133: 373-385, 2008. Go to original source...
  15. Díaz-López L., Gimeno V., Lidón V. et al.: The tolerance of Jatropha curcas seedlings to NaCl: An ecophysiological analysis. - Plant Physiol. Bioch. 54: 34-42, 2012. Go to original source...
  16. Ebert G., Casierra-Posada F., Lüdders P.: Influence of NaCl salinity on growth and mineral uptake of lulo (Solanum quitoense L.). - Angew. Bot. 73: 31-33, 1999.
  17. Ebert G.: Growth, ion uptake and gas exchange of two Annona species under salt stress. - J. Appl. Bot. 72, 61-65, 1998.
  18. Fang S.Z., Song L.Y., Fu X.X.: Effects of NaCl stress on seed germination, leaf gas exchange and seedling growth of Pteroceltis tatarinowii. - J. Forest. Res. 17: 185-188, 2006. Go to original source...
  19. Garg B.K., Gupta I.C.: Salinity Tolerance in Plants: Methods, Mechanisms and Management. Pp. 159-196. Sci. Publ., Jodhpur, 2011.
  20. Govindjee.: Chlorophyll a fluorescence: A bit of basics and history. - In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Pp. 2-42. Springer, Dordrecht 2004.
  21. Greenway H., Munns R.: Mechanisms of salt tolerance in nonhalophytes. - Annu. Rev. Plant Physio. 31: 149-190, 1980. Go to original source...
  22. Hamamoto S., Horie T., Hauser F. et al.: HKT transporters mediate salt stress resistance in plants: from structure and function to the field. - Curr. Opin. Chem. Biol. 32: 113-120, 2015. Go to original source...
  23. Hasegawa P.M., Bressan R.A., Zhu J.K. et al.: Plant cellular and molecular responses to high salinity. - Annu. Rev. Plant Physiol. 51: 463-499, 2000. Go to original source...
  24. Houle G., Morel L., Reynolds C.E. et al.: Effect of salinity on different developmental stages of an endemic annual plant Aster laurentianus (Asteraceae). - Am. J. Bot. 88: 62-67, 2001. Go to original source...
  25. Imada S., Yamanaka N., Tamai S.: Effects of salinity on the growth, Na partitioning, and Na dynamics of a salt-tolerant tree, Populus alba L. - J. Arid Environ. 73: 245-251, 2009 Go to original source...
  26. Iwanaga F., Yamamoto F.: Growth, morphology and photosynthetic activity in flooded Alnus japonica seedlings. - J. Forest. Res. 12: 243-246, 2007. Go to original source...
  27. Kalaji H.M., Govindjee., Bosa K. et al.: Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. - Environ. Exp. Bot. 73: 64-72, 2011. Go to original source...
  28. Khan M.A., Ungar I.A.: The effect of salinity and temperature on the germination of polymorphic seeds and growth of Atriplex triangularis Willd. - Am. J. Bot. 71: 481-489, 1984. Go to original source...
  29. Koyro H.W.: Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). - Environ. Exp. Bot. 56: 136-146, 2006. Go to original source...
  30. Kozlowski T.T.: Responses of woody plants to flooding and salinity. - Tree Physiol. Monogr. 1: 1-29, 1997. Go to original source...
  31. Li J., Zhao C., Li J. et al.: Growth and leaf gas exchange in Populus euphratica across soil water and salinity gradients. - Photosynthetica 51: 321-329, 2013. Go to original source...
  32. Liu J., Guo W.Q., Shi D.C.: Seed germination, seedling survival, and physiological response of sunflowers under saline and alkaline conditions. - Photosynthetica 48: 278-286, 2010. Go to original source...
  33. Long S., Baker N.: Saline terrestrial environments. - In: Baker N, Long S. (ed.): Photosynthesis in Contrasting Environments. Pp. 63-102, Elsevier, New York 1986.
  34. Lu C., Qiu N., Wang B. et al.: Salinity treatment shows no effects on photosystem II photochemistry, but increases the resistance of photosystem II to heat stress in halophyte Suaeda salsa. - J. Exp. Bot. 54: 851-860, 2003. Go to original source...
  35. Maeda Y., Nakazawa R.: Effects of the timing of calcium application on the alleviation of salt stress in the maize, tall fescue, and reed canary grass seedlings. - Biol. Plantarum 52: 153-156, 2008. Go to original source...
  36. Maxwell K., Johnson G.N.: Chlorophyll fluorescence-a practical guide. - J. Exp. Bot. 51: 659-668, 2000. Go to original source...
  37. Meloni D.A., Oliva M.A., Martinez C.A. et al.: Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. - Environ. Exp. Bot. 49: 69-76, 2003. Go to original source...
  38. Middleton B.A.: Vegetation status of the Keoladeo National Park, Bharatpur, Rajasthan, India (April 2009). US Geological Survey Science Investigation Report, 5193, 2009.
  39. Monneveux P., Mekkaoui M., Xu X.: Physiological basis of salt tolerance in wheat. Chlorophyll fluorescence as a new tool for screening tolerant genotypes. - Wheat Breeding Prospects and Future Approaches Conference Proceedings. Pp. 1-33. Toshevo 1990.
  40. Moradi F., Ismail A.M.: Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. - Ann. Bot.-London 99: 1161-1173, 2007. Go to original source...
  41. Morais M.C., Panuccio M.R., Muscolo A. et al.: Salt tolerance traits increase the invasive success of Acacia longifolia in Portuguese coastal dunes. - Plant Physiol. Bioch. 55: 60-65, 2012. Go to original source...
  42. Munns R., Termaat A.: Whole-plant responses to salinity. - Aust. J. Plant. Physiol. 13: 143-160, 1986. Go to original source...
  43. Munns R.: Comparative physiology of salt and water stress. - Plant Cell Environ. 25: 239-250, 2002. Go to original source...
  44. Murchie E.H., Lawson T.: Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. - J. Exp. Bot. 64: 3983-3998, 2013. Go to original source...
  45. Musyimi D., Netondo G., Ouma G.: Effects of salinity on growth and photosynthesis of avocado seedlings. - Int. J. Bot. 3: 78-84, 2007.
  46. Nandy P., Das S., Ghose M. et al.: Effects of salinity on photosynthesis, leaf anatomy, ion accumulation and photosynthetic nitrogen use efficiency in five Indian mangroves. - Wetl. Ecol. Manage. 15: 347-357, 2007. Go to original source...
  47. Navarro A., Bañon S., Olmos E. et al.: Effects of sodium chloride on water potential components, hydraulic conductivity, gas exchange and leaf ultrastructure of Arbutus unedo plants. - Plant Sci. 172: 473-480, 2007. Go to original source...
  48. Netondo G.W., Onyango J.C., Beck E.: Sorghum and salinity. - Crop Sci. 44: 797-805, 2004. Go to original source...
  49. Nguyen H.T., Stanton D.E., Schmitz N. et al.: Growth responses of the mangrove Avicennia marina to salinity: development and function of shoot hydraulic systems require saline conditions. - Ann. Bot.-London 115: 397-407, 2015. Go to original source...
  50. Niknam S.R., McComb J.: Salt tolerance screening of selected Australian woody species-a review. - Forest Ecol. Manage. 139: 1-19, 2000. Go to original source...
  51. Niu X., Bressan R.A., Hasegawa P.M. et al.: Ion homeostasis in NaCl stress environments. - Plant Physiol. 109: 735-742, 1995. Go to original source...
  52. Panwar J., Tarafdar J.C.: Arbuscular mycorrhizal fungal dynamics under Mitragyna parvifolia (Roxb.) Korth. in Thar Desert. - Appl. Soil Ecol. 34: 200-208, 2006. Go to original source...
  53. Papageorgiou G.C., Govindjee.: Chlorophyll a Fluorescence: A Signature of Photosynthesis. Pp. 818. Springer, Dordrecht 2004. Go to original source...
  54. Papageorgiou G.C., Govindjee.: Photosystem II fluorescence: Slow changes-Scaling from the past. - J. Photoch. Photobio. B. 104: 258-270, 2011. Go to original source...
  55. Parida A.K., Das A.B.: Salt tolerance and salinity effects on plants: a review. - Ecotoxicol. Environ. Safe. 60: 324-349, 2005. Go to original source...
  56. Patel A.D., Bhensdadia H., Pandey A.N.: Effect of salinisation of soil on growth, water status and general nutrient accumulation in seedlings of Delonix regia (Fabaceae). - Acta. Ecol. Sin. 29: 109-115, 2009. Go to original source...
  57. Percival G.C., Fraser G.A., Oxenham G.: Foliar salt tolerance of Acer genotypes using chlorophyll fluorescence. - J. Arboric. 29: 61-65, 2003.
  58. Pessarakli M., Szabolcs I.: Soil salinity and sodicity as particular plant/crop stress factors. - In: Pessarakli M (ed.): Handbook of Plant and Crop Stress. Pp. 3-21. CRC Press, Boca Raton 2011. Go to original source...
  59. Pezeshki S., Chambers J.: Effect of soil salinity on stomatal conductance and photosynthesis of green ash (Fraxinus pennsylvanica). - Can. J. Forest Res. 16: 569-573, 1986. Go to original source...
  60. Ramoliya P.J., Pandey A.N.: Effect of salinization of soil on emergence, growth and survival of seedlings of Cordia rothii. - Forest Ecol. Manage. 176: 185-194, 2003. Go to original source...
  61. Sam O., Ramírez C., Coronado M. J. et al.: Changes in tomato leaves induced by NaCl stress: leaf organization and cell ultrastructure. - Biol. Plantarum 47: 361-366, 2003.
  62. Schützendübel A., Polle A.: Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. - J. Exp. Bot. 53: 1351-1365, 2002. Go to original source...
  63. Sekmen A.H., Turkan I., Tanyolac Z.O. et al.: Different antioxidant defense responses to salt stress during germination and vegetative stages of endemic halophyte Gypsophila oblanceolata Bark. - Environ. Exp. Bot. 77: 63-76, 2012. Go to original source...
  64. Shankarnarayan K., Harsh L., Kathju S.: Agroforestry in the arid zones of India. - Agroforest. Syst. 5: 69-88, 1987. Go to original source...
  65. Sinclair T.: Leaf area development in field-grown soybeans. - Agron. J. 76: 141-146, 1984. Go to original source...
  66. Singh R., Agarwal R., Tiwari A.: Ecophysiological observations on Keoladeo National Park, Bharatpur (India). - J. Wetland. Ecol. 4: 43-68, 2011. Go to original source...
  67. Stirbet A., Govindjee.: On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and applications of the OJIP fluorescence transient. - J. Photoch. Photobio. B. 104: 236-257, 2011. Go to original source...
  68. Sun J., Zou D.T., Luan F.S. et al.: Dynamic QTL analysis of the Na+ content, K+ content, and Na+/K+ ratio in rice roots during the field growth under salt stress. - Biol. Plantarum 58: 689-696, 2014. Go to original source...
  69. Vicente O., Boscaiu M., Naranjo M.Á.: Responses to salt stress in the halophyte Plantago crassifolia (Plantaginaceae). - J. Arid Environ. 58: 463-481, 2004. Go to original source...
  70. von Caemmerer S., Farquhar G.D.: Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. - Planta 153: 376-387, 1981. Go to original source...
  71. Wu Q., Zou Y.: Adaptive responses of birch-leaved pear (Pyrus betulaefolia) seedlings to salinity stress. - Not. Bot. Horti. Agrobo. 37: 133-138, 2009.
  72. Yang C., Jianaer A., Li C. et al.: Comparison of the effects of salt-stress and alkali-stress on photosynthesis and energy storage of an alkali-resistant halophyte Chloris virgata. - Photosynthetica 46: 273-278, 2008. Go to original source...