Photosynthetica, 2016 (vol. 54), issue 1

Photosynthetica 2016, 54(1):110-119 | DOI: 10.1007/s11099-015-0167-5

Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa

M. V. J. Da Costa1, P. K. Sharma1,*
1 Department of Botany, Goa University, Goa, India

The physiological and biochemical behaviour of rice (Oryza sativa, var. Jyoti) treated with copper (II) oxide nanoparticles (CuO NPs) was studied. Germination rate, root and shoot length, and biomass decreased, while uptake of Cu in the roots and shoots increased at high concentrations of CuO NPs. The accumulation of CuO NPs was observed in the cells, especially, in the chloroplasts, and was accompanied by a lower number of thylakoids per granum. Photosynthetic rate, transpiration rate, stomatal conductance, maximal quantum yield of PSII photochemistry, and photosynthetic pigment contents declined, with a complete loss of PSII photochemical quenching at 1,000 mg(CuO NP) L-1. Oxidative and osmotic stress was evidenced by increased malondialdehyde and proline contents. Elevated expression of ascorbate peroxidase and superoxide dismutase were also observed. Our work clearly demonstrated the toxic effect of Cu accumulation in roots and shoots that resulted in loss of photosynthesis.

Additional key words: ascorbate; nanoparticle; proline; superoxide dismutase; thylakoid

Received: February 8, 2015; Accepted: June 29, 2015; Published: March 1, 2016Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Costa, M.V.J., & Sharma, P.K. (2016). Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica54(1), 110-119. doi: 10.1007/s11099-015-0167-5.
Download citation

Supplementary files

Download filephs-201601-0015_S1.pdf

File size: 712.25 kB

References

  1. Abdelkader A.F., Aronsson H., Solymosi K. et al.: High salt stress induces swollen prothylakoids in dark-grown wheat and alters both prolamellar body transformation and reformation after irradiation. - J. Exp. Bot. 58: 2553-2564, 2007. Go to original source...
  2. Alia, Pardha Saradhi, P.: Proline accumulation under heavy metal stress. - J. Plant Physiol. 138: 554-558, 1991. Go to original source...
  3. Bassi R., Sharma S.S.: Changes in proline content accompanying the uptake of zinc and copper by Lemna minor. - Ann. Bot.-London 72: 151-154, 1993. Go to original source...
  4. Bates L.S., Waldren R.P., Teare I.D.: Rapid determination of free proline for water-stress studies. - Plant Soil 39: 205-207, 1973. Go to original source...
  5. Bohnert H.J., Nelson D.E., Jensen R.G.: Adaptations to environmental stresses. - Plant Cell 7: 1099-1111, 1995. Go to original source...
  6. Campbell R., Greaves M.P.: Anatomy and community structure of the rhizosphere. - In: Lynch J.M. (ed.): The Rhizosphere. Pp. 11-34. John Wiley and Sons Ltd. Publ., London 1990.
  7. Caverzan A., Passaia G., Rosa S.B. et al.: Plant responses to stresses: Role of ascorbate peroxidase in the antioxidant protection. - Genet. Mol. Biol. 35: 1011-1019, 2012. Go to original source...
  8. Corredor E., Testillano P.S., Coronado M.-J. et al.: Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification. - BMC Plant Biol. 9: 45-45, 2009. Go to original source...
  9. Harrison P.: Emerging challenges: nanotechnology and the environment. - In: GEO Year Book 2007. Pp. 61-68. United Nations Environment Programme (UNEP), Nairobi 2007.
  10. Haverkamp R.G., Marshall A.T.: The mechanism of metal nanoparticle formation in plants: Limits on accumulation. - J. Nanoparticle Res. 11: 1453-1463, 2009. Go to original source...
  11. Inzé D., Van Montagu M.: Oxidative stress in plants. - Curr. Opin. Biotech. 6: 153-158, 1995. Go to original source...
  12. Kampfenkel K., Van Montagu M., Inzé D.: Extraction and determination of ascorbate and dehydroascorbate from plant tissue. - Anal. Biochem. 225: 165-167, 1995. Go to original source...
  13. Kennedy C.D., Gonsalves F.A.N.: The action of divalent zinc, cadmium, mercury, copper and lead on the trans-root potential and H+ efflux of excised roots. - J. Exp. Bot. 38: 800-817, 1987. Go to original source...
  14. Kirchhoff H., Horstmann S., Weis E.: Control of the photosynthetic electron transport by PQ diffusion microdomains in thylakoids of higher plants. - BBA-Bioenergetics 1459: 148-168, 2000. Go to original source...
  15. Klaine S.J., Alvarez P.J.J., Batley G.E. et al.: Nanomaterials in the environment: behavior, fate, bioavailability, and effects. - Environ. Toxicol. Chem. 27: 1825-1851, 2008.
  16. Lee C.W., Mahendra S., Zodrow K. et al.: Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. - Environ. Toxicol. Chem. 29: 669-675, 2010. Go to original source...
  17. Lee S., Kim S., Kim S. et al.: Assessment of phytotoxicity of ZnO NPs on a medicinal plant, Fagopyrum esculentum. - Environ. Sci. Pollut. Res. 20: 848-854, 2013. Go to original source...
  18. Lee W.M., An Y.J., Yoon H. et al.: Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. - Environ. Toxicol. Chem. 27: 1915-1921, 2008.
  19. Lidon F.C., Henriques F.S.: Role of rice shoot vacuoles in copper toxicity regulation. - Environ. Exp. Bot. 39: 197-202, 1998. Go to original source...
  20. Lin D., Xing B.: Root uptake and phytotoxicity of ZnO nanoparticles. - Environ. Sci. Technol. 42: 5580-5585, 2008. Go to original source...
  21. Manceau A., Nagy K.L., Marcus M.A. et al.: Formation of metallic copper nanoparticles at the soil-root interface. - Environ. Sci. Technol. 42: 1766-1772, 2008. Go to original source...
  22. Marschner H.: Mineral Nutrition of Higher Plants. Pp. 889. Academic Press, London 1995.
  23. Maynard A.D., Aitken R.J., Butz T. et al.: Safe handling of nanotechnology. - Nature 444: 267-269, 2006. Go to original source...
  24. Mehta S.K., Gaur J.P.: Heavy metal-induced proline accumulation and its role in ameliorating metal toxicity in Chlorella vulgaris. - New Phytol. 143: 253-259, 1999. Go to original source...
  25. Musante C., White J.C.: Toxicity of silver and copper to Cucurbita pepo: Differential effects of nano and bulk-size particles. - Environ. Toxicol. 27: 510-517, 2012. Go to original source...
  26. Nagajyoti P.C., Lee K.D., Sreekanth T.V.M. et al.: Heavy metals, occurrence and toxicity for plants: A review. - Environ. Chem. Lett. 8: 199-216, 2010. Go to original source...
  27. Navarro E., Baun A., Behra R. et al.: Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. - Ecotoxicology 5: 372-386, 2008. Go to original source...
  28. Nekrasova G.F., Ushakova O.S., Ermakov A.E. et al.: Effects of copper (II) ions and copper oxide nanoparticles on Elodea densa Planch. - Russian J. Ecol. 42: 458-463, 2011.
  29. Noctor G., Foyer C.H.: Ascorbate and glutathione: Keeping active oxygen under control. - Annu. Rev. Plant Phys. 49: 249-279, 1998. Go to original source...
  30. Ojamäe L., Aulin C., Pedersen H. et al.: IR and quantumchemical studies of carboxylic acid and glycine adsorption on rutile TiO2 nanoparticles. - J. Colloid Interface Sci. 296: 71-78, 2006. Go to original source...
  31. Perreault F., Oukarroum A., Pirastru L. et al.: Evaluation of copper oxide nanoparticles toxicity using chlorophyll a fluorescence imaging in Lemna gibba. - J. Bot. 2010, 1-9, 2010. Go to original source...
  32. Raven J.A., Evans M.C., Korb R.E.: The role of trace metals in photosynthetic electron transport in O2 - evolving organisms. - Photosynth. Res. 60: 111-150, 1999. Go to original source...
  33. Rico C.M., Majumdar S., Duarte-Gardea M. et al.: Interaction of nanoparticles with edible plants and their possible implications in the food chain. - J. Agric. Food Chem. 59: 3485-3498, 2011. Go to original source...
  34. Saison C., Perreault F., Daigle J.C. et al.: Effect of core-shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem II energy distribution) in the green alga, Chlamydomonas reinhardtii. - Aquat. Toxicol. 96: 109-114, 2010. Go to original source...
  35. Sankhalkar S., Sharma P.K.: Protection against photooxidative damage provided by enzymatic and non-enzymatic antioxidant system in sorghum seedlings. - Indian J. Exp. Biol. 40: 1260-1268, 2002.
  36. Sharma P.K., Hall D.O.: Effect of photoinhibition and temperature on carotenoids in sorghum leaves. - Indian J. Biochem. Biophys. 33: 471-477, 1996.
  37. Sharma P.K., Shetye R., Bhonsle S.: Effect of supplementary ultraviolet-B radiation on young wheat seedlings. - Curr. Sci. 72: 400-405, 1997.
  38. Shaw A.K., Hossain Z.: Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. - Chemosphere 93: 906-915, 2013. Go to original source...
  39. Shi J., Abid A.D., Kennedy I.M. et al.: To duckweeds (Landoltia punctata), nanoparticulate copper oxide is more inhibitory than the soluble copper in the bulk solution. - Environ. Pollut. 159: 1277-1282, 2011. Go to original source...
  40. Smirnoff N.: Tansley Review 52. The role of active oxygen in the response of plants to water-deficit and desiccation. - New Phytol. 125: 27-58, 1993. Go to original source...
  41. Solymosi K., Bertrand M.: Soil metals, chloroplasts, and secure crop production: a review. - Agron. Sustain. Dev. 32: 245-272, 2012. Go to original source...
  42. Song, L., Vijver, M. G., Peijnenburg, W. J. G. M.: Comparative toxicity of copper nanoparticles across three Lemnaceae species. - Sci. Total Environ. 518-519: 217-224, 2015. Go to original source...
  43. Stampoulis D., Sinha S.K., White J.C.: Assay-dependent phytotoxicity of nanoparticles to plants. - Environ. Sci. Technol. 43: 9473-9479, 2009. Go to original source...
  44. Ünnep R., Zsiros O., Solymosi K. et al.: The ultrastructure and flexibility of thylakoid membranes in leaves and isolated chloroplasts as revealed by small-angle neutron scattering. - BBA-Bioenergetics 1837: 1572-1580, 2014.
  45. Wang S.-H., Yang Z.-M., Yang H. et al.: Copper-induced stress and antioxidative responses in roots of Brassica juncea L. - Bot. Bull. Acad. Sin. 45: 203-212, 2004.
  46. Wierzbicka M.S., Obidzińska J.: The effect of lead on seed imbibition and germination in different plant species. - Plant Sci. 137: 155-171, 1998. Go to original source...
  47. Wiesner M.R., Lowry G.V., Alvarez P. et al.: Assessing the risks of manufactured nanomaterials. - Environ. Sci. Technol. 40: 4336-4345, 2006. Go to original source...
  48. Yoshimura K., Yabuta Y., Ishikawa T. et al.: Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. - Plant Physiol. 123: 223-233, 2000. Go to original source...
  49. Yruela I.: Copper in plants. - Brazilian J. Plant Physiol. 17: 145-156, 2005. Go to original source...
  50. Zhang W., Elliott D.W.: Applications of iron nanoparticles for groundwater remediation. - Remediat. J. 16: 7-21, 2006. Go to original source...
  51. Zhang Z., He X., Zhang H. et al.: Uptake and distribution of ceria nanoparticles in cucumber plants. - Metallomics 3: 816-822, 2011. Go to original source...