Photosynthetica, 2015 (vol. 53), issue 1

Photosynthetica 2015, 53(1):11-22 | DOI: 10.1007/s11099-015-0073-x

Photoacclimation capacity in seedling and sapling of Siparuna guianensis (Siparunaeae): Response to irradiance gradient in tropical forest

T. O. Vieira1, M. S. O. Degli-Esposti1, G. M. Souza2, G. R. Rabelo3, M. Da Cunha3, A. P. Vitória1,*
1 Laboratório de Ciências Ambientais, Centro de Biociência e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, Brazil
2 Laboratório de Inteligência em Plantas e Ecofisiologia "Ulrich Lüttge", Universidade do Oeste Paulista Unoeste, Presidente Prudente, SP, Brazil
3 Laboratório de Biologia Celular e Tecidual, Centro de Biociência e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, Brazil

Light is a limiting factor in plant establishment and growth in the understory of forests. In this paper, we assessed acclimation capacity of Siparuna guianensis, an early secondary successional species. We used seedlings and saplings in three regeneration areas with different irradiance regimes to determine the traits that confer photoplasticity. We examined whether these traits differ at different developmental stages. Anatomical characteristics, photochemical efficiency, photosynthetic capacity, and growth were analyzed. Multivariate component analysis revealed the formation of six clusters: three for seedlings (one for each regeneration area) and three for saplings (following the same pattern of seedlings, considering the area). Increased irradiance favored photosynthetic performance, independently of the developmental stage. The same trend was observed for most data on chlorophyll (Chl) a fluorescence and the ratios of net photosynthetic rate/intercellular CO2 concentration (P N/Ci) and P N/PPFD. No parameter indicated photoinhibition stress. The CO2- and light-response curve data indicated that seedlings were already acclimated to tolerate variation in irradiance. Anatomical adaptations, such as thickness of leaf blade and of adaxial cuticle, were observed in individuals growing in areas with higher irradiation. Thinning of spongy parenchyma and higher investment into a plant height were observed in seedlings, possibly due to the vertical stratification of CO2 and light in the understory; because light is a more limiting resource than CO2 in the lower stratum of the forest. Photoplasticity in S. guianensis is associated with a set of morphological, anatomical, photochemical, and biochemical traits, whereas biochemical performance is best acclimated to variation in irradiance. These traits differed in seedlings and saplings but they were modulated mainly by irradiance in both developmental stages.

Keywords: chlorophyll; chlorophyll fluorescence; CO2 uptake; growth; leaf anatomy; structural traits

Received: December 17, 2013; Accepted: April 18, 2014; Published: March 1, 2015Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Vieira, T.O., Degli-Esposti, M.S.O., Souza, G.M., Rabelo, G.R., Cunha, M., & Vitória, A.P. (2015). Photoacclimation capacity in seedling and sapling of Siparuna guianensis (Siparunaeae): Response to irradiance gradient in tropical forest. Photosynthetica53(1), 11-22. doi: 10.1007/s11099-015-0073-x.
Download citation

References

  1. Araújo S.A.C., Deminicis B.B.: [Photosynthesis and photoinhibition: a review.] - Rev. Bras. Biociên. 7: 463-472, 2009. [In Portuguese]
  2. Azevedo G.F.C., Marenco R.A.: Growth and physiological changes in saplings of Minquartia guianensis and Swietenia macrophylla during acclimation to full sunlight. - Photosynthetica 50: 86-94, 2012. Go to original source...
  3. Bazzaz F.A.: Physiological ecology of plant succession. - Annu. Rev. Ecol. Syst. 10: 351-371, 1979. Go to original source...
  4. Bazzaz F.A., Pickett S.T.A.: Physiological ecology of tropical succession: a comparative review. - Annu. Rev. Ecol. Syst. 11: 287-310, 1980. Go to original source...
  5. Bilger W., Schreiber U., Bock M.: Determination of the quantum efficiency of photosystem II and of non-photochemical quenching of chlorophyll fluorescence in the field. - Oecologia 102: 425-432, 1995. Go to original source...
  6. Bolhàr-Nordenkampf H.R., Long S.P., Baker N.R.: Chlorophyll fluorescence as probe of the photosynthetic competence of leaves in the field: a review of current instrument. - Funct. Ecol. 3: 497-514, 1989. Go to original source...
  7. Brodersen C.R., Vogelmann T.C.: Do epidermal lens cells facilitate the absorptance of diffuse light? - Am. J. Bot. 94: 1061-1066, 2007. Go to original source...
  8. Brugnoli E., Björkman O.: Chloroplast movements in leaves: influence on chlorophyll fluorescence and measurements of light-induced absorbance changes related to pH and zeaxanthin formation. - Photosynth. Res. 32: 23-35, 1992. Go to original source...
  9. Chazdon R.L., Pearcy R.W., Lee D.W. et al.: Photosynthetic response of tropical forest plants to contrasting light environments. - In: Mulkey S.S., Chazdon R.L., Smith A.P. (ed.): Tropical Forest Plant Ecophysiology. Pp. 5-55. Chapman and Hall, New York 1996. Go to original source...
  10. de Lucia E.H., Nelson K., Vogelmann T.C. et al.: Contribution of intercellular reflectance to photosynthesis in shade leaves. - Plant Cell Environ. 19: 159-170, 1996. Go to original source...
  11. Demmig-Adams B., Adams W.W., Heber U. et al.: Inhibition of zeaxanthin formation and of rapid changes in radiationless energy dissipation by dithiothreitol in spinach leaves and chloroplasts. - Plant Physiol. 92: 293-301, 1990. Go to original source...
  12. Demmig-Adams B., Adams W.W.: The role of xanthophyll cycle carotenoids in the protection of photosynthesis. - Trends Plant Sci. 1: 21-26, 1996. Go to original source...
  13. de Pury D.G.G., Farquhar, G.D.: Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. - Plant Cell Environ. 20: 537-557, 1997. Go to original source...
  14. dos Anjos L., Oliva M.A., Kuki K.N.: Fluorescence imaging of light acclimation of brazilian atlantic forest tree species. - Photosynthetica 50: 95-108, 2012.
  15. Evans J.R.: Leaf anatomy enables more equal access to light and CO2 between chloroplasts. - New Phytol. 143: 93-104, 1999. Go to original source...
  16. Evaristo V.T., Braga J.M.A., Nascimento M.T.: Atlantic Forest regeneration in abandoned plantations of eucalypt (Corymbia citriodora) in Rio de Janeiro, Brazil. - Interciência 36: 431-436, 2011.
  17. Farquhar G.D., Sharkey T.D.: Stomatal conductance and photosynthesis. - Annu. Rev. Plant Phys. 33: 317-345, 1982. Go to original source...
  18. Gandolfi S., Joly C.A., Filho H.F.L.: "Gaps of deciduosness": cyclical gaps in tropical forests. - Sci. Agr. 66: 280-284, 2009. Go to original source...
  19. Genty B., Briantais J.M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. - Biochim. Biophys. Acta 990: 87-92, 1989. Go to original source...
  20. Haberlandt G.: Physiological Plant Anatomy (4th Ed). Pp. 807. Macmillan & Co. Ltd. London 1914.
  21. Hendry G.A.F., Price A.H.: Stress indicators: chlorophylls and carotenoids. - In: Hendry G.A.F., Grime J.P. (ed.): Methods in comparative Plant Ecology. Pp 148-152. Chapman & Hall, London 1993. Go to original source...
  22. Holloway P.J.: Structure and histochemistry of plant cuticular membranes: an overview. - In: Cutler D.F., Alvin K.L., Price C.E. (ed.): The Plant Cuticle. Pp. 1-32. Academic Press, London 1982.
  23. Huang D., Wu L., Chen J.R. et al.: Morphological plasticity, photosynthesis and chlorophyll fluorescence of Athyrium pachyphelebium at different shade levels. - Photosynthetica 49: 611-618, 2011. Go to original source...
  24. IBGE (Instituto Brasileiro de Geografia e Estatística). [Technical Manual of Brazilian Vegetation. Technical Manuals Series in Geosciences n. 1]. Pp 91. IBGE, Rio de Janeiro 1992. [In Portuguese]
  25. Ishida A., Yazaki K., Hoe A.L.: Ontogenetic transition of leaf physiology and anatomy from seedlings to mature trees of a rain forest pioneer tree, Macaranga gigantean. - Tree Physiol. 25: 513-522, 2005. Go to original source...
  26. Johnson D.M., Smith W.K., Vogelmann T.C. et al.: Leaf architecture and direction of incident light influence mesophyll fluorescence profiles. - Am. J. Bot. 92: 1425-1431, 2005. Go to original source...
  27. Kao W.Y., Chin Y.S., Chen W.H.: Vertical profiles of CO2 concentrations and δ13C values in a subalpine forest of Taiwan. - Bot. Bull. Acad. Sinica 41: 213-218, 2000.
  28. Klein D.E., Gomes V.M., Neto S.J.S. et al.: The structure of collecters in several species of Simira (Rubiaceae). - Ann Bot.-London 94: 733-740, 2004. Go to original source...
  29. Kitajima K.: Ecophysiology of tropical tree seedlings. - In: Mulkey S. S., Chazdon R. L. Smith A. P. (ed.): Tropical Forest Plant Ecophysiology. Pp. 559-597. Chapman & Hall, New York 1996. Go to original source...
  30. Kitajima K.: Relative importance of photosynthetic traits an allocation patterns as correlates of seedling shad tolerance of 13 tropical trees. - Oecologia 98: 419-428, 1994. Go to original source...
  31. Köppen W.: [Climatology: a Study of the Climates of the Earth.] Pp. 479. Fondo de Cultura Econômica (FCE), México 1948. [In Spanish]
  32. Küppers M., Timm H., Orth F. et al.: Effects of light environment and successional status on light fleck use by understorey trees of temperate and tropical forests. - Tree Physiol. 16: 69-80, 1996. Go to original source...
  33. Lage-Pinto F., Bernini E, Oliveira J.G. et al.: Photosynthetic analyses of two native Atlantic Forest species in regenerative understorey of eucalyptus plantation. - Braz. J. Plant Physiol. 24: 95-106, 2012. Go to original source...
  34. Laisk H., Eichelmann V., Oja B. et al.: Adjustment of leaf photosynthesis to shade in a natural canopy: rate parameters. - Plant Cell Environ. 28: 375-388, 2005. Go to original source...
  35. Lemos J.P., Mendonça C.V.: Seasonal changes in the water status of three woody legumes from the Atlantic forest, Caratinga, Brazil. - J. Trop. Ecol. 16: 21-32, 2000.
  36. Long S. P., Bernacchi C.J.: Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. - J. Exp. Bot. 54: 2393-2401, 2003. Go to original source...
  37. Marenco R.A., Vieira G.: Specific leaf area e photosynthetic parameters of tree species in the forest understorey as a function of the microsite light environment in Central Amazonia. - J. Trop. For. Sci. 17: 265-278, 2005.
  38. Merzlyak M.N., Solovchenko A.E.: Photostability of pigments in ripening apple fruit: a possible photoprotective role of carotenoids during plant senescence. - Plant Sci. 163: 881-888, 2002. Go to original source...
  39. Miyashita A., Sugiura D., Sawakami K. et al.: Long-term, shortinterval measurements of the frequency distributions of the photosynthetically active photon flux density and net assimilation rates of leaves in a cool-temperate forest. - Agr. Forest Meteorol. 152: 1-10, 2012. Go to original source...
  40. Monteiro J.A.F., Prado C.H.B.A.: Apparent carboxylation efficiency and relative stomatal and mesophyll limitations of photosynthesis in an evergreen cerrado species during water stress. - Photosynthetica 44: 39-45, 2006. Go to original source...
  41. Montgomery R.A, Givnish T.J.: Adaptive radiation of photosynthetic physiology in the Hawaiian lobeliads: dynamic photosynthetic responses. - Oecologia 155: 455-467, 2008. Go to original source...
  42. Montgomery R.A.: Relative importance of photosynthetic physiology and biomass allocation for tree seedling growth across a broad light gradient. - Tree Physiol. 24: 155-167, 2004. Go to original source...
  43. Montgomery R.A., Chazdon R.L.: Light gradient partitioning by tropical tree seedlings in the absence of canopy gaps. - Oecologia 131: 165-174, 2002. Go to original source...
  44. Mott K.A., Woodrow I.E.: Effects of O2 and CO2 on non steady state photosynthesis. - Plant Physiol. 102: 859-866, 1993. Go to original source...
  45. Myers N., Mittermeier R.A., Mittermeier C.G. et al.: Biodiversity hotspots for conservation priorities. - Nature 403: 853-858, 2000. Go to original source...
  46. Nascimento H.C.S, Marenco R.A.: Mesophyll conductance variations in response to diurnal environmental factors in Myrcia paivae and Minquartia guianensis in Central Amazonia. - Photosynthetica 51: 457-464, 2013. Go to original source...
  47. O'Brien T.P., Feder N., McCully M.E.: Polychromatic staining of plant cell walls by toluidine blue O. - Protoplasma 59: 368-373, 1964. Go to original source...
  48. Oguchi R., Hikosaka K., Hirose T.: Does the photosynthetic lightacclimation need change in leaf anatomy? - Plant Cell Environ. 26: 505-512, 2003. Go to original source...
  49. Pandey S., Kushwaha R.: Leaf anatomy and photosynthetic acclimation in Valeriana jatamansi L. grown under high and low irradiance. - Photosynthetica 43: 85-90, 2005. Go to original source...
  50. Pearcy R.W., Chazdon R.L., Gross L.J. et al.: Photosynthetic utilization of sunflecks: a temporally patchy resource on a time scale of seconds to minutes. - In: Caldwell M.M., Pearcy R.W. (ed.): Exploitation of Environmental Heterogeneity by Plants: Ecophysiology Processes Above and Below Ground. Pp. 175-208. Academic Press, New York 1994. Go to original source...
  51. Poorter H., Pothmann P.: Growth and carbon economy of a fast growing and a slow-growing grass species as dependent on ontogeny. - New Phytol. 120: 159-166, 1992. Go to original source...
  52. Poorter L.: Growth responses of 15 rainforest tree species to a light gradient: the relative importance of morphological and physiological traits. - Funct. Ecol. 13: 396-410, 1999. Go to original source...
  53. Portes M.T., Damineli D.S.C., Ribeiro R.V. et al.: Evidence of higher photosynthetic plasticity in the early successional Guazuma ulmifolia Lam. compared to the late successional Hymenaea courbaril L. grown in contrasting light environments. - Braz. J. Biol. 70: 75-83, 2010. Go to original source...
  54. Prado C.H.B.A., Moraes J.A.P.V.: Photosynthetic capacity and specific leaf mass in twenty woody species of cerrado vegetation under field conditions. - Photosynthetica 33: 103-112, 1997. Go to original source...
  55. Rabelo G.R., Klein D.E., da Cunha M.: Does selective logging affect the leaf structure of a late successional species? - Rodriguesia 63: 419-427, 2012. Go to original source...
  56. Rabelo R.G., Vitória A.P., da Silva M.V.A. et al.: Structural and ecophysiological adaptations to forest gaps. - Trees-Struct. Funct. 27: 259-272, 2013.
  57. Renner S.S., Hausner G.: Monograph of Siparunaceae. - In: New York Botanical Garden: Flora Neotropica 95. Pp. 256. Hafner Publ. Co., New York 2005.
  58. Ribeiro R.F., Souza G.M., Oliveira R.F. et al: Photosynthetic responses of tropical tree species from different successional groups under contrasting irradiance conditions. - Rev. Bras. Bot. 28: 149-161, 2005. Go to original source...
  59. Ronquim C.C., Prado C.H.B.A., Paula N.F.: Growth and photosynthetic capacity in two woody species of cerrado vegetation under different radiation availability. - Braz. Arch. Biol. Techn. 46: 243-252, 2003. Go to original source...
  60. Rosevear M.J., Young A.J., Johnson G.N.: Growth conditions are more important than species origin in determining leaf pigment content of British plant species. - Funct. Ecol. 15: 474-480, 2001. Go to original source...
  61. Rozema J., Chardonnens A., Tossermams M. et al.: Leaf thickness and UV-B absorbing pigments of plants in relation to an elevational gradient along the Blue Montains, Jamaica. - Plant Ecol. 128: 150-159, 1997.
  62. Santiago L.S., Dawson T.E.: Light use efficiency of California redwood understorey plants along a moisture gradient. - Oecologia 174: 351-363, 2014. Go to original source...
  63. Sassenrath-Cole G.F., Pearcy R.W.: The role of ribulose-1,5-bisphosphate regeneration in the induction requirement of photosynthetic CO2 exchange under transient light conditions. - Plant Physiol. 99: 227-234, 1992. Go to original source...
  64. Sharkey T.D.: Estimating the rate of photorespiration in leaves. - Physiol. Plantarum 73: 147-152, 1988. Go to original source...
  65. Sharkey T.D., Bernacchi C.J., Farquhar G.D. et al.: Fitting photosynthetic carbon dioxide response curves for C3 leaves. - Plant Cell Environ. 30: 1035-1040, 2007. Go to original source...
  66. Silva A.S., Oliveira J.G., da Cunha M. et al.: Photosynthetic performance and anatomical adaptations in Byrsonima sericea DC. under contrasting light conditions in a remnant of the Atlantic forest. - Braz. J. Plant. Physiol. 22: 245-254, 2010. Go to original source...
  67. Silvestrini M., Válio I.F.M., Mattos E.A.: Photosynthesis and carbon gain under contrasting light levels in seedlings of a pioneer and a climax tree from a Brazilian semideciduous Tropical Forest. - Rev. Bras. Bot. 30: 463-474, 2007 Go to original source...
  68. Smith H.: Light quality, photoreception, and plant strategy. - Annu. Rev. Plant Phys. 33: 481-518, 1982. Go to original source...
  69. Souza G.M., Balmant B.D., Vítolo H.F. et al.: [Light utilization strategies and developmental stability of Cordia superba Cham. (Boraginaceae) seedlings grown in different light environments.] - Acta Bot. Bras. 23: 474-485. 2009. [In Portuguese] Go to original source...
  70. Souza G.M., Ribeiro R.V., Sato A.M. et al.: Diurnal and seasonal carbon balance of four tropical tree species differing in successional status. - Braz. J. Biol. 68: 781-793, 2008. Go to original source...
  71. Strauss-Debenedetti S., Bazzaz F.A.: Photosynthetic characteristics of tropical trees along sucessional gradients. - In: Mulkey S.S., Chazdon R.L, Smith A.P. (ed.): Tropical Forest Plant Ecophysiology. Pp.162-186. Chapman & Hall, New York 1996. Go to original source...
  72. Strauss-Debenedetti S., Berlyn G.P.: Leaf anatomical responses to light in five tropical Moraceae of different successional status. - Am. J. Bot. 81: 1582-1591, 1994. Go to original source...
  73. Sultan S.E.: Phenotypic plasticity in plants: A case study in ecological development. - Evol. Dev. 5: 25-33, 2003. Go to original source...
  74. Terashima I., Miyazawa S.I., Hanba Y.T.: Why are sun leaves thicker than shade leaves? Consideration based on analyses of CO2 diffusion in the leaf. - J. Plant Res. 114: 93-105, 2001. Go to original source...
  75. Unwin D.M.: Microclimate Measurement for Ecologists. Pp. 97. Academic Press, New York 1980.
  76. Valentini C.M.A., Rodrigues-Ortiz C.E., Coelho M.F.B.: [Siparuna guianensis Aublet (negramina): a review.] - Rev. Bras. Plantas Med. 12: 96-104, 2010. [In Portuguese] Go to original source...
  77. Valladares F., Allen M.T., Pearcy R.W.: Photosynthetic responses to dynamic light under field conditions in six tropical rainforest shrubs occurring along a light gradient. - Oecologia 111: 505-514, 1997. Go to original source...
  78. Valladares F., Wright S.J., Lasso E. et al.: Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. - Ecology 81: 1925-1936, 2000.
  79. Vieira T.O., Lage-Pinto F., Ribeiro D.R. et al.: [Photostress in Cariniana legalis, Lecythidaceae seedlings: monitoring of photosynthetic acclimation capacity under two irradiance regimes.] - Vértices 13: 129-142, 2011. [In Portuguese]
  80. Vogelmann T.C., Nishio J.N., Smith W.K. et al.: Leaves and light capture: light propagation and gradients of carbon fixation within leaves. - Trends Plant Sci. 1: 65-70, 1996. Go to original source...
  81. Vogelmann T.C., Martin G.: The functional significance of palisade tissue: Penetration of directional vs. diffuse light. - Plant Cell Environ. 16: 65-72, 1993. Go to original source...
  82. Way D.A., Pearcy R.W.: Sunflecks in trees and forests: from photosynthetic physiology to global change biology. - Tree Physiol. 32: 1066-1081, 2012. Go to original source...
  83. Wellburn A. R.: The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. - J. Plant Physiol. 144: 307-313, 1994. Go to original source...
  84. Yanhong T., Hiroshi K., Mitsumasa S. et al.: Characteristics of transient photosynthesis in Quercus serrata seedlings grown under lightfleck and constant light regimes. - Oecologia 100: 463-469, 1994. Go to original source...
  85. Zhou S.B., Liu K., Zhang D. et al.: Photosynthetic performance of Lycoris radiata var. radiata to shade treatments. - Photosynthetica 48: 241-248, 2010. Go to original source...