Photosynthetica, 2015 (vol. 53), issue 3
Photosynthetica 2015, 53(3):403-409 | DOI: 10.1007/s11099-015-0130-5
Effect of high light intensity on photoinhibition, oxyradicals and artemisinin content in Artemisia annua L.
- 1 Department of Biological Sciences, Central Washington University, Ellensburg, USA
Artemisia annua L. produces a compound called artemisinin that is a potent anti-malarial compound. However concentration of artemisinin within the plant is typically low (less than 0.8% of dry mass) and currently supply of the drug by the plant does not meet world demand. This investigation was carried out to determine whether high intensity light treatment would increase production of artemisinin in leaves of A. annua. Photoinhibition (14%) was induced in leaves of A. annua when they were subjected to 6 h of high-intensity light [2,000 μmol(photon) m-2 s-1]. Maximum photochemical efficiency of PSII showed a recovery of up to 95% within 24 h of light induced inhibition. During the light treatment, photochemical efficiency of PSII in leaves of the high-intensity light-treated plants was 38% lower than for those from leaves of plants subjected to a low-intensity-light treatment of 100 μmol(photon) m-2 s-1. Nonphotochemical quenching of excess excitation energy was 2.7 times higher for leaves treated with high-intensity light than for those irradiated with low-intensity light. Elevation in oxidative stress in irradiated leaves increased presence of reactive oxygen species (ROS) including singlet oxygen, superoxide anions, and hydrogen peroxide. Importantly, the concentration of artemisinin in leaves was two-fold higher for leaves treated with high-intensity light, as compared to those treated with low-intensity light. These results indicate that A. annua responds to high irradiance through nonphotochemical dissipation of light energy yet is subject to photoinhibitory loss of photosynthetic capacity. It can be concluded that A. annua is capable of rapid recovery from photoinhibition caused by high light intensity. High light intensity also induced oxidative stress characterized by increased concentration of ROS which enhanced the content of artemisinin. Such a light treatment may be useful for the purpose of increasing artemisinin content in A. annua prior to harvest.
Keywords: chlorophyll fluorescence; environmental stress; irradiation
Received: February 14, 2014; Accepted: January 6, 2015; Published: September 1, 2015Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Abdin M.Z., Israr M., Rehman R.U., Jain S.K.: Artemisinin, a novel antimalarial drug: biochemical and molecular approaches for enhanced production. - Planta Med. 69: 289-299, 2003. Go to original source...
- Able A.J., Guest D.I., Sutherland M.W.: Use of a new tetrazolium-based assay to study the production of superoxide radicals by tobacco cell cultures challenged with avirulent zoospores of Phytophthora parasitica var nicotianae. - Plant Physiol. 117: 491-499, 1998. Go to original source...
- Aftab T., Khan M.M.A., Idrees M. et al.: Stimulation of crop productivity, photosynthesis and artemisinin production in Artemisia annua L. by triacontanol and gibberellic acid application. - J. Plant Interact. 5: 273-281, 2010a. Go to original source...
- Aftab T., Khan M.M.A., Idrees M. et al.: Boron induced oxidative stress, antioxidant defense response and changes in artemisinin content in Artemisia annua L. - J. Agron. Crop Sci. 196: 423-430, 2010b. Go to original source...
- Aftab T., Khan M.M.A., Teixeira da Silva J.A. et al.: Role of salicylic acid in promoting salt stress tolerance and enhanced artemisinin production in Artemisia annua L. - J. Plant Growth Regul. 30: 425-435, 2011 Go to original source...
- Apel K., Hirt H.: Reactive oxygen species: metabolism, oxidative stress, and signal transduction. - Annu. Rev. Plant Biol. 55: 373-399, 2004. Go to original source...
- Asada K.: The water-water cycle in chloroplasts: scavenging of active oxygen species and dissipation of excess photons. - Annu. Rev. Plant. Biol. 50: 601-639, 1999. Go to original source...
- Asada K., Takahashi M.: Production and scavenging of active oxygen in photosynthesis. - In: Kyle D.J., Osmond C.B., Arntzen C.J. (ed.): Photoinhibition (Topics in Photosynthesis, Vol. 9) Pp. 227-287. Elsevier, Amsterdam 1987.
- Asada K.: Production and scavenging of reactive oxygen species in chloroplasts and their functions. - Plant Physiol. 141: 391-396, 2006. Go to original source...
- Banyai W., Mii M., Supaibulwatana K.: Enhancement of artemisinin content and biomass in Artemisia annua by exogenous GA3 treatment. - Plant Growth Regul. 63: 45-54, 2011. Go to original source...
- Brisibe E.A., Chukwurah P.N.: Production of artemisinin in planta and in microbial systems need not be mutually exclusive: - In: Aftab T., Ferreira J.F.S., Khan M.M.A., Naeem M. (ed.): Artemisia annua - Pharmacology and Biotechnology. Pp. 269-292. Springer, Berlin 2014. Go to original source...
- Charles D.J, Simon J.E., Shock C.C. et al.: Effect of water stress and post-harvest handling on artemisinin content in the leaves of Artemisia annua L. - In: Janick J., Simon J.E. (ed.): New Crops. Pp. 628-631. Wiley, New York 1993.
- Davies M.J., Atkinson C.J., Burns C. et al.: Enhancement of artemisinin concentration and yield in response to optimization of nitrogen and potassium supply to Artemisia annua. - Ann. Bot-London 104: 315-323, 2009. Go to original source...
- Delabays N. Simonnet X. Gaudin M.: The genetics of Artemisinin content in Artemisia annua L. and the breeding of high yielding cultivars. - Curr. Med. Chem. 8: 1798-1801, 2001.
- Efferth T., Romero M.R., Wolf D.G. et al.: The antiviral activities of Artemisinin and Artesunate. - Clin. Infect Dis. 47: 804-811, 2008. Go to original source...
- Feng L.-L., Yang R.-Y., Yang X.-Q. et al.: Synergistic rechanneling of mevalonate pathway for enhanced artemisinin production in transgenic Artemisia annua. - Plant Sci. 177: 57-67, 2009. Go to original source...
- Ferreira J.F.S.: Nutrient deficiency in the production of artemisinin, dihydroartemisinic acid, and artemisinic acid in Artemisia annua L. - J. Agr. Food Chem. 55:1686-1694, 2007. Go to original source...
- Ferreira J.F.S., Simon J.E., Janick J.: Developmental studies of Artemisia annua: flowering and artemisinin production under greenhouse and field conditions. - Planta Med. 61: 167-170, 1995. Go to original source...
- Ferreira J.F.S., Luthria D.L.: Drying affects artemisinin, dihydroartemisinic acid, artemisinic acid, and the antioxidant capacity of Artemisia annua L. leaves. - J. Agr. Food Chem. 58: 1691-1698, 2010. Go to original source...
- Ferreira J.F.S., Luthria D.L., Sasaki T., Heyerick A.: Flavonoids from Artemisia annua L. as antioxidants and their potential synergism with artemisinin against malaria and cancer. - Molecules 15: 3135-3170, 2010. Go to original source...
- Genty B., Briantais J.-M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. - Biochim. Biophys. Acta. 990: 87-92, 1989. Go to original source...
- Graham I.A., Besser K., Blumer S. et al.: The genetic map of Artemisia annua L. identifies loci affecting yield of the antimalarial drug artemisinin. - Science 327: 328-331, 2010. Go to original source...
- Guo X.-X., Yan X.-Q., Yang R.-Y., Zeng Q.-P.: Salicylic acid and methyl jasmonate but not rose bengal enhance artemisinin production through invoking burst of endogenous singlet oxygen. - Plant Sci. 178: 390-397, 2010. Go to original source...
- Han J.-L., Liu B.-Y., Ye H.-C. et al.: Effects of overexpression of the endogenous farnesyl diphosphate synthase on the artemisinin content in Artemisia annua L. - J. Integr. Plant Biol. 48: 482-487, 2006. Go to original source...
- Horton P., Ruban A.V., Walters R.G.: Regulation of light, harvesting in green plants. - Annu. Rev. Plant Phys. 47: 655-684, 1996. Go to original source...
- Ivanescu B., Corciova A.: Artemisinin in cancer therapy. - In: Aftab T., Ferreira J.F.S., Khan M.M.A., Naeem M. (ed.): Artemisia annua - Pharmacology and Biotechnology. Pp. 205-227. Springer, Berlin 2014. Go to original source...
- Kok B.: On the inhibition of photosynthesis by intense light. - Biochim. Biophys. Acta 21: 234-244, 1956. Go to original source...
- Krishna S., Bustamante L., Haynes R.K., Staines H.M.: Artemisinins: their growing importance in medicine. - Trends Pharmacol. Sci. 29: 520-527, 2008. Go to original source...
- Kyle D.J.: The biochemical basis for photoinhibition of photosystem II. - In: Kyle D.J., Osmond C.B., Arntzen C.J. (ed.): Photoinhibition. Pp. 197-226. Elsevier, Amsterdam 1987.
- Lei C., Ma D., Pu G. et al.: Foliar application of chitosan activates artemisinin biosynthesis in Artemisia annua L. - Ind. Crop Prod. 33: 176-182, 2011. Go to original source...
- Li X., Zhao M., Guo L., Huang L.: Effect of cadmium on photosynthetic pigments, lipid peroxidation, antioxidants, and artemisinin in hydroponically grown Artemisia annua. - J. Environ. Sci. 24: 1511-1518, 2012. Go to original source...
- Liu D., Zhang L., Li C. et al.: Effect of wounding on gene expression involved in artemisinin biosynthesis and artemisinin production in Artemisia annua. - Russ. J. Plant Physl+ 57: 882-886, 2010. Go to original source...
- Logan B.A.: Reactive oxygen species and photosynthesis. - In: Smirnoff N. (ed.): Antioxidants and Reactive Oxygen Species in Plants. Pp. 250-267. Blackwell, Oxford 2005. Go to original source...
- Mannan A., Liu C., Arsenault P.R. et al.: DMSO triggers the generation of ROS leading to an increase in artemisinin and dihydroartemisinic acid in Artemisia annua shoot cultures. - Plant Cell Rep. 29: 143-152, 2010. Go to original source...
- Marchese J.A., Ferreira J.F.S., Rehder V.L.G., Rodrigues O.: Water deficit effect on the accumulation of biomass and artemisinin in annual wormwood (Artemisia annua L., Asteraceae). - Braz. J. Plant Physiol. 22: 1-9, 2010. Go to original source...
- Mishra A., Choudhuri M.A.: Effects of salicylic acid on heavy metal-induced membrane deterioration mediated by lipoxygenase in rice. - Biol. Plantarum 42: 409-415, 1999. Go to original source...
- Mukherjee S.P., Choudhuri M.A. Implications of water stressinduced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. - Physiol. Plantarum 58: 166-170, 1983. Go to original source...
- Müller P., Li X.-P., Niyogi K.N.: Non-Photochemical Quenching. A response to excess light energy. - Plant Physiol. 125: 1558-1566, 2001. Go to original source...
- Ohad I., Keren N., Zer H. et al.: Light induced degradation of the photochemical reaction center II D1 protein in-vivo: an integrative approach. - In: Baker N.R., Bowyer J.R. (ed.): Photoinhibition of Photosynthesis From Molecular Mechanisms to the Field. Pp. 161-171. Bios Scientific, Oxford 1993.
- Paddon C. J., Westfall P. J., Pitera D. J. et al.: High-level semisynthetic production of the potent antimalarial artemisinin. - Nature 496: 528-532, 2013. Go to original source...
- Pandey A.V., Tekwani B.L., Singh R.L., Chauhan V.S.: Artemisinin, an endoperoxide antimalarial, disrupts the hemoglobin catabolism and heme detoxification systems in malarial parasite. - J. Biol. Chem. 274: 19383-19388, 1999. Go to original source...
- Pu G.-B., Ma D.-M., Chen J.-L. et al.: Salicylic acid activates artemisinin biosynthesis in Artemisia annua L. - Plant Cell Rep. 28: 1127-1135, 2009. Go to original source...
- Qureshi M.I., Israr M., Abdin M.Z., Iqbal M.: Responses of Artemisia annua L. to lead and salt-induced oxidative stress. - Environ. Exp. Bot. 53: 185-193, 2005.
- Rai R., Meena R.P., Smita S.S. et al.: UV-B and UV-C pretreatments induce physiological changes and artemisinin biosynthesis in Artemisia annua L. - An antimalarial plant. - J. Photoch. Photbio. B 105: 216-225, 2011. Go to original source...
- Sen R., Ganguly S., Saha P., Chatterjee M.: Efficacy of artemisinin in experimental visceral leishmaniasis. - Int. J. Antimicrob. Ag. 36: 43-49, 2010. Go to original source...
- Triantaphylidès C., Krischke M., Hoeberichts F.A. et al.: Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. - Plant Physiol. 148: 960-968, 2008. Go to original source...
- van Agtmael M.A., Eggelte T.A., van Boxtel C.J.: Artemisinin drugs in the treatment of malaria: from medicinal herb to registered medication. - Trends Pharmacol. Sci. 20: 199-205, 1999. Go to original source...
- Wallaart T.E., van Uden W., Lubberink H.G.M. et al.: Isolation and identification of dihydroartemisinic acid from Artemisia annua and its possible role in the biosynthesis of Artemisinin. - J. Nat. Prod. 62: 430-433, 1999. Go to original source...
- Wang M.L., Jiang Y.S., Wei J.Q. et al.: Effects of irradiance on growth, photosynthetic characteristics, and artemisinin content of Artemisia annua L. - Photosynthetica 46: 17-20, 2008. Go to original source...
- World Health Organization: WHO monograph on good agricultural and collection practices (GACP) for Artemisia annua L. Pp. 58. WHO, Geneva 2006.
- Zeng Q.-P., Zeng X.-M., Yang R.-Y., Yang X.-Q.: Singlet oxygen as a signaling transducer for modulating artemisinin biosynthetic genes in Artemisia annua. - Biol. Plantarum 55: 669-674, 2011. Go to original source...